1
|
Wu Y, Zhang K, Zheng Y, Jin H. A review of potential mechanisms and treatments of gastric intestinal metaplasia. Eur J Gastroenterol Hepatol 2025; 37:383-394. [PMID: 39975991 DOI: 10.1097/meg.0000000000002903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Gastric intestinal metaplasia (GIM) is a pathological process where gastric mucosal epithelial cells are replaced by intestinal-type cells, serving as a precursor lesion for gastric cancer. This transformation involves various genetic and environmental factors, affecting key genes and signaling pathways. Recent research has revealed complex mechanisms, including changes in gene expression, abnormal signaling pathway activation, and altered cell behavior. This review summarizes the latest research on GIM, discussing its pathogenesis, current treatment strategies, and potential efficacy of emerging approaches like gene editing, microbiome interventions, and integrative medicine. By exploring these strategies, we aim to provide more effective treatments for GIM and reduce gastric cancer incidence. The review also highlights the importance of interdisciplinary studies in understanding GIM mechanisms and improving treatment strategies.
Collapse
Affiliation(s)
- Yueyao Wu
- Department of Gastroenterology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | | | | | | |
Collapse
|
2
|
Wang B, Luan J, Zhao W, Yu J, Li A, Li X, Zhong X, Cao H, Wang R, Liu B, Lu S, Shi M. Comprehensive multiomics analysis of the signatures of gastric mucosal bacteria and plasma metabolites across different stomach microhabitats in the development of gastric cancer. Cell Oncol (Dordr) 2025; 48:139-159. [PMID: 38963518 PMCID: PMC11850404 DOI: 10.1007/s13402-024-00965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/05/2024] Open
Abstract
PURPOSE As an important component of the microenvironment, the gastric microbiota and its metabolites are associated with tumour occurrence, progression, and metastasis. However, the relationship between the gastric microbiota and the development of gastric cancer is unclear. The present study investigated the role of the gastric mucosa microbiome and metabolites as aetiological factors in gastric carcinogenesis. METHODS Gastric biopsies from different stomach microhabitats (n = 70) were subjected to 16S rRNA gene sequencing, and blood samples (n = 95) were subjected to untargeted metabolome (gas chromatography‒mass spectrometry, GC‒MS) analyses. The datasets were analysed using various bioinformatics approaches. RESULTS The microbiota diversity and community composition markedly changed during gastric carcinogenesis. High Helicobacter. pylori colonization modified the overall diversity and composition of the microbiota associated with gastritis and cancer in the stomach. Most importantly, analysis of the functional features of the microbiota revealed that nitrate reductase genes were significantly enriched in the tumoral microbiota, while urease-producing genes were significantly enriched in the microbiota of H. pylori-positive patients. A panel of 81 metabolites was constructed to discriminate gastric cancer patients from gastritis patients, and a panel of 15 metabolites was constructed to discriminate H. pylori-positive patients from H. pylori-negative patients. receiver operator characteristic (ROC) curve analysis identified a series of gastric microbes and plasma metabolites as potential biomarkers of gastric cancer. CONCLUSION The present study identified a series of signatures that may play important roles in gastric carcinogenesis and have the potential to be used as biomarkers for diagnosis and for the surveillance of gastric cancer patients with minimal invasiveness.
Collapse
Affiliation(s)
- Bingsen Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Jiahui Luan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China
| | - Weidong Zhao
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
- Department of gastroenterology, Zibo Municipal Hospital, Zibo, 255400, China
| | - Junbao Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Anqing Li
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
- Department of gastroenterology, Zibo Municipal Hospital, Zibo, 255400, China
| | - Xinxin Li
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
- Department of gastroenterology, Zibo Municipal Hospital, Zibo, 255400, China
| | - Xiaoqin Zhong
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
- Department of gastroenterology, Zibo Municipal Hospital, Zibo, 255400, China
| | - Hongyun Cao
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China
| | - Ruicai Wang
- Department of Pathology, Zibo Municipal Hospital, Zibo, 255400, China
| | - Bo Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
- Department of Clinical Microbiology, Zibo City Key Laboratory of Respiratory Infection and Clinical Microbiology, Zibo City Engineering Technology Research Center of Etiology Molecular Diagnosis, Zibo Municipal Hospital, Zibo, 255400, China
- Department of Pulmonary and Critical Care Medicine, Shandong Institute of Respiratory Diseases, The First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, 250014, China
| | - Shiyong Lu
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China
| | - Mei Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
- Shandong University-Zibo Municipal Hospital Research Center of Human Microbiome and Health, Zibo, 255400, China.
| |
Collapse
|
3
|
Angelini I, Centrone M, Caponio GR, Di Mise A, Gerbino A, Ranieri M, Valenti G, Tamma G. MOMAST ® Downregulates AQP3 Expression and Function in Human Colon Cells. Antioxidants (Basel) 2024; 14:26. [PMID: 39857360 PMCID: PMC11762842 DOI: 10.3390/antiox14010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
The water channel AQP3 is an aquaglyceroporin expressed in villus epithelial cells, and it plays a role in water transport across human colonic surface cells. Beyond water, AQP3 can mediate glycerol and H2O2 transport. Abnormal expression and function of AQP3 have been found in various diseases often characterized by altered cell growth and proliferation. Here, the beneficial effects of MOMAST® have been evaluated. MOMAST® is an antioxidant-patented natural phenolic complex obtained from olive wastewater (OWW) of the Coratina cultivar. Treatment of human colon HCT8 cells with MOMAST® reduced cell viability. Confocal studies and Western Blotting analysis demonstrated that treatment with MOMAST® significantly decreased the staining and the expression of AQP3. Importantly, functional studies revealed that the reduction of AQP3 abundance correlates with a significant decrease in glycerol and H2O2 uptake. Indeed, the H2O2 transport was partially but significantly reduced in the presence of MOMAST® or DFP00173, a selective inhibitor of AQP3. In addition, the MOMAST®-induced AQP3 decrease was associated with reduced epithelial-mesenchymal transition (EMT)-related proteins such as vimentin and β-catenin. Together, these findings propose MOMAST® as a potential adjuvant in colon diseases associated with abnormal cell growth by targeting AQP3.
Collapse
Affiliation(s)
- Ines Angelini
- Department of Biosciences, Biotechnologies, and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (M.C.); (G.R.C.); (A.G.); (M.R.); (G.V.)
| | - Mariangela Centrone
- Department of Biosciences, Biotechnologies, and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (M.C.); (G.R.C.); (A.G.); (M.R.); (G.V.)
| | - Giusy Rita Caponio
- Department of Biosciences, Biotechnologies, and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (M.C.); (G.R.C.); (A.G.); (M.R.); (G.V.)
| | - Annarita Di Mise
- Department of Biotechnology and Biosciences, University of Milan-Bicocca, 20126 Milan, Italy;
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies, and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (M.C.); (G.R.C.); (A.G.); (M.R.); (G.V.)
| | - Marianna Ranieri
- Department of Biosciences, Biotechnologies, and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (M.C.); (G.R.C.); (A.G.); (M.R.); (G.V.)
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies, and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (M.C.); (G.R.C.); (A.G.); (M.R.); (G.V.)
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies, and Environment, University of Bari “Aldo Moro”, 70125 Bari, Italy; (I.A.); (M.C.); (G.R.C.); (A.G.); (M.R.); (G.V.)
| |
Collapse
|
4
|
Mishra V, Dash D, Panda AK, Pathak SK. Efficacy of Lactobacillus spp. Supplementation in Helicobacter pylori Eradication: A Systematic Meta-Analysis of Randomized Controlled Trials With Trial Sequential Analysis. Helicobacter 2024; 29:e70006. [PMID: 39722187 DOI: 10.1111/hel.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/24/2024] [Accepted: 12/12/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Helicobacter pylori infection is a major global health concern and has been associated with a number of gastrointestinal disorders. Probiotics, especially Lactobacillus spp., have been suggested to have beneficial effect in managing H. pylori infection. This meta-analysis of randomized control trials (RCTs) aimed to evaluate the effect of Lactobacillus spp. supplementation on H. pylori eradication rates and associated side effects when combined with standard therapy. MATERIALS AND METHODS Relevant studies were retrieved from PubMed, Scopus, Google Scholar and the Cochrane Library. Comprehensive Meta-Analysis (CMA) Software 4.0 was used for all the statistical analyses. TSA 0.9.5.10 Beta software was used for the trial sequential analysis (TSA). GRADEpro GDT was used to assess the certainty of evidence. RESULTS An analysis of 26 selected studies showed that supplementing with Lactobacillus spp. significantly increased the rates of H. pylori eradication in per-protocol (PP) analysis (Overall risk ratio [RR] = 1.063, p = 0.000, 95% CI of -0.21 to 2.11; adults: RR = 1.050, p = 0.005, 95% CI = -0.55 to 2.03, children: RR = 1.223, p = 0.001, 95% CI = -13.35 to 4.55). In comparison to quadruple therapy, Lactobacillus spp. supplementation to triple therapy showed significant benefit (RR: 1.124; p = 0.000, 95% CI of -0.48 to 2.61). L. reuteri supplementation indicated better efficacy (RR: 1.049; p = 0.055, 95% CI of -0.56 to 3.26) than Lactobacillus GG (RR: 0.980; p = 0.595, 95% CI of -0.69 to 1.21). The 28-30 day (RR: 1.103; p = 0.003, 95% CI of -2.14 to 4.19) and 14-day supplementation periods (RR: 1.102; p = 0.003, 95% CI of -1.69 to 3.51) showed the most improvement. The analysis also revealed that Lactobacillus spp. significantly reduced gastrointestinal side effects: nausea/vomiting (RR: 0.566; p = 0.037, -3.11 to 1.45), diarrhea (RR: 0.324; p = 0.000, -5.46 to 0.48), and abdominal pain (RR: 0.438; p = 0.007, -5.65 to 4.22). The effect on bloating was non-significant (RR: 0.820; p = 0.498, -4.01 to 0.96). TSA graphs validated sufficient evidence for the conclusions. CONCLUSION Lactobacillus spp. significantly enhances H. pylori eradication rates and may reduce gastrointestinal side effects when used alongside standard therapy, offering a promising adjunctive treatment option. The evidence was supported by TSA and assessed using GRADEpro, indicating a high certainty of the findings.
Collapse
Affiliation(s)
- Vivek Mishra
- Department of Biotechnology, Berhampur University, Berhampur, Odisha, India
| | - Debabrata Dash
- Department of Biotechnology, Berhampur University, Berhampur, Odisha, India
| | - Aditya K Panda
- Department of Biotechnology, Berhampur University, Berhampur, Odisha, India
- Centre of Excellence on Bioprospecting of Ethno-Pharmaceuticals of Southern Odisha, (CoE-BESO), Berhampur University, Berhampur, India
| | - Sushil Kumar Pathak
- Department of Biotechnology, Berhampur University, Berhampur, Odisha, India
- Centre of Excellence on Bioprospecting of Ethno-Pharmaceuticals of Southern Odisha, (CoE-BESO), Berhampur University, Berhampur, India
| |
Collapse
|
5
|
Zhang X, Lai Y, Zhang L, Chen Z, Zhao J, Wang S, Li Z. Chitosan-modified molybdenum selenide mediated efficient killing of Helicobacter pylori and treatment of gastric cancer. Int J Biol Macromol 2024; 275:133599. [PMID: 38960263 DOI: 10.1016/j.ijbiomac.2024.133599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/09/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Helicobacter pylori (H. pylori) is one of the major causes of gastrointestinal diseases, including gastric cancer. However, the acidic environment of the stomach and H. pylori resistance severely impair the antimicrobial efficacy of oral drugs. Here, a biocompatible chitosan-modified molybdenum selenide (MoSe2@CS) was designed for the simultaneous photothermal treatment of H. pylori infection and gastric cancer. MoSe2@CS showed a photothermal conversion efficiency was as high as 45.7 %. In the H. pylori-infected mice model, MoSe2@CS displayed a high bacteriostasis ratio of 99.9 % upon near-infrared irradiation. The antimicrobial functionality was also proved by transcriptomic sequencing study, which showed that MoSe2@CS combined with NIR laser irradiation modulated the gene expression of a variety of H. pylori bioprocesses, including cell proliferation and inflammation-related pathways. Further gut flora analysis results indicated that MoSe2@CS mediated PTT of H. pylori did not affect the homeostasis of gut flora, which highlights its advantages over traditional antibiotic therapy. In addition, MoSe2@CS exhibited a good photothermal ablation effect and significantly inhibited gastric tumor growth in vitro and in vivo. The comprehensive application of MoSe2@CS in the PTT of H. pylori infection and gastric cancer provides a new avenue for the clinical treatment of H. pylori infection and related diseases.
Collapse
Affiliation(s)
- Xinyuan Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China; School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Yongkang Lai
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China; Department of Gastroenterology, Ganzhou People's Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Liang Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China; Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Zheng Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China.
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China.
| | - Zhaoshen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, PR China; Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China.
| |
Collapse
|
6
|
Lu C, Fan X, Zheng M, Zhang S, Wang P, Wang Y, Zhang S. GDF6 in gastric cancer upregulated by helicobacter pylori induces epithelial-mesenchymal translation via the TGF-β/SMAD3 signaling pathway. Pathol Res Pract 2024; 260:155384. [PMID: 38850874 DOI: 10.1016/j.prp.2024.155384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/30/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVE To investigate the association between Helicobacter pylori infection and GDF6 expression in gastric cancer patients, and to determine its influence on prognosis and resistance to capecitabine. METHODS Tumor and adjacent non-tumor tissues were collected from 148 gastric cancer patients who underwent surgery in our department from October 2019 to June 2022. Of these patients, 78 tested positive for Helicobacter pylori and 70 tested negative. Hematoxylin-eosin (HE) and immunofluorescence staining were utilized to quantify GDF6 expression in cancerous and adjacent tissues. Patient prognosis was monitored via follow-up. Western blotting analyzed GDF6 expression in common gastric cancer cell lines. HGC27 cells exhibiting high GDF6 expression and BGC823 cells with low expression were used to create GDF6-silenced and overexpressed cell lines. The impact of GDF6 on the proliferation, migration, invasion, and cloning abilities of gastric cancer cells was evaluated using the CCK-8 assay, scratch test, Transwell assay, and plate colony formation assay. Fluorescent quantitative PCR and Western blotting assessed the effects of GDF6 levels on epithelial-mesenchymal transition (EMT) and tumor cell stemness. RESULTS GDF6 expression in gastric cancer tissues was significantly correlated with cancer grading and staging (P<0.05). Helicobacter pylori-positive tissues exhibited significantly higher GDF6 expression levels than negative samples (P<0.05). Kaplan-Meier survival analysis indicated that high GDF6 expression was associated with poor survival prognosis. Overexpressed GDF6 enhanced the proliferation, migration, and invasion abilities of gastric cancer cells, while silencing GDF6 yielded opposite results. Increased GDF6 expression upregulated TGF-β expression and the phosphorylation levels of SMAD3, leading to an elevation in mesenchymal cell markers N-cadherin, vimentin, and a reduction in epithelial cell markers cytokeratins, E-cadherin. Moreover, high GDF6 levels contributed to increased resistance to capecitabine and enhanced the expression of tumor stem cell markers Nanog, Sox-2, Oct-4, CD44, amplifying tumor cell stemness. CONCLUSION Helicobacter pylori infection is associated with increased GDF6 expression in gastric cancer tissue, correlating with poor survival prognosis. Elevated GDF6 expression promotes the proliferation, migration, and invasion abilities of gastric cancer cells, facilitates EMT via the TGF-β/SMAD3 pathway, and intensifies cell stemness and capecitabine resistance. Consequently, GDF6 presents itself as a potential new target for gastric cancer treatment. DATA AVAILABILITY STATEMENT The data that support the findings of this study are available from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Cuijuan Lu
- Graduate School, Tianjin Medical University, Tianjin, 300070, China; Department of pathology, Affiliated hospital of Hebei university, Baoding, Hebei province 071000, China
| | - Xiangyu Fan
- Graduate School, Tianjin Medical University, Tianjin, 300070, China; Department of pathology, Affiliated hospital of Hebei university, Baoding, Hebei province 071000, China
| | - Minying Zheng
- Department of pathology, Tianjin Union Medical Center, Tianjin 300121, China
| | - Shun Zhang
- Department of pathology, Affiliated hospital of Hebei university, Baoding, Hebei province 071000, China
| | - Pan Wang
- Department of pathology, Affiliated hospital of Hebei university, Baoding, Hebei province 071000, China
| | - Yanan Wang
- Department of pathology, Affiliated hospital of Hebei university, Baoding, Hebei province 071000, China.
| | - Shiwu Zhang
- Department of pathology, Tianjin Union Medical Center, Tianjin 300121, China.
| |
Collapse
|
7
|
Yu C, Zhou G, Shi Z, Yu L, Zhou X. TREM1 facilitates the development of gastric cancer through regulating neutrophil extracellular traps-mediated macrophage polarization. Dig Liver Dis 2024; 56:1237-1247. [PMID: 38151453 DOI: 10.1016/j.dld.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/29/2023]
Abstract
Triggering receptor expressed on myeloid cell 1 (TREM1) elevation is associated with the unfavorable prognosis of gastric cancer (GC) patients. This work uncovered the effects and mechanism of TREM1 in GC. IHC staining examined TREM1 expression in GC tissues. TREM1-knockout and TREM1 knock-in mice were generated prior to the construction of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced GC mice model. H&E staining detected the pathological alternations of gastric tissues. IHC staining tested Ki67 expression. Wright-Giemsa staining performed neutrophil counting and flow cytometry analysis measured neutrophil infiltration. ELISA analyzed serum and tissue myeloperoxidase (MPO) levels and serum MPO-DNA levels. Immunofluorescence, Western blotting and related kits detected NETs formation. Immunofluorescence and IHC staining evaluated macrophage polarization. In MNNG-treated GES-1 cells and phorbal myristate acetate (PMA)-treated neutrophils, TREM1 expression was also examined. CCK-8 method and Western blotting assayed cell proliferation. Western blotting and immunofluorescence detected NETs formation. Flow cytometry analysis detected the changes of macrophage typing. TREM1 was overexpressed in tumor tissues, MNNG-treated GES-1 cells and PMA-treated neutrophils. TREM1 deficiency hindered tumor growth, reduced neutrophil infiltration, NETs formation and stimulated M1 macrophage polarization in MNNG-induced GC models. Neutrophil extracellular traps (NETs) degrader DNase-1 countervailed the impacts of TREM1 on MNNG-induced GC models in vivo. Collectively, TREM1 knockdown obstructed NETs-mediated M2 macrophage polarization to hamper GC progression.
Collapse
Affiliation(s)
- Cheng Yu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of General Surgery, Affiliated Changshu Hospital of Nantong University, Changshu, 215500, China
| | - Guoqiang Zhou
- Department of General Surgery, Affiliated Changshu Hospital of Nantong University, Changshu, 215500, China
| | - Zhiliang Shi
- Department of General Surgery, Affiliated Changshu Hospital of Nantong University, Changshu, 215500, China
| | - Liang Yu
- Department of General Surgery, Affiliated Changshu Hospital of Nantong University, Changshu, 215500, China
| | - Xiaojun Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
8
|
Wen W, Ertas YN, Erdem A, Zhang Y. Dysregulation of autophagy in gastric carcinoma: Pathways to tumor progression and resistance to therapy. Cancer Lett 2024; 591:216857. [PMID: 38583648 DOI: 10.1016/j.canlet.2024.216857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The considerable death rates and lack of symptoms in early stages of gastric cancer (GC) make it a major health problem worldwide. One of the most prominent risk factors is infection with Helicobacter pylori. Many biological processes, including those linked with cell death, are disrupted in GC. The cellular "self-digestion" mechanism necessary for regular balance maintenance, autophagy, is at the center of this disturbance. Misregulation of autophagy, however, plays a role in the development of GC. In this review, we will examine how autophagy interacts with other cell death processes, such as apoptosis and ferroptosis, and how it affects the progression of GC. In addition to wonderful its role in the epithelial-mesenchymal transition, it is engaged in GC metastasis. The role of autophagy in GC in promoting drug resistance stands out. There is growing interest in modulating autophagy for GC treatment, with research focusing on natural compounds, small-molecule inhibitors, and nanoparticles. These approaches could lead to breakthroughs in GC therapy, offering new hope in the fight against this challenging disease.
Collapse
Affiliation(s)
- Wen Wen
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| | - Ahmet Erdem
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, College of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA; Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41001 Turkey.
| | - Yao Zhang
- Department of Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
9
|
Li SH, Li Y, Zhang MJ, An Q, Tao JN, Wang XH. Interaction Between Hypoxia-Inducible Factor 1-alpha Gene Polymorphism and Helicobacter pylori Infection on Gastric Cancer in a Chinese Tibetan Population. Biochem Genet 2024:10.1007/s10528-024-10776-8. [PMID: 38767822 DOI: 10.1007/s10528-024-10776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/07/2024] [Indexed: 05/22/2024]
Abstract
To investigate the impact of four single nucleotide polymorphisms (SNPs) of the HIF1α gene and its interaction with Helicobacter pylori (H. pylori) infection on susceptibility to gastric cancer (GC).Logistic regression was used to test the relationship between four SNPs of HIF1α gene and the susceptibility of GC. A generalized multifactor dimensionality reduction (GMDR) model was used to assess the HIF1α gene-H. pylori infection interaction.Logistic regression analysis indicated that both the rs11549465-CT genotype and the T allele were associated with an increased risk of GC, adjusted OR (95% CI) were 1.63 (1.09-2.20) (CT vs. CC) and 1.70 (1.13-2.36) (T vs. C), respectively. We also found that both the rs11549467-A allele and rs11549467-GA genotype were associated with an increased risk of GC, and adjusted OR (95% CI) were 2.21 (1.61-2.86) (GA vs. GG), 2.13 (1.65-2.65) (A vs. G), respectively. However, no statistically significant impact of rs2057482 or rs1957757 on risk of GC was found. The GMDR model indicated a statistically significant two-dimensional model combination (including rs11549467 and H. pylori infection). The selected model had testing balanced accuracy of 0.60 and the best cross-validation consistencies of 10/10 (p = 0.0107). Compared with H. pylori infection negative participants with rs11549467-GG genotype, H. pylori positive participants with the rs11549467-GA genotype had the highest GC risk, the OR (95% CI) was 3.04 (1.98-4.12).The rs11549467-A allele and rs11549467-GA genotype was associated with increased GC risk. Additionally, the gene-environment interaction between HIF-1α-rs11549467 and H. pylori infection was also correlated with an increased risk of GC.
Collapse
Affiliation(s)
- Su-Hua Li
- Department of Gastroenterology, The Affiliated Hospital of Qinghai University, 29 Tongren Road, Xining, 810001, Qinghai, China.
| | - Yan Li
- Department of Gastroenterology, The Affiliated Hospital of Qinghai University, 29 Tongren Road, Xining, 810001, Qinghai, China
| | - Meng-Jun Zhang
- Department of Gastroenterology, The Affiliated Hospital of Qinghai University, 29 Tongren Road, Xining, 810001, Qinghai, China
| | - Qi An
- Department of Gastroenterology, The Affiliated Hospital of Qinghai University, 29 Tongren Road, Xining, 810001, Qinghai, China
| | - Jia-Nan Tao
- Department of Gastroenterology, The Affiliated Hospital of Qinghai University, 29 Tongren Road, Xining, 810001, Qinghai, China
| | - Xue-Hong Wang
- Department of Gastroenterology, The Affiliated Hospital of Qinghai University, 29 Tongren Road, Xining, 810001, Qinghai, China
| |
Collapse
|
10
|
Liu L, Shi H, Shi Y, Wang A, Guo N, Li F, Nahata MC. Vonoprazan-based therapies versus PPI-based therapies in patients with H. pylori infection: Systematic review and meta-analyses of randomized controlled trials. Helicobacter 2024; 29:e13094. [PMID: 38790090 DOI: 10.1111/hel.13094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND This study aims to evaluate the efficacy and safety of vonoprazan-amoxicillin (VA), vonoprazan-amoxicillin-clarithromycin (VAC), vonoprazan-based bismuth-containing quadruple therapy (VBQT), and PPI-based triple (PAC) or quadruple therapy (PBQT) for H. pylori infection with the consideration of duration of therapy and amoxicillin dose (H: high; L: low). MATERIALS AND METHODS PubMed, Embase, and the Cochrane Central Register of Controlled Trials were searched for eligible randomized controlled trials (RCTs) up to December 15, 2023. The efficacy outcome was eradication rate, and safety outcomes included the rates of adverse events and treatment discontinuation. RESULTS Twenty-seven RCTs were included. The pooled eradication rates were 82.8% for VA, 89.1% for VAC, and 91.8% for VBQT, which increased with the higher amoxicillin frequency of administration and extended duration of therapy within each regimen. There were no significant differences in eradication rate when comparing 7-VA versus 7-VAC and 14-VA versus 14-VAC. VA was at least comparable to PAC. The eradication rate did not differ significantly between 10-H-VA or 14-H-VA versus 14-PBQT. 7-L-VAC demonstrated higher eradication rate versus 7-PAC and comparable rate to 14-PAC. 14-VBQT showed higher eradication rates versus 14-PBQT. The adverse events rate was 19.3% for VA, 30.6% for VAC, and 38.4% for VBQT. VA had similar risk of adverse events versus VAC and significantly fewer adverse events compared to PBQT. The treatment discontinuation rate did not differ significantly between treatments. CONCLUSIONS The eradication rate of VBQT was the highest at above 90% followed by VAC and VA. VA was as effective as VAC and superior to PPI-based therapies with favorable safety, highlighting the potential of VA therapy as a promising alternative to traditional PPI-based therapies. VPZ-based triple or quadruple therapies was more effective than PPI-based therapies. Further studies are needed to establish the optimal treatment regimen especially in the western countries.
Collapse
Affiliation(s)
- Ligang Liu
- Institute of Therapeutic Innovations and Outcomes (ITIO), College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Hekai Shi
- Department of Bariatric and Metabolic Surgery, Fudan University Affiliated Huadong Hospital, Shanghai, China
| | - Yufei Shi
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - Anlin Wang
- Department of Pharmacy, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Nuojin Guo
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fang Li
- Department of Pharmacy, Beijing You An Hospital, Capital Medical University, Beijing, China
| | - Milap C Nahata
- Institute of Therapeutic Innovations and Outcomes (ITIO), College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
- College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
Tian Y, Xie Y, Yi G, Wu F, Dang X, Bai F, Wang J, Zhang D. Prognostic Value and Therapeutic Significance of CCL Chemokines in Gastric Cancer. Curr Med Chem 2024; 31:7043-7058. [PMID: 39129286 DOI: 10.2174/0109298673315146240731100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Gastric cancer is one of the most common malignant tumours of the gastrointestinal tract, which has a significant negative impact on human health. AIMS CCL chemokines play important roles in a variety of tumor microenvironments; nevertheless, gastric cancer has surprisingly limited associations with CCL chemokines. METHODS In our study, we comprehensively utilized bioinformatics analysis tools and databases such as cBioPortal, UALCAN, GEPIA, GeneMANIA, STRING, and TRRUST to clarify the clinical significance and biology function of CCL chemokines in gastric cancer. RESULTS The mRNA expression levels of CCL1/3/4/5/7/8/14/15/18/20/21/22/26 were up-regulated, while the mRNA expression levels of CCL2/11/13/16/17/19/23/24/25/28 were down-regulated. The chemokine significantly associated with the pathological stage of gastric cancer is CCL2/11/19/21. In gastric cancer, the expression level of CCL chemokines was not associated with disease-free survival, but low expression of CCL14 was significantly associated with longer overall survival. Therein, associated with the regulation of CCL chemokines are only 10 transcription factors (RELA, NFKB1, STAT6, IRF3, REL, SPI1, STAT1, STAT3, JUN and SP1). The major biological process and functional enrichment of CCL chemokines are to induce cell-directed migration. CONCLUSION These results may indicate that CCL chemokines may be immunotherapeutic targets and promising prognostic biomarkers for gastric cancer.
Collapse
Affiliation(s)
- Yonggang Tian
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Yunqian Xie
- Department of Gastroenterology, The Gastroenterology Clinical Medical Center of Hainan Province, The Second Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, China
| | - Guirong Yi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Fanqi Wu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Xiaoyu Dang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Feihu Bai
- Department of Gastroenterology, The Gastroenterology Clinical Medical Center of Hainan Province, The Second Affiliated Hospital of Hainan Medical University, Haikou City, Hainan Province, China
| | - Jun Wang
- Department of Gastroenterology, 986 Hospital, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi Province, China
| | - Dekui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| |
Collapse
|
12
|
Lim NR, Chung WC. Helicobacter pylori-associated Chronic Atrophic Gastritis and Progression of Gastric Carcinogenesis. THE KOREAN JOURNAL OF GASTROENTEROLOGY = TAEHAN SOHWAGI HAKHOE CHI 2023; 82:171-179. [PMID: 37876256 DOI: 10.4166/kjg.2023.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 10/26/2023]
Abstract
Chronic inflammation due to a Helicobacter pylori (H. pylori) infection is a representative cause of gastric cancer that can promote gastric carcinogenesis by abnormally activating immune cells and increasing the inflammatory cytokines levels. H. pylori infections directly cause DNA double-strand breaks in gastric epithelial cells and genetic damage by increasing the enzymatic activity of cytidine deaminase. Eventually, gastric cancer is induced through dysplasia. Hypermethylation of tumor suppressor genes is an important cause of gastric cancer because of a H. pylori infection. In addition, the changes in gastric microbiota and the mucosal inflammatory changes associated with a co-infection with the Epstein-Barr virus are associated with gastric cancer development. DNA damage induced by H. pylori and the subsequent responses of gastric stem cells have implications for gastric carcinogenesis. Although the pathogenesis of H. pylori has been established, many uncertainties remain, requiring more study.
Collapse
Affiliation(s)
- Na Rae Lim
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| | - Woo Chul Chung
- Department of Internal Medicine, St. Vincent Hospital, The Catholic University of Korea, Suwon, Korea
| |
Collapse
|
13
|
Chiang H, Hughes M, Chang W. The role of microbiota in esophageal squamous cell carcinoma: A review of the literature. Thorac Cancer 2023; 14:2821-2829. [PMID: 37675608 PMCID: PMC10542467 DOI: 10.1111/1759-7714.15096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) exhibits high incidence with poor prognosis. Alcohol drinking, cigarette smoking, and betel nut chewing are well-known risk factors. Dysbiosis, an imbalance of the microbiota residing in a local environment, is known to be associated with human diseases, especially cancer. This article reviews the current evidence of esophageal microbiota in ESCC carcinogenesis, including initiation, progression, and drug resistance. Articles involving the esophageal microbiota, diagnosis, treatment, and the progression of esophageal cancer were acquired using a comprehensive literature search in PubMed in recent 10 years. Based on 16S rRNA sequencing of human samples, cell, and animal studies, current evidence suggests dysbiosis of the esophagus promotes ESCC progression and chemotherapy resistance, leading to a poor prognosis. Smoking and drinking are associated with esophageal dysbiosis. Specific bacteria have been reported to promote carcinogenesis, involving either progression or drug resistance in ESCC, for example Porphyromonas gingivalis and Fusobacterium nucleatum. These bacteria promote ESCC cell proliferation and migration via the TLR4/NF-κB and IL-6/STAT3 pathways. F. nucleatum induces cisplatin resistance via the enrichment of immunosuppressive myeloid-derived suppressor cells (MDSCs). Correcting the dysbiosis and reducing the abundance of specific esophageal pathogens may help in suppressing cancer progression. In conclusion, esophageal dysbiosis is associated with ESCC progression and chemoresistance. Screening the oral and esophageal microbiota is a potential diagnostic tool for predicting ESCC development or drug-resistance. Repairing esophageal dysbiosis is a novel treatment for ESCC. Clinical trials with probiotics in addition to current chemotherapy are warranted to study the therapeutic effects.
Collapse
Affiliation(s)
- Hsueh‐Chien Chiang
- Department of Internal MedicineNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| | - Michael Hughes
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
- International Center for Wound Repair and Regeneration (iWRR), College of MedicineNational Cheng Kung UniversityTainanTaiwan
- Department of Life SciencesNational Cheng Kung UniversityTainanTaiwan
| | - Wei‐Lun Chang
- Department of Internal MedicineNational Cheng Kung University Hospital, College of Medicine, National Cheng Kung UniversityTainanTaiwan
- Institute of Clinical Medicine, College of MedicineNational Cheng Kung UniversityTainanTaiwan
| |
Collapse
|
14
|
Yu S, Tu R, Chen Z, Song J, Li P, Hu F, Yuan G, Zhang R, Li Y. Association of PTGER4 and PRKAA1 genetic polymorphisms with gastric cancer. BMC Med Genomics 2023; 16:209. [PMID: 37670284 PMCID: PMC10478487 DOI: 10.1186/s12920-023-01645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/23/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignancies, affected by several genetic loci in the clinical phenotype. This study aimed to determine the association between PTGER4 and PRKAA1 gene polymorphisms and the risk of GC. METHODS A total of 509 GC patients and 507 age and sex-matched healthy controls were recruited to explore the association between PTGER4 and PRKAA1 genetic polymorphisms and GC susceptibility. Logistic regression analysis was used to study the correlation between these SNPs and GC, with odd ratio (OR) and 95% confidence interval (CI) as indicators. Multifactor dimensionality reduction was utilized to analyze the genetic relationships among SNPs. was conducted to predict gene expression, the impact of SNPs on gene expression, and the signaling pathways involved in PTGER4 and PRKAA1. RESULTS Overall, rs10036575 in PTGER4 (OR = 0.82, p = 0.029), rs10074991 (OR = 0.82, p = 0.024) and rs13361707 (OR = 0.82, p = 0.030) in PRKAA1 were associated with susceptibility to GC. Stratification analysis revealed that the effects of these SNPs in PTGER4 and PRKAA1 on GC susceptibility were dependent on smoking and were associated with a reduced risk of adenocarcinoma (p < 0.05). Bioinformatics analysis showed an association between SNPs and corresponding gene expression (p < 0.05), and PRKAA1 may affect GC by mediating RhoA. CONCLUSION This study suggests that PTGER4 and PRKAA1 SNPs might affect the susceptibility of GC, providing a new biological perspective for GC risk assessment, pathogenesis exploration, and personalized treatment.
Collapse
Affiliation(s)
- Shuyong Yu
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570312, China
| | - Ruisha Tu
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570312, China
| | - Zhaowei Chen
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, 518055, China
| | - Jian Song
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, 518055, China.
| | - Ping Li
- Department of Digestive Endoscopy, Hainan Cancer Hospital, Haikou, Hainan, 570312, China
| | - Feixiang Hu
- Department of Gastrointestinal Surgery, Hainan Cancer Hospital, Haikou, Hainan, 570312, China
| | - Guihong Yuan
- Department of Gastroenterology, Southern University of Science and Technology Hospital, Shenzhen, 518055, China
| | - Ronglin Zhang
- Department of Digestive Endoscopy, Hainan Cancer Hospital, Haikou, Hainan, 570312, China
| | - Yini Li
- Department of Digestive Endoscopy, Hainan Cancer Hospital, Haikou, Hainan, 570312, China
| |
Collapse
|
15
|
Wang X, Dong J, Sheng H, Ma X, Baheti L, Xu J. Coding RNA expression profile and transcription factor analysis of H.pylori-associated chronic atrophic gastritis. Adv Med Sci 2023; 68:491-498. [PMID: 37945439 DOI: 10.1016/j.advms.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/09/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE Atrophic gastritis, one of the processes leading to gastric cancer (GC), is closely related to Helicobacter pylori (HP) infection. This study aimed to understand how HP causes chronic inflammation that leads to ulcers and stomach problems. METHODS Twenty-eight CAG patients were included in the study (9 HP-infected and 19 HP-uninfected). Endoscopy, histopathology, and high-throughput mRNA sequencing were performed. Differentially expressed genes (DEGs) were validated via qRT-PCR. RESULTS Principal component analysis (PCA) results showed that more than 88.9 % of the samples were classified into the HP (+) group. A total of 157 DEGs were identified, of which 38 were up-regulated and 119 were down-regulated. The DEGs were mainly enriched in the biological process (BP) terms associated with immune system process, adaptive immune response, G protein-coupled receptor signaling pathway, as well as point to numerous key pathways, including fat digestion and absorption, retinol metabolism, steroid hormone biosynthesis, ascorbate and aldarate metabolism, and chemical carcinogenesis. APOA1, APOA4, FOXP3, NR1H4, ABCG5, ACTA1, CCL19, CCR7, CYP3A4, and PDCD had the highest degrees in protein-protein interaction network as the hub genes; they were also included into the transcription factor (TF)-target network except for PDCD. APOA1 and CYP3A4 were extremely significantly up-regulated in HP (+) CAG patients compared with the HP (-) CAG patients, while FOXP3, CCR7 and CCL19 were significantly down-regulated. CONCLUSION The expression of APOA1, CYP3A4, FOXP3, CCR7, and CCL19 are the potential indicators for CAG to GC development, being the biomarkers to predict progression of CAG and poor prognosis of GC.
Collapse
Affiliation(s)
- Xinguo Wang
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Juan Dong
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hao Sheng
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Xingting Ma
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Lazati Baheti
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Jie Xu
- Affiliated Hospital of Traditional Chinese Medicine of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
16
|
Feitelson MA, Arzumanyan A, Medhat A, Spector I. Short-chain fatty acids in cancer pathogenesis. Cancer Metastasis Rev 2023; 42:677-698. [PMID: 37432606 PMCID: PMC10584782 DOI: 10.1007/s10555-023-10117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023]
Abstract
Cancer is a multi-step process that can be viewed as a cellular and immunological shift away from homeostasis in response to selected infectious agents, mutations, diet, and environmental carcinogens. Homeostasis, which contributes importantly to the definition of "health," is maintained, in part by the production of short-chain fatty acids (SCFAs), which are metabolites of specific gut bacteria. Alteration in the composition of gut bacteria, or dysbiosis, is often a major risk factor for some two dozen tumor types. Dysbiosis is often characterized by diminished levels of SCFAs in the stool, and the presence of a "leaky gut," permitting the penetration of microbes and microbial derived molecules (e.g., lipopolysaccharides) through the gut wall, thereby triggering chronic inflammation. SCFAs attenuate inflammation by inhibiting the activation of nuclear factor kappa B, by decreasing the expression of pro-inflammatory cytokines such as tumor necrosis factor alpha, by stimulating the expression of anti-inflammatory cytokines such as interleukin-10 and transforming growth factor beta, and by promoting the differentiation of naïve T cells into T regulatory cells, which down-regulate immune responses by immunomodulation. SCFA function epigenetically by inhibiting selected histone acetyltransferases that alter the expression of multiple genes and the activity of many signaling pathways (e.g., Wnt, Hedgehog, Hippo, and Notch) that contribute to the pathogenesis of cancer. SCFAs block cancer stem cell proliferation, thereby potentially delaying or inhibiting cancer development or relapse by targeting genes and pathways that are mutated in tumors (e.g., epidermal growth factor receptor, hepatocyte growth factor, and MET) and by promoting the expression of tumor suppressors (e.g., by up-regulating PTEN and p53). When administered properly, SCFAs have many advantages compared to probiotic bacteria and fecal transplants. In carcinogenesis, SCFAs are toxic against tumor cells but not to surrounding tissue due to differences in their metabolic fate. Multiple hallmarks of cancer are also targets of SCFAs. These data suggest that SCFAs may re-establish homeostasis without overt toxicity and either delay or prevent the development of various tumor types.
Collapse
Affiliation(s)
- Mark A Feitelson
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA.
| | - Alla Arzumanyan
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Arvin Medhat
- Department of Molecular Cell Biology, Islamic Azad University Tehran North Branch, Tehran, 1975933411, Iran
| | - Ira Spector
- SFA Therapeutics, Jenkintown, PA, 19046, USA
| |
Collapse
|
17
|
Balendra V, Amoroso C, Galassi B, Esposto J, Bareggi C, Luu J, Scaramella L, Ghidini M. High-Salt Diet Exacerbates H. pylori Infection and Increases Gastric Cancer Risks. J Pers Med 2023; 13:1325. [PMID: 37763093 PMCID: PMC10533117 DOI: 10.3390/jpm13091325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Gastric cancer ranks as the fifth-leading contributor to global cancer incidence and the fourth-highest in terms of cancer-related mortality. Helicobacter pylori (H. pylori) infection leads to inflammation and ulceration, atrophic and chronic gastritis, and eventually, increases the risk of developing gastric adenocarcinoma. In this paper, we delve into the combined impact of a high-salt diet (HSD) and concurrent H. pylori infection, which act as predisposing factors for gastric malignancy. A multitude of mechanisms come into play, fostering the development of gastric adenocarcinoma due to the synergy between an HSD and H. pylori colonization. These encompass the disruption of mucosal barriers, cellular integrity, modulation of H. pylori gene expression, oxidative stress induction, and provocation of inflammatory responses. On the whole, gastric cancer patients were reported to have a higher median sodium intake with respect to healthy controls. H. pylori infection constitutes an additional risk factor, with a particular impact on the population with the highest daily sodium intake. Consequently, drawing from epidemiological discoveries, substantial evidence suggests that diminishing salt intake and employing antibacterial therapeutics could potentially lower the susceptibility to gastric cancer among individuals.
Collapse
Affiliation(s)
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.A.); (L.S.)
| | - Barbara Galassi
- Oncology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.G.); (C.B.)
| | - Josephine Esposto
- Department of Environmental and Life Sciences, Trent University, Peterborough, ON K9L0G2, Canada;
| | - Claudia Bareggi
- Oncology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.G.); (C.B.)
| | - Jennie Luu
- The University of the Incarnate Word School of Osteopathic Medicine, San Antonio, TX 78235, USA;
| | - Lucia Scaramella
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (C.A.); (L.S.)
| | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.G.); (C.B.)
| |
Collapse
|
18
|
Deng G, Sun H, Huang R, Pan H, Zuo Y, Zhao R, Du Z, Xue Y, Song H. An oxidative stress biomarkers predict prognosis in gastric cancer patients receiving immune checkpoint inhibitor. Front Oncol 2023; 13:1173266. [PMID: 37546387 PMCID: PMC10400353 DOI: 10.3389/fonc.2023.1173266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Objective The development and advance of gastric cancer are inextricably linked to oxidative and antioxidant imbalance. Although immunotherapy has been shown to be clinically effective, the link between oxidative stress and gastric cancer patients treated with immune checkpoint inhibitor (ICIs) remains unknown. This study aims at looking into the prognostic value of oxidative stress scores in gastric cancer patients treated with ICIs. Methods By taking the propagation to receiver operating characteristic (ROC) we got the best cut-off values, and divided 265 patients receiving ICIs and chemotherapy into high and low GC-Integrated Oxidative Stress Score (GIOSS) groups. We also used Kaplan-Meier and COX regression models to investigate the relationship between oxidative stress biomarkers and prognosis. Results Through both univariate and multivariate analyses, it's shown that GIOSS severs as an independent prognostic factor for progression-free survival (PFS) and Overall survival (OS). Based on GIOSS cutoff values, patients with high GIOSS levels, compared to those with low levels exhibited shorter PFS and OS, both in the high GIOSS group, which performed poorly in the ICIs subgroup and other subgroup analyses. Conclusion GIOSS is a biomarker that responds to systemic oxidative stress in the body and can predict prognosis in patients with gastric cancer who are taking ICIs. Additionally, it might come to medical professionals' aid in making more effective or more suitable treatment plans for gastric cancer.
Collapse
|
19
|
Mikheeva I, Tsapkova L, Bodunova N, Bordin D, Dekhnich N, Polyakova V, Repyev A. A comparative study of laboratory methods for detecting Helicobacter pylori antibiotic resistance. RUSSIAN JOURNAL OF EVIDENCE-BASED GASTROENTEROLOGY 2023; 12:64. [DOI: 10.17116/dokgastro20231203164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The rise of antibiotic resistance in H. pylori has led to a decrease in the effectiveness of eradication therapy. Treatment plans are now chosen based on local antibiotic resistance data, with a primary focus on clarithromycin. An approach tailored to individual patients for H. pylori eradication has been proposed, involving the assessment of antibiotic resistance before starting the initial treatment. The objective of this study is to compare and describe phenotypic and molecular-genetic methods for detecting antibiotic resistance in H. pylori, while also evaluating their diagnostic accuracy. Materials and methods. In this study, we examined 25 cultures of H. pylori with known phenotypic sensitivity and resistance to antibacterial agents. We determined resistance to clarithromycin and levofloxacin through a series of dilutions in Mueller-Hinton agar with added sheep blood, following the guidelines of the Clinical and Laboratory Standards Institute (CLSI). Molecular markers of resistance were analyzed using Sanger sequencing and real-time polymerase chain reaction (RT-PCR) with specific primers. To assess the diagnostic accuracy, we compared the results of these molecular methods with those of the phenotypic method. Results. We established a complete agreement between the results obtained through phenotypic and molecular methods when detecting H. pylori resistance to clarithromycin. When evaluating levofloxacin resistance, we observed that cultures displaying phenotypic resistance also harbored mutations in the gyrA gene associated with resistance. Interestingly, some cultures without phenotypic resistance still exhibited characteristic gyrA gene mutations. The molecular methods demonstrated 100% sensitivity in detecting clarithromycin resistance and 100% sensitivity in detecting levofloxacin resistance, with a specificity of 78.57%. Conclusion. This research highlights a strong correlation between phenotypic and molecular resistance assessments in H. pylori, particularly in the case of clarithromycin. Sanger sequencing and RT-PCR consistently yielded reliable results, underscoring the trustworthiness of these methods.
Collapse
Affiliation(s)
| | | | | | - D.S. Bordin
- Moscow Clinical Scientific Centre
- Tver State Medical University
- Moscow State University of Medicine and Dentistry
| | | | | | | |
Collapse
|
20
|
Han S, Chen X, Li Z. Innate Immune Program in Formation of Tumor-Initiating Cells from Cells-of-Origin of Breast, Prostate, and Ovarian Cancers. Cancers (Basel) 2023; 15:757. [PMID: 36765715 PMCID: PMC9913549 DOI: 10.3390/cancers15030757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Tumor-initiating cells (TICs), also known as cancer stem cells (CSCs), are cancer cells that can initiate a tumor, possess self-renewal capacity, and can contribute to tumor heterogeneity. TICs/CSCs are developed from their cells-of-origin. In breast, prostate, and ovarian cancers, progenitor cells for mammary alveolar cells, prostate luminal (secretory) cells, and fallopian tube secretory cells are the preferred cellular origins for their corresponding cancer types. These luminal progenitors (LPs) express common innate immune program (e.g., Toll-like receptor (TLR) signaling)-related genes. Microbes such as bacteria are now found in breast, prostate, and fallopian tube tissues and their corresponding cancer types, raising the possibility that their LPs may sense the presence of microbes and trigger their innate immune/TLR pathways, leading to an inflammatory microenvironment. Crosstalk between immune cells (e.g., macrophages) and affected epithelial cells (e.g., LPs) may eventually contribute to formation of TICs/CSCs from their corresponding LPs, in part via STAT3 and/or NFκB pathways. As such, TICs/CSCs can inherit expression of innate-immunity/TLR-pathway-related genes from their cells-of-origin; the innate immune program may also represent their unique vulnerability, which can be explored therapeutically (e.g., by enhancing immunotherapy via augmenting TLR signaling).
Collapse
Affiliation(s)
- Sen Han
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Xueqing Chen
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Zhe Li
- Division of Genetics, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|