1
|
Michieletto D. Kinetoplast DNA: a polymer physicist's topological Olympic dream. Nucleic Acids Res 2025; 53:gkae1206. [PMID: 39676656 PMCID: PMC11754639 DOI: 10.1093/nar/gkae1206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
All life forms are miraculous, but some are more inexplicable than others. Trypanosomes are by far one of the most puzzling organisms on Earth: their mitochondrial genome, also called kinetoplast DNA (kDNA) forms an Olympic-ring-like network of interlinked DNA circles, challenging conventional paradigms in both biology and physics. In this review, I will discuss kDNA from the astonished perspective of a polymer physicist and tell a story of how a single sub-cellular structure from a blood-dwelling parasite is inspiring generations of polymer chemists and physicists to create new catenated materials.
Collapse
Affiliation(s)
- Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer,University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
2
|
Klotz AR. Borromean hypergraph formation in dense random rectangles. Phys Rev E 2024; 110:034501. [PMID: 39425322 DOI: 10.1103/physreve.110.034501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/16/2024] [Indexed: 10/21/2024]
Abstract
We develop a minimal model to study the stochastic formation of Borromean links within topologically entangled networks without requiring the use of knot invariants. Borromean linkages may form in entangled solutions of open polymer chains or in Olympic gel systems such as kinetoplast DNA, but it is challenging to investigate this due to the difficulty of computing three-body link invariants. Here, we investigate rectangles randomly oriented in three Cartesian planes and densely packed within a volume, and evaluate them for Hopf linking and Borromean link formation. We show that dense packings of rectangles can form Borromean triplets and larger clusters, and that in high enough density the combination of Hopf and Borromean linking can create a percolating hypergraph through the network. We present data for the percolation threshold of Borromean hypergraphs, and discuss implications for the existence of Borromean connectivity within kinetoplast DNA.
Collapse
|
3
|
Gómez-Palacio A, Cruz-Saavedra L, Van den Broeck F, Geerts M, Pita S, Vallejo GA, Carranza JC, Ramírez JD. High-throughput analysis of the Trypanosoma cruzi minicirculome (mcDNA) unveils structural variation and functional diversity. Sci Rep 2024; 14:5578. [PMID: 38448494 PMCID: PMC10917808 DOI: 10.1038/s41598-024-56076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Trypanosoma cruzi causes Chagas disease and has a unique extranuclear genome enclosed in a structure called the kinetoplast, which contains circular genomes known as maxi- and minicircles. While the structure and function of maxicircles are well-understood, many aspects of minicircles remain to be discovered. Here, we performed a high-throughput analysis of the minicirculome (mcDNA) in 50 clones isolated from Colombia's diverse T. cruzi I populations. Results indicate that mcDNA comprises four diverse subpopulations with different structures, lengths, and numbers of interspersed semi-conserved (previously termed ultra-conserved regions mHCV) and hypervariable (mHVPs) regions. Analysis of mcDNA ancestry and inter-clone differentiation indicates the interbreeding of minicircle sequence classes is placed along diverse strains and hosts. These results support evidence of the multiclonal dynamics and random bi-parental segregation. Finally, we disclosed the guide RNA repertoire encoded by mcDNA at a clonal scale, and several attributes of its abundance and function are discussed.
Collapse
Affiliation(s)
- Andrés Gómez-Palacio
- Laboratorio de Investigación en Genética Evolutiva, Universidad Pedagógica y Tecnológica de Colombia, Boyacá, Colombia
| | - Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Frederik Van den Broeck
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Manon Geerts
- Fish Eco-Evo-Devo and Conservation, KU Leuven, 3000, Leuven, Belgium
- Directorate Taxonomy and Phylogeny, Royal Belgian Institute for Natural Sciences, 1000, Brussels, Belgium
| | - Sebastián Pita
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de La República, Montevideo, Uruguay
| | - Gustavo A Vallejo
- Laboratorio de Investigación en Parasitología Tropical, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Julio C Carranza
- Laboratorio de Investigación en Parasitología Tropical, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, 10029, USA.
| |
Collapse
|
4
|
Amodeo S, Bregy I, Ochsenreiter T. Mitochondrial genome maintenance-the kinetoplast story. FEMS Microbiol Rev 2023; 47:fuac047. [PMID: 36449697 PMCID: PMC10719067 DOI: 10.1093/femsre/fuac047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/13/2022] [Accepted: 11/24/2022] [Indexed: 12/17/2023] Open
Abstract
Mitochondrial DNA replication is an essential process in most eukaryotes. Similar to the diversity in mitochondrial genome size and organization in the different eukaryotic supergroups, there is considerable diversity in the replication process of the mitochondrial DNA. In this review, we summarize the current knowledge of mitochondrial DNA replication and the associated factors in trypanosomes with a focus on Trypanosoma brucei, and provide a new model of minicircle replication for this protozoan parasite. The model assumes the mitochondrial DNA (kinetoplast DNA, kDNA) of T. brucei to be loosely diploid in nature and the replication of the genome to occur at two replication centers at the opposing ends of the kDNA disc (also known as antipodal sites, APS). The new model is consistent with the localization of most replication factors and in contrast to the current model, it does not require the assumption of an unknown sorting and transport complex moving freshly replicated DNA to the APS. In combination with the previously proposed sexual stages of the parasite in the insect vector, the new model provides a mechanism for maintenance of the mitochondrial genetic diversity.
Collapse
Affiliation(s)
- Simona Amodeo
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland
| | - Irina Bregy
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Hochschulstrasse 6, 3012 Bern, Switzerland
| | - Torsten Ochsenreiter
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Ferschweiler DG, Blair R, Klotz AR. Percolation and dissolution of Borromean networks. Phys Rev E 2023; 107:024304. [PMID: 36932528 DOI: 10.1103/physreve.107.024304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Inspired by experiments on topologically linked DNA networks, we consider the connectivity of Borromean networks, in which no two rings share a pairwise-link, but groups of three rings form inseparable triplets. Specifically, we focus on square lattices at which each node is embedded a loop which forms a Borromean link with pairs of its nearest neighbors. By mapping the Borromean link network onto a lattice representation, we investigate the percolation threshold of these networks (the fraction of occupied nodes required for a giant component), as well as the dissolution properties: the spectrum of topological links that would be released if the network were dissolved to varying degrees. We find that the percolation threshold of the Borromean square lattice occurs when approximately 60.75% of nodes are occupied, slightly higher than the 59.27% typical of a square lattice. Compared to the dissolution of Hopf-linked networks, a dissolved Borromean network will yield more isolated loops, and fewer isolated triplets per single loop. Our simulation results may be used to predict experiments from Borromean structures produced by synthetic chemistry.
Collapse
Affiliation(s)
- Donald G Ferschweiler
- Department of Physics and Astronomy, California State University, Long Beach, California 90840, USA
| | - Ryan Blair
- Department of Mathematics and Statistics, California State University, Long Beach, California 90840, USA
| | - Alexander R Klotz
- Department of Physics and Astronomy, California State University, Long Beach, California 90840, USA
| |
Collapse
|
6
|
Baldwin Q, Sumpter B, Panagiotou E. The Local Topological Free Energy of the SARS-CoV-2 Spike Protein. Polymers (Basel) 2022; 14:polym14153014. [PMID: 35893978 PMCID: PMC9332627 DOI: 10.3390/polym14153014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The novel coronavirus SARS-CoV-2 infects human cells using a mechanism that involves binding and structural rearrangement of its Spike protein. Understanding protein rearrangement and identifying specific amino acids where mutations affect protein rearrangement has attracted much attention for drug development. In this manuscript, we use a mathematical method to characterize the local topology/geometry of the SARS-CoV-2 Spike protein backbone. Our results show that local conformational changes in the FP, HR1, and CH domains are associated with global conformational changes in the RBD domain. The SARS-CoV-2 variants analyzed in this manuscript (alpha, beta, gamma, delta Mink, G614, N501) show differences in the local conformations of the FP, HR1, and CH domains as well. Finally, most mutations of concern are either in or in the vicinity of high local topological free energy conformations, suggesting that high local topological free energy conformations could be targets for mutations with significant impact of protein function. Namely, the residues 484, 570, 614, 796, and 969, which are present in variants of concern and are targeted as important in protein function, are predicted as such from our model.
Collapse
Affiliation(s)
- Quenisha Baldwin
- Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA;
| | - Bobby Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;
| | - Eleni Panagiotou
- Department of Mathematics and SimCenter, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA
- Correspondence: or
| |
Collapse
|
7
|
Orlandini E, Micheletti C. Topological and physical links in soft matter systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:013002. [PMID: 34547745 DOI: 10.1088/1361-648x/ac28bf] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Linking, or multicomponent topological entanglement, is ubiquitous in soft matter systems, from mixtures of polymers and DNA filaments packedin vivoto interlocked line defects in liquid crystals and intertwined synthetic molecules. Yet, it is only relatively recently that theoretical and experimental advancements have made it possible to probe such entanglements and elucidate their impact on the physical properties of the systems. Here, we review the state-of-the-art of this rapidly expanding subject and organize it as follows. First, we present the main concepts and notions, from topological linking to physical linking and then consider the salient manifestations of molecular linking, from synthetic to biological ones. We next cover the main physical models addressing mutual entanglements in mixtures of polymers, both linear and circular. Finally, we consider liquid crystals, fluids and other non-filamentous systems where topological or physical entanglements are observed in defect or flux lines. We conclude with a perspective on open challenges.
Collapse
Affiliation(s)
- Enzo Orlandini
- Department of Physics and Astronomy, University of Padova and Sezione INFN, Via Marzolo 8, Padova, Italy
| | - Cristian Micheletti
- SISSA, International School for Advanced Studies, via Bonomea 265, Trieste, Italy
| |
Collapse
|
8
|
Baldwin Q, Panagiotou E. The local topological free energy of proteins. J Theor Biol 2021; 529:110854. [PMID: 34358536 DOI: 10.1016/j.jtbi.2021.110854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022]
Abstract
Protein folding, the process by which proteins attain a 3-dimensional conformation necessary for their function, remains an important unsolved problem in biology. A major gap in our understanding is how local properties of proteins relate to their global properties. In this manuscript, we use the Writhe and Torsion to introduce a new local topological/geometrical free energy that can be associated to 4 consecutive amino acids along the protein backbone. By analyzing a culled protein dataset from the PDB, our results show that high local topological free energy conformations are independent of sequence and may be involved in the rate limiting step in protein folding. By analyzing a set of 2-state single domain proteins, we find that the total local topological free energy of these proteins correlates with the experimentally observed folding rates reported in Plaxco et al. (2000).
Collapse
Affiliation(s)
- Quenisha Baldwin
- Department of Biology, Tuskegee University, 1200 W Montgomery Rd, Tuskegee, AL 36088, USA
| | - Eleni Panagiotou
- Department of Mathematics and SimCenter, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.
| |
Collapse
|
9
|
The Rabl configuration limits topological entanglement of chromosomes in budding yeast. Sci Rep 2019; 9:6795. [PMID: 31043625 PMCID: PMC6494875 DOI: 10.1038/s41598-019-42967-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 03/27/2019] [Indexed: 11/25/2022] Open
Abstract
The three dimensional organization of genomes remains mostly unknown due to their high degree of condensation. Biophysical studies predict that condensation promotes the topological entanglement of chromatin fibers and the inhibition of function. How organisms balance between functionally active genomes and a high degree of condensation remains to be determined. Here we hypothesize that the Rabl configuration, characterized by the attachment of centromeres and telomeres to the nuclear envelope, helps to reduce the topological entanglement of chromosomes. To test this hypothesis we developed a novel method to quantify chromosome entanglement complexity in 3D reconstructions obtained from Chromosome Conformation Capture (CCC) data. Applying this method to published data of the yeast genome, we show that computational models implementing the attachment of telomeres or centromeres alone are not sufficient to obtain the reduced entanglement complexity observed in 3D reconstructions. It is only when the centromeres and telomeres are attached to the nuclear envelope (i.e. the Rabl configuration) that the complexity of entanglement of the genome is comparable to that of the 3D reconstructions. We therefore suggest that the Rabl configuration is an essential player in the simplification of the entanglement of chromatin fibers.
Collapse
|
10
|
|
11
|
Affiliation(s)
- G. D’Adamo
- SISSA, International School for Advanced Studies, via Bonomea 265, I-34136 Trieste, Italy
| | - E. Orlandini
- Dipartimento
di Fisica e Astronomia, Università di Padova and Sezione INFN, Via Marzolo 8, I-35100 Padova, Italy
| | - C. Micheletti
- SISSA, International School for Advanced Studies, via Bonomea 265, I-34136 Trieste, Italy
| |
Collapse
|
12
|
Arsuaga J, Jayasinghe RG, Scharein RG, Segal MR, Stolz RH, Vazquez M. Current theoretical models fail to predict the topological complexity of the human genome. Front Mol Biosci 2015; 2:48. [PMID: 26347874 PMCID: PMC4543886 DOI: 10.3389/fmolb.2015.00048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/06/2015] [Indexed: 11/13/2022] Open
Abstract
Understanding the folding of the human genome is a key challenge of modern structural biology. The emergence of chromatin conformation capture assays (e.g., Hi-C) has revolutionized chromosome biology and provided new insights into the three dimensional structure of the genome. The experimental data are highly complex and need to be analyzed with quantitative tools. It has been argued that the data obtained from Hi-C assays are consistent with a fractal organization of the genome. A key characteristic of the fractal globule is the lack of topological complexity (knotting or inter-linking). However, the absence of topological complexity contradicts results from polymer physics showing that the entanglement of long linear polymers in a confined volume increases rapidly with the length and with decreasing volume. In vivo and in vitro assays support this claim in some biological systems. We simulate knotted lattice polygons confined inside a sphere and demonstrate that their contact frequencies agree with the human Hi-C data. We conclude that the topological complexity of the human genome cannot be inferred from current Hi-C data.
Collapse
Affiliation(s)
- Javier Arsuaga
- Department of Mathematics, University of California, Davis Davis, CA, USA ; Department of Molecular and Cellular Biology, University of California, Davis Davis, CA, USA
| | - Reyka G Jayasinghe
- Division of Biology and Biomedical Sciences, Department of Medicine, Department of Genetics, The Genome Institute at Washington University in St. Louis St. Louis, MO, USA
| | | | - Mark R Segal
- Department of Epidemiology and Biostatistics, University of California, San Francisco San Francisco, CA, USA
| | - Robert H Stolz
- Department of Microbiology and Molecular Genetics, University of California, Davis Davis, CA, USA
| | - Mariel Vazquez
- Department of Mathematics, University of California, Davis Davis, CA, USA ; Department of Microbiology and Molecular Genetics, University of California, Davis Davis, CA, USA
| |
Collapse
|
13
|
Orientation of DNA Minicircles Balances Density and Topological Complexity in Kinetoplast DNA. PLoS One 2015; 10:e0130998. [PMID: 26110537 PMCID: PMC4482025 DOI: 10.1371/journal.pone.0130998] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/27/2015] [Indexed: 01/05/2023] Open
Abstract
Kinetoplast DNA (kDNA), a unique mitochondrial structure common to trypanosomatid parasites, contains thousands of DNA minicircles that are densely packed and can be topologically linked into a chain mail-like network. Experimental data indicate that every minicircle in the network is, on average, singly linked to three other minicircles (i.e., has mean valence 3) before replication and to six minicircles in the late stages of replication. The biophysical factors that determine the topology of the network and its changes during the cell cycle remain unknown. Using a mathematical modeling approach, we previously showed that volume confinement alone can drive the formation of the network and that it induces a linear relationship between mean valence and minicircle density. Our modeling also predicted a minicircle valence two orders of magnitude greater than that observed in kDNA. To determine the factors that contribute to this discrepancy we systematically analyzed the relationship between the topological properties of the network (i.e., minicircle density and mean valence) and its biophysical properties such as DNA bending, electrostatic repulsion, and minicircle relative position and orientation. Significantly, our results showed that most of the discrepancy between the theoretical and experimental observations can be accounted for by the orientation of the minicircles with volume exclusion due to electrostatic interactions and DNA bending playing smaller roles. Our results are in agreement with the three dimensional kDNA organization model, initially proposed by Delain and Riou, in which minicircles are oriented almost perpendicular to the horizontal plane of the kDNA disk. We suggest that while minicircle confinement drives the formation of kDNA networks, it is minicircle orientation that regulates the topological complexity of the network.
Collapse
|
14
|
Michieletto D, Marenduzzo D, Orlandini E. Is the kinetoplast DNA a percolating network of linked rings at its critical point? Phys Biol 2015; 12:036001. [PMID: 25970016 DOI: 10.1088/1478-3975/12/3/036001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this work we present a computational study of the kinetoplast genome, modelled as a large number of semiflexible unknotted loops, which are allowed to link with each other. As the DNA density increases, the systems shows a percolation transition between a gas of unlinked rings and a network of linked loops which spans the whole system. Close to the percolation transition, we find that the mean valency of the network, i.e. the average number of loops which are linked to any one loop, is around three, as found experimentally for the kinetoplast DNA (kDNA). Even more importantly, by simulating the digestion of the network by a restriction enzyme, we show that the distribution of oligomers, i.e. structures formed by a few loops which remain linked after digestion, quantitatively matches experimental data obtained from gel electrophoresis, provided that the density is, once again, close to the percolation transition. With respect to previous work, our analysis builds on a reduced number of assumptions, yet can still fully explain the experimental data. Our findings suggest that the kDNA can be viewed as a network of linked loops positioned very close to the percolation transition, and we discuss the possible biological implications of this remarkable fact.
Collapse
Affiliation(s)
- Davide Michieletto
- Department of Physics and Centre for Complexity Science, University of Warwick, Coventry CV4 7AL, UK
| | | | | |
Collapse
|
15
|
Properties of Topological Networks of Flexible Polygonal Chains. COMPUTATIONAL AND MATHEMATICAL BIOPHYSICS 2014. [DOI: 10.2478/mlbmb-2014-0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract Trypanosomatida parasites, such as Trypanosoma and Leishmania, are the cause of deadly diseases in many third world countries. The three dimensional structure of their mitochondrial DNA, known as kinetoplast DNA (kDNA), is unique since it is organized into several thousands of minicircles that are topologically linked. How and why the minicircles form such a network have remained unanswered questions. In our previous work we have presented a model of network formation that hypothesizes that the network is solely driven by the confinement of minicircles. Our model shows that upon confinement a percolation network forms. This network grows into a space filling network, called saturation network, upon further confinement of minicircles. Our model also shows, in agreement with experimental data, that the mean valence of the network (that is, the average number of minicircles topologically linked to any minicircle in the network) grows linearly with minicircle density. In our previous studies however we disregarded DNA flexibility and used rigid minicircles to model DNA, here we address this limitation by allowing minicircles to be flexible. Our numerical results show that the topological characteristics that describe the growth and topology of the minicircle networks have similar values to those observed in the case of rigid minicircles suggesting that these properties are robust and therefore a potentially adequate description of the networks observed in Trypanosomatid parasites.
Collapse
|