1
|
Zobaer MS, Anderson RM, Kerr CC, Robinson PA, Wong KKH, D'Rozario AL. K-complexes, spindles, and ERPs as impulse responses: unification via neural field theory. BIOLOGICAL CYBERNETICS 2017; 111:149-164. [PMID: 28251306 DOI: 10.1007/s00422-017-0713-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
To interrelate K-complexes, spindles, evoked response potentials (ERPs), and spontaneous electroencephalography (EEG) using neural field theory (NFT), physiology-based NFT of the corticothalamic system is used to model cortical excitatory and inhibitory populations and thalamic relay and reticular nuclei. The impulse response function of the model is used to predict the responses to impulses, which are compared with transient waveforms in sleep studies. Fits to empirical data then allow underlying brain physiology to be inferred and compared with other waves. Spontaneous K-complexes, spindles, and other transient waveforms can be reproduced using NFT by treating them as evoked responses to impulsive stimuli with brain parameters appropriate to spontaneous EEG in sleep stage 2. Using this approach, spontaneous K-complexes and sleep spindles can be analyzed using the same single theory as previously been used to account for waking ERPs and other EEG phenomena. As a result, NFT can explain a wide variety of transient waveforms that have only been phenomenologically classified to date. This enables noninvasive fitting to be used to infer underlying physiological parameters. This physiology-based model reproduces the time series of different transient EEG waveforms; it has previously reproduced experimental EEG spectra, and waking ERPs, and many other observations, thereby unifying transient sleep waveforms with these phenomena.
Collapse
Affiliation(s)
- M S Zobaer
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia.
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, 2006, Australia.
- Center for Research Excellence, Neurosleep, 431 Glebe Point Rd, Glebe, NSW, 2037, Australia.
- Department of Physics, Bangladesh University of Textiles, Dhaka, 1208, Bangladesh.
| | - R M Anderson
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - C C Kerr
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, 2006, Australia
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, USA
| | - P A Robinson
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- Center for Integrative Brain Function, University of Sydney, Sydney, NSW, 2006, Australia
- Center for Research Excellence, Neurosleep, 431 Glebe Point Rd, Glebe, NSW, 2037, Australia
| | - K K H Wong
- CIRUS, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
- Respiratory and Sleep Disorders Department, Royal Prince Alfred Hospital and Sydney Local Health District, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - A L D'Rozario
- CIRUS, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
- Respiratory and Sleep Disorders Department, Royal Prince Alfred Hospital and Sydney Local Health District, Sydney, NSW, Australia
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|