1
|
Colebank MJ, Chesler NC. Efficient uncertainty quantification in a spatially multiscale model of pulmonary arterial and venous hemodynamics. Biomech Model Mechanobiol 2024; 23:1909-1931. [PMID: 39073691 PMCID: PMC11554845 DOI: 10.1007/s10237-024-01875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Pulmonary hypertension (PH) is a debilitating disease that alters the structure and function of both the proximal and distal pulmonary vasculature. This alters pressure-flow relationships in the pulmonary arterial and venous trees, though there is a critical knowledge gap in the relationships between proximal and distal hemodynamics in disease. Multiscale computational models enable simulations in both the proximal and distal vasculature. However, model inputs and measured data are inherently uncertain, requiring a full analysis of the sensitivity and uncertainty of the model. Thus, this study quantifies model sensitivity and output uncertainty in a spatially multiscale, pulse-wave propagation model of pulmonary hemodynamics. The model includes fifteen proximal arteries and twelve proximal veins, connected by a two-sided, structured tree model of the distal vasculature. We use polynomial chaos expansions to expedite sensitivity and uncertainty quantification analyses and provide results for both the proximal and distal vasculature. We quantify uncertainty in blood pressure, blood flow rate, wave intensity, wall shear stress, and cyclic stretch. The latter two are important stimuli for endothelial cell mechanotransduction. We conclude that, while nearly all the parameters in our system have some influence on model predictions, the parameters describing the density of the microvascular beds have the largest effects on all simulated quantities in both the proximal and distal arterial and venous circulations.
Collapse
Affiliation(s)
- M J Colebank
- Department of Biomedical Engineering, Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, CA, USA.
| | - N C Chesler
- Department of Biomedical Engineering, Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California, Irvine, CA, USA
| |
Collapse
|
2
|
Wang Y, Yin X. Modelling coronary flow and myocardial perfusion by integrating a structured-tree coronary flow model and a hyperelastic left ventricle model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107928. [PMID: 38000321 DOI: 10.1016/j.cmpb.2023.107928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND AND OBJECTIVE There is an increasing demand to establish integrated computational models that facilitate the exploration of coronary circulation in physiological and pathological contexts, particularly concerning interactions between coronary flow dynamics and myocardial motion. The field of cardiology has also demonstrated a trend toward personalised medicine, where these integrated models can be instrumental in integrating patient-specific data to improve therapeutic outcomes. Notably, incorporating a structured-tree model into such integrated models is currently absent in the literature, which presents a promising prospect. Thus, the goal here is to develop a novel computational framework that combines a 1D structured-tree model of coronary flow in human coronary vasculature with a 3D left ventricle model utilising a hyperelastic constitutive law, enabling the physiologically accurate simulation of coronary flow dynamics. METHODS We adopted detailed geometric information from previous studies of both coronary vasculature and left ventricle to construct the coronary flow model and the left ventricle model. The structured-tree model for coronary flow was expanded to encompass the effect of time-varying intramyocardial pressure on intramyocardial blood vessels. Simultaneously, the left ventricle model served as a robust foundation for the calculation of intramyocardial pressure and subsequent quantitative evaluation of myocardial perfusion. A one-way coupling framework between the two models was established to enable the evaluation and examination of coronary flow dynamics and myocardial perfusion. RESULTS Our predicted coronary flow waveforms aligned well with published experimental data. Our model precisely captured the phasic pattern of coronary flow, including impeded or even reversed flow during systole. Moreover, our assessment of coronary flow, considering both globally and regionally averaged intramyocardial pressure, demonstrated that elevated intramyocardial pressure corresponds to increased impeding effects on coronary flow. Furthermore, myocardial blood flow simulated from our model was comparable with MRI perfusion data at rest, showcasing the capability of our model to predict myocardial perfusion. CONCLUSIONS The integrated model introduced in this study presents a novel approach to achieving physiologically accurate simulations of coronary flow and myocardial perfusion. It holds promise for its clinical applicability in diagnosing insufficient myocardial perfusion.
Collapse
Affiliation(s)
- Yingjie Wang
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom.
| | - Xueqing Yin
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
3
|
Colebank MJ, Umar Qureshi M, Olufsen MS. Sensitivity analysis and uncertainty quantification of 1-D models of pulmonary hemodynamics in mice under control and hypertensive conditions. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3242. [PMID: 31355521 DOI: 10.1002/cnm.3242] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/01/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
Pulmonary hypertension (PH), defined as an elevated mean blood pressure in the main pulmonary artery (MPA) at rest, is associated with vascular remodeling of both large and small arteries. PH has several sub-types that are all linked to high mortality rates. In this study, we use a one-dimensional (1-D) fluid dynamics model driven by in vivo measurements of MPA flow to understand how model parameters and network size influence MPA pressure predictions in the presence of PH. We compare model predictions with in vivo MPA pressure measurements from a control and a hypertensive mouse and analyze results in three networks of increasing complexity, extracted from micro-computed tomography (micro-CT) images. We introduce global scaling factors for boundary condition parameters and perform local and global sensitivity analysis to calculate parameter influence on model predictions of MPA pressure and correlation analysis to determine a subset of identifiable parameters. These are inferred using frequentist optimization and Bayesian inference via the Delayed Rejection Adaptive Metropolis (DRAM) algorithm. Frequentist and Bayesian uncertainty is computed for model parameters and MPA pressure predictions. Results show that MPA pressure predictions are most sensitive to distal vascular resistance and that parameter influence changes with increasing network complexity. Our outcomes suggest that PH leads to increased vascular stiffness and decreased peripheral compliance, congruent with clinical observations.
Collapse
Affiliation(s)
- Mitchel J Colebank
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina
| | - M Umar Qureshi
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina
| | - Mette S Olufsen
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
4
|
Ebrahimi BS, Tawhai MH, Kumar H, Burrowes KS, Hoffman EA, Wilsher ML, Milne D, Clark AR. A computational model of contributors to pulmonary hypertensive disease: impacts of whole lung and focal disease distributions. Pulm Circ 2021; 11:20458940211056527. [PMID: 34820115 PMCID: PMC8607494 DOI: 10.1177/20458940211056527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/01/2021] [Indexed: 11/29/2022] Open
Abstract
Pulmonary hypertension has multiple etiologies and so can be difficult to diagnose, prognose, and treat. Diagnosis is typically made via invasive hemodynamic measurements in the main pulmonary artery and is based on observed elevation of mean pulmonary artery pressure. This static mean pressure enables diagnosis, but does not easily allow assessment of the severity of pulmonary hypertension, nor the etiology of the disease, which may impact treatment. Assessment of the dynamic properties of pressure and flow data obtained from catheterization potentially allows more meaningful assessment of the strain on the right heart and may help to distinguish between disease phenotypes. However, mechanistic understanding of how the distribution of disease in the lung leading to pulmonary hypertension impacts the dynamics of blood flow in the main pulmonary artery and/or the pulmonary capillaries is lacking. We present a computational model of the pulmonary vasculature, parameterized to characteristic features of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension to help understand how the two conditions differ in terms of pulmonary vascular response to disease. Our model incorporates key features known to contribute to pulmonary vascular function in health and disease, including anatomical structure and multiple contributions from gravity. The model suggests that dynamic measurements obtained from catheterization potentially distinguish between distal and proximal vasculopathy typical of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. However, the model suggests a non-linear relationship between these data and vascular structural changes typical of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension which may impede analysis of these metrics to distinguish between cohorts.
Collapse
Affiliation(s)
| | - Merryn H. Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Haribalan Kumar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Kelly S. Burrowes
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Eric A. Hoffman
- Department of Radiology, University of Iowa, Iowa City, IA,
USA
| | - Margaret L. Wilsher
- Respiratory Services, Auckland City Hospital, Auckland, New Zealand
- Faculty of Medical and Health Sciences, University of Auckland,
Auckland, New Zealand
| | - David Milne
- Department of Radiology, Auckland City Hospital, Auckland, New Zealand
| | - Alys R. Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Feng L, Gao H, Qi N, Danton M, Hill NA, Luo X. Fluid-structure interaction in a fully coupled three-dimensional mitral-atrium-pulmonary model. Biomech Model Mechanobiol 2021; 20:1267-1295. [PMID: 33770307 PMCID: PMC8298265 DOI: 10.1007/s10237-021-01444-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/01/2021] [Indexed: 12/17/2022]
Abstract
This paper aims to investigate detailed mechanical interactions between the pulmonary haemodynamics and left heart function in pathophysiological situations (e.g. atrial fibrillation and acute mitral regurgitation). This is achieved by developing a complex computational framework for a coupled pulmonary circulation, left atrium and mitral valve model. The left atrium and mitral valve are modelled with physiologically realistic three-dimensional geometries, fibre-reinforced hyperelastic materials and fluid–structure interaction, and the pulmonary vessels are modelled as one-dimensional network ended with structured trees, with specified vessel geometries and wall material properties. This new coupled model reveals some interesting results which could be of diagnostic values. For example, the wave propagation through the pulmonary vasculature can lead to different arrival times for the second systolic flow wave (S2 wave) among the pulmonary veins, forming vortex rings inside the left atrium. In the case of acute mitral regurgitation, the left atrium experiences an increased energy dissipation and pressure elevation. The pulmonary veins can experience increased wave intensities, reversal flow during systole and increased early-diastolic flow wave (D wave), which in turn causes an additional flow wave across the mitral valve (L wave), as well as a reversal flow at the left atrial appendage orifice. In the case of atrial fibrillation, we show that the loss of active contraction is associated with a slower flow inside the left atrial appendage and disappearances of the late-diastole atrial reversal wave (AR wave) and the first systolic wave (S1 wave) in pulmonary veins. The haemodynamic changes along the pulmonary vessel trees on different scales from microscopic vessels to the main pulmonary artery can all be captured in this model. The work promises a potential in quantifying disease progression and medical treatments of various pulmonary diseases such as the pulmonary hypertension due to a left heart dysfunction.
Collapse
Affiliation(s)
- Liuyang Feng
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8SQ, UK.
| | - Hao Gao
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8SQ, UK
| | - Nan Qi
- Institute of Marine Science and Technology, Shandong University, Shangdong, 266237, People's Republic of China
| | - Mark Danton
- Department of Cardiac Surgery, Royal Hospital for Children, Glasgow, UK
| | - Nicholas A Hill
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8SQ, UK
| | - Xiaoyu Luo
- School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8SQ, UK
| |
Collapse
|
6
|
Boumpouli M, Danton MHD, Gourlay T, Kazakidi A. Blood flow simulations in the pulmonary bifurcation in relation to adult patients with repaired tetralogy of Fallot. Med Eng Phys 2020; 85:123-138. [PMID: 33081959 DOI: 10.1016/j.medengphy.2020.09.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 07/01/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
Understanding the haemodynamic environment of the pulmonary bifurcation is important in adults with repaired conotruncal congenital heart disease. In these patients, dysfunction of the pulmonary valve and narrowing of the branch pulmonary arteries are common and can have serious clinical consequences. The aim of this study was to numerically investigate the underlying blood flow characteristics in the pulmonary trunk under a range of simplified conditions. For that, an in-depth analysis was conducted in idealised two-dimensional geometries that facilitate parametric investigation of healthy and abnormal conditions. Subtle variations in morphology influenced the haemodynamic environment and wall shear stress distribution. The pressure in the left pulmonary artery was generally higher than that in the right and main arteries, but was markedly reduced in the presence of a local stenosis. Different downstream pressure conditions altered the branch flow ratio, from 50:50% to more realistic 60:40% ratios in the right and left pulmonary artery, respectively. Despite some simplifications, this study highlights some previously undocumented aspects of the flow in bifurcating geometries, by clarifying the role of the stagnation point location on wall shear stress and differential branch pressures. In addition, measurements of the mean pressure ratios in the pulmonary bifurcation are discussed in the context of a new haemodynamic index which could potentially contribute to the assessment of left pulmonary artery stenosis in tetralogy of Fallot patients. Further studies are required to confirm the results in patient-specific models with personalised physiological flow conditions.
Collapse
Affiliation(s)
- Maria Boumpouli
- Department of Biomedical Engineering, University of Strathclyde, 106 Rottenrow East, Glasgow G4 0NW, United Kingdom
| | - Mark H D Danton
- Department of Biomedical Engineering, University of Strathclyde, 106 Rottenrow East, Glasgow G4 0NW, United Kingdom; Scottish Adult Congenital Cardiac Service, Golden Jubilee National Hospital, Clydebank G81 4DY, United Kingdom
| | - Terence Gourlay
- Department of Biomedical Engineering, University of Strathclyde, 106 Rottenrow East, Glasgow G4 0NW, United Kingdom
| | - Asimina Kazakidi
- Department of Biomedical Engineering, University of Strathclyde, 106 Rottenrow East, Glasgow G4 0NW, United Kingdom.
| |
Collapse
|
7
|
Ebrahimi BS, Tawhai MH, Kumar H, Clark AR. Wave reflection in an anatomical model of the pulmonary circulation in local and global hypertensive disease. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:4973-4976. [PMID: 31946976 DOI: 10.1109/embc.2019.8857948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pulmonary hypertension is a disease of the pulmonary vasculature which can occur for many different reasons, including pathological remodeling of the pulmonary vessels and occlusion of these vessels (amongst others). Pulmonary hypertension can lead to right heart failure and significantly reduces the quality of life of patients living with the condition. It is difficult to distinguish clinically between different classifications of pulmonary hypertension, and doing so accurately is critical for the management of an individual's condition. In addition, different presentations of the disease (e.g. occlusion versus remodeling) can put different strains on the right heart, despite patients having very similar elevations in pulmonary artery pressure. In this study we use an anatomically based model of the pulmonary circulation to predict pressure and flow wave transmission and reflection in two different kinds of pulmonary hypertension - primary pulmonary hypertension, and chronic thrombotic pulmonary embolism (CTEPH), to enable analysis of the impact of disease type on impedance spectra in the main pulmonary artery.
Collapse
|
8
|
Multiscale modeling of ventricular–vascular dysfunction in pulmonary arterial hypertension. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Duanmu Z, Chen W, Gao H, Yang X, Luo X, Hill NA. A One-Dimensional Hemodynamic Model of the Coronary Arterial Tree. Front Physiol 2019; 10:853. [PMID: 31338038 PMCID: PMC6629789 DOI: 10.3389/fphys.2019.00853] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/20/2019] [Indexed: 01/28/2023] Open
Abstract
One-dimensional (1D) hemodynamic models of arteries have increasingly been applied to coronary circulation. In this study, we have adopted flow and pressure profiles in Olufsen's 1D structured tree as coronary boundary conditions, with terminals coupled to the dynamic pressure feedback resulting from the intra-myocardial stress because of ventricular contraction. We model a trifurcation structure of the example coronary tree as two adjacent bifurcations. The estimated results of blood pressure and flow rate from our simulation agree well with the clinical measurements and published data. Furthermore, the 1D model enables us to use wave intensity analysis to simulate blood flow in the developed coronary model. Six characteristic waves are observed in both left and right coronary flows, though the waves' magnitudes differ from each other. We study the effects of arterial wall stiffness on coronary blood flow in the left circumflex artery (LCX). Different diseased cases indicate that distinct pathological reactions of the cardiovascular system can be better distinguished through Wave Intensity analysis, which shows agreement with clinical observations. Finally, the feedback pressure in terminal vessels and measurement deviation are also investigated by changing parameters in the LCX. We find that larger feedback pressure increases the backward wave and decreases the forward one. Although simplified, this 1D model provides new insight into coronary hemodynamics in healthy and diseased conditions. We believe that this approach offers reference resources for studies on coronary circulation disease diagnosis, treatment and simulation.
Collapse
Affiliation(s)
- Zheng Duanmu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China
| | - Weiwei Chen
- Guangxi Key Laboratory of Regenerative Medicine, Research Centre for Regenerative Medicine, Guangxi Medical University, Guangxi, China
| | - Hao Gao
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Xilan Yang
- Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyu Luo
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Nicholas A Hill
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
10
|
Kiely DG, Levin DL, Hassoun PM, Ivy D, Jone PN, Bwika J, Kawut SM, Lordan J, Lungu A, Mazurek JA, Moledina S, Olschewski H, Peacock AJ, Puri G, Rahaghi FN, Schafer M, Schiebler M, Screaton N, Tawhai M, van Beek EJ, Vonk-Noordegraaf A, Vandepool R, Wort SJ, Zhao L, Wild JM, Vogel-Claussen J, Swift AJ. EXPRESS: Statement on imaging and pulmonary hypertension from the Pulmonary Vascular Research Institute (PVRI). Pulm Circ 2019; 9:2045894019841990. [PMID: 30880632 PMCID: PMC6732869 DOI: 10.1177/2045894019841990] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 01/08/2023] Open
Abstract
Pulmonary hypertension (PH) is highly heterogeneous and despite treatment advances it remains a life-shortening condition. There have been significant advances in imaging technologies, but despite evidence of their potential clinical utility, practice remains variable, dependent in part on imaging availability and expertise. This statement summarizes current and emerging imaging modalities and their potential role in the diagnosis and assessment of suspected PH. It also includes a review of commonly encountered clinical and radiological scenarios, and imaging and modeling-based biomarkers. An expert panel was formed including clinicians, radiologists, imaging scientists, and computational modelers. Section editors generated a series of summary statements based on a review of the literature and professional experience and, following consensus review, a diagnostic algorithm and 55 statements were agreed. The diagnostic algorithm and summary statements emphasize the key role and added value of imaging in the diagnosis and assessment of PH and highlight areas requiring further research.
Collapse
Affiliation(s)
- David G. Kiely
- Sheffield Pulmonary Vascular Disease
Unit, Royal Hallamshire Hospital, Sheffield, UK
- Department of Infection, Immunity and
Cardiovascular Disease and Insigneo Institute, University of Sheffield, Sheffield,
UK
| | - David L. Levin
- Department of Radiology, Mayo Clinic,
Rochester, MN, USA
| | - Paul M. Hassoun
- Department of Medicine John Hopkins
University, Baltimore, MD, USA
| | - Dunbar Ivy
- Paediatric Cardiology, Children’s
Hospital, University of Colorado School of Medicine, Denver, CO, USA
| | - Pei-Ni Jone
- Paediatric Cardiology, Children’s
Hospital, University of Colorado School of Medicine, Denver, CO, USA
| | | | - Steven M. Kawut
- Department of Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jim Lordan
- Freeman Hospital, Newcastle Upon Tyne,
Newcastle, UK
| | - Angela Lungu
- Technical University of Cluj-Napoca,
Cluj-Napoca, Romania
| | - Jeremy A. Mazurek
- Division of Cardiovascular Medicine,
Hospital
of the University of Pennsylvania,
Philadelphia, PA, USA
| | | | - Horst Olschewski
- Division of Pulmonology, Ludwig
Boltzmann Institute Lung Vascular Research, Graz, Austria
| | - Andrew J. Peacock
- Scottish Pulmonary Vascular Disease,
Unit, University of Glasgow, Glasgow, UK
| | - G.D. Puri
- Department of Anaesthesiology and
Intensive Care, Post Graduate Institute of Medical Education and Research,
Chandigarh, India
| | - Farbod N. Rahaghi
- Brigham and Women’s Hospital, Harvard
Medical School, Boston, MA, USA
| | - Michal Schafer
- Paediatric Cardiology, Children’s
Hospital, University of Colorado School of Medicine, Denver, CO, USA
| | - Mark Schiebler
- Department of Radiology, University of
Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Merryn Tawhai
- Auckland Bioengineering Institute,
Auckland, New Zealand
| | - Edwin J.R. van Beek
- Edinburgh Imaging, Queens Medical
Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Rebecca Vandepool
- University of Arizona, Division of
Translational and Regenerative Medicine, Tucson, AZ, USA
| | - Stephen J. Wort
- Royal Brompton Hospital, London,
UK
- Imperial College, London, UK
| | | | - Jim M. Wild
- Department of Infection, Immunity and
Cardiovascular Disease and Insigneo Institute, University of Sheffield, Sheffield,
UK
- Academic Department of Radiology,
University of Sheffield, Sheffield, UK
| | - Jens Vogel-Claussen
- Institute of diagnostic and
Interventional Radiology, Medical Hospital Hannover, Hannover, Germany
| | - Andrew J. Swift
- Department of Infection, Immunity and
Cardiovascular Disease and Insigneo Institute, University of Sheffield, Sheffield,
UK
- Academic Department of Radiology,
University of Sheffield, Sheffield, UK
| |
Collapse
|
11
|
Qureshi MU, Colebank MJ, Paun LM, Ellwein Fix L, Chesler N, Haider MA, Hill NA, Husmeier D, Olufsen MS. Hemodynamic assessment of pulmonary hypertension in mice: a model-based analysis of the disease mechanism. Biomech Model Mechanobiol 2018; 18:219-243. [DOI: 10.1007/s10237-018-1078-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022]
|
12
|
A patient-specific lumped-parameter model of coronary circulation. Sci Rep 2018; 8:874. [PMID: 29343785 PMCID: PMC5772042 DOI: 10.1038/s41598-018-19164-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/21/2017] [Indexed: 01/09/2023] Open
Abstract
A new lumped-parameter model for coronary hemodynamics is developed. This model is developed for the whole coronary network based on CT scans of a patient-specific geometry including the right coronary tree, which is absent in many previous mathematical models. The model adopts the structured tree model boundary conditions similar to the work of Olufsen et al., thus avoiding the necessity of invasive perfusion measurements. In addition, we also incorporated the effects of the head loss at the two inlets of the large coronary arteries for the first time. The head loss could explain the phenomenon of a sudden increase of the resistance at the inlet of coronary vessel. The estimated blood pressure and flow rate results from the model agree well with the clinical measurements. The computed impedances also match the experimental perfusion measurement. The effects of coronary arterial stenosis are considered and the fractional flow reserve and relative flow in the coronary vessels for a stenotic vessel computed in this model show good agreement with published experimental data. It is believed that the approach could be readily translated to clinical practice to facilitate real time clinical diagnosis.
Collapse
|
13
|
Arnold A, Battista C, Bia D, German YZ, Armentano RL, Tran H, Olufsen MS. Uncertainty Quantification in a Patient-Specific One-Dimensional Arterial Network Model: EnKF-Based Inflow Estimator. JOURNAL OF VERIFICATION, VALIDATION, AND UNCERTAINTY QUANTIFICATION 2017; 2:0110021-1100214. [PMID: 35832352 PMCID: PMC8597574 DOI: 10.1115/1.4035918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 01/31/2017] [Indexed: 11/09/2023]
Abstract
Successful clinical use of patient-specific models for cardiovascular dynamics depends on the reliability of the model output in the presence of input uncertainties. For 1D fluid dynamics models of arterial networks, input uncertainties associated with the model output are related to the specification of vessel and network geometry, parameters within the fluid and wall equations, and parameters used to specify inlet and outlet boundary conditions. This study investigates how uncertainty in the flow profile applied at the inlet boundary of a 1D model affects area and pressure predictions at the center of a single vessel. More specifically, this study develops an iterative scheme based on the ensemble Kalman filter (EnKF) to estimate the temporal inflow profile from a prior distribution of curves. The EnKF-based inflow estimator provides a measure of uncertainty in the size and shape of the estimated inflow, which is propagated through the model to determine the corresponding uncertainty in model predictions of area and pressure. Model predictions are compared to ex vivo area and blood pressure measurements in the ascending aorta, the carotid artery, and the femoral artery of a healthy male Merino sheep. Results discuss dynamics obtained using a linear and a nonlinear viscoelastic wall model.
Collapse
Affiliation(s)
- Andrea Arnold
- Department of Mathematics, North Carolina State University, 2108 SAS Hall, 2311 Stinson Drive, Box 8205, Raleigh, NC 27695-8205 e-mail:
| | - Christina Battista
- DILIsym Services, Inc., Six Davis Drive, Research Triangle Park, NC 27709 e-mail:
| | - Daniel Bia
- Department of Physiology, Universidad de la República, Montevideo 11800, Uruguay e-mail:
| | - Yanina Zócalo German
- Department of Physiology, Universidad de la República, Montevideo 11800, Uruguay e-mail:
| | - Ricardo L Armentano
- Department of Biological Engineering, CENUR Litoral Norte-Paysandú, Universidad de la República, Montevideo 11800, Uruguay e-mail:
| | - Hien Tran
- Department of Mathematics, North Carolina State University, 2108 SAS Hall, 2311 Stinson Drive, Box 8205, Raleigh, NC 27695-8205 e-mail:
| | - Mette S Olufsen
- Department of Mathematics, North Carolina State University, 2108 SAS Hall, 2311 Stinson Drive, Box 8205, Raleigh, NC 27695-8205 e-mail:
| |
Collapse
|
14
|
Chen WW, Gao H, Luo XY, Hill NA. Study of cardiovascular function using a coupled left ventricle and systemic circulation model. J Biomech 2016; 49:2445-54. [PMID: 27040388 PMCID: PMC5038162 DOI: 10.1016/j.jbiomech.2016.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/03/2016] [Indexed: 12/13/2022]
Abstract
To gain insight into cardio-arterial interactions, a coupled left ventricle-systemic artery (LV–SA) model is developed that incorporates a three-dimensional finite-strain left ventricle (LV), and a physiologically-based one-dimensional model for the systemic arteries (SA). The coupling of the LV model and the SA model is achieved by matching the pressure and the flow rate at the aortic root, i.e. the SA model feeds back the pressure as a boundary condition to the LV model, and the aortic flow rate from the LV model is used as the input for the SA model. The governing equations of the coupled system are solved using a combined immersed-boundary finite-element (IB/FE) method and a Lax–Wendroff scheme. A baseline case using physiological measurements of healthy subjects, and four exemplar cases based on different physiological and pathological scenarios are studied using the LV–SA model. The results of the baseline case agree well with published experimental data. The four exemplar cases predict varied pathological responses of the cardiovascular system, which are also supported by clinical observations. The new model can be used to gain insight into cardio-arterial interactions across a range of clinical applications.
Collapse
Affiliation(s)
- W W Chen
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW, UK.
| | - H Gao
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW, UK.
| | - X Y Luo
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW, UK.
| | - N A Hill
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW, UK.
| |
Collapse
|