1
|
El-Houssiny AS, Soliman AAF, Abdel-Nour KN. Assessment of the cytotoxic effect of carboxymethyl chitosan-loaded amygdalin nanoparticles against human normal and cancer cell lines. DISCOVER NANO 2024; 19:62. [PMID: 38573410 PMCID: PMC10994899 DOI: 10.1186/s11671-024-03998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024]
Abstract
In recent years, the development of antitumor drugs has been dedicated to natural products. Amygdalin is a natural herbal cyanoglycoside that has anticarcinogenic effect on many types of cancers once hydrogen cyanide (HCN) is released. The main objective of the present study is to synthesize and investigate the potential of carboxymethyl chitosan nanoparticles (CMC NPs) as drug delivery agents for amygdalin encapsulation and its delivery to cancer and normal cell lines. In this study, carboxymethyl chitosan nanoparticles encapsulated with amygdalin (CMC-Am NPs) were prepared and characterized through their particle size, surface charge, chemical structure and dielectric properties. Also, the invitro drug release of amygdalin from CMC NPs was studied. Additionally, the cytotoxcity of the amygdalin and CMC-loaded amygdalin NPs were evaluated through MTT assay. The results showed that the prepared CMC-loaded amygdalin NPs exhibited a small particle size of 129 nm, high zeta potential value of - 43 mV and confirmed the amygdalin stability and compatibility with CMC NPs. Furthermore, the CMC NPs demonstrated sustained release of amygdalin during 24 h. Moreover, compared to free amygdalin, amygdalin-loaded CMC NPs have significant anti-cancerous effect on human colon HCT-116 and breast MCF-7 cancer cell lines while being safe on normal cells BJ1. In conclusion, CMC NPs can be employed as an efficient drug delivery vehicle for controlled and sustained amygdalin release with enhanced cytotoxicity on malignant cells without harming normal cells.
Collapse
Affiliation(s)
- A S El-Houssiny
- Microwave Physics and Dielectrics Department, National Research Centre, Dokki, Cairo, Egypt.
| | - A A F Soliman
- Pharmacognosy Department, National Research Centre, Dokki, Cairo, Egypt
| | - K N Abdel-Nour
- Microwave Physics and Dielectrics Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
2
|
El-Houssiny AS, Kamel NA, Soliman AAF, El-Messieh SLA, Abd-EL-Nour KN. Preparation and characterisation of gallic acid loaded carboxymethyl chitosan nanoparticles as drug delivery system for cancer treatment. ADVANCES IN NATURAL SCIENCES: NANOSCIENCE AND NANOTECHNOLOGY 2022; 13:025002. [DOI: 10.1088/2043-6262/ac6c22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Gallic acid (GA) is a natural phenolic compound with antioxidant, anti-proliferative, and anticancer effects. However, the potential of GA as an anticancer agent is restricted by its poor absorption, rapid elimination, and low bioavailability. Nanostructure-drug carriers have opened up a new field in cancer therapy by improving the efficacy of drugs. In this work, we developed a nanoformulation of GA in carboxymethyl chitosan (CMC). The particle size, surface charge and molecular structure of the CMC NPs loaded and unloaded with GA were measured using TEM, DLS and FTIR spectroscopy, respectively. The dielectric parameters (permittivity ε′ and dielectric loss ε″) were measured in the frequency range (0.1 Hz–5 MHz) at room temperature. Additionally, the in-vitro anti-cancer effects of the GA, CMC NPs, and GA-CMC NPs were tested against human colon carcinoma (HCT-116), human breast carcinoma (MCF-7), and normal skin fibroblast cells (BJ1) using MTT assay. TEM confirmed that the NPs have a spherical morphology within the size range of 15 nm. DLS studies revealed NPs with a mean diameter of 31.06 nm. The zeta potential results indicated the high suspension stability of the prepared nanoformulation. The FTIR results indicated the interaction between GA and CMC NPs. The dielectric study showed a decrease within the ε″ and conductivity values of GA-CMC NPs which confirmed the successful encapsulation of GA within the CMC NPs. Cytotoxicity studies indicated that the GA-CMC NPs showed specific toxicity towards cancer cells and non-toxicity to normal cells. Overall, these results indicate that the GA-CMC NPs will be an efficient nanocarrier for delivering gallic acid to cancer cells.
Collapse
|
3
|
Wu Z, Li J, Zhang X, Li Y, Wei D, Tang L, Deng S, Liu G. Rational Fabrication of Folate-Conjugated Zein/Soy Lecithin/Carboxymethyl Chitosan Core-Shell Nanoparticles for Delivery of Docetaxel. ACS OMEGA 2022; 7:13371-13381. [PMID: 35474787 PMCID: PMC9025993 DOI: 10.1021/acsomega.2c01270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/28/2022] [Indexed: 05/24/2023]
Abstract
The objective of this work is to design and fabricate a natural zein-based nanocomposite with core-shell structure for the delivery of anticancer drugs. As for the design, folate-conjugated zein (Fa-zein) was synthesized as the inner hydrophobic core; soy lecithin (SL) and carboxymethyl chitosan (CMC) were selected as coating components to form an outer shell. As for fabrication, a novel and appropriate atomizing/antisolvent precipitation process was established. The results indicated that Fa-zein/SL/CMC core-shell nanoparticles (FZLC NPs) were successfully produced at a suitable mass ratio of Fa-zein/SL/CMC (100:30:10) and the freeze-dried FZLC powder showed a perfect redispersibility and stability in water. After that, docetaxel (DTX) as a model drug was encapsulated into FZLC NPs at different mass ratios of DTX to FZLC (MR). When MR = 1:15, DTX/FZLC NPs were obtained with high encapsulation efficiency (79.22 ± 0.37%), small particle size (206.9 ± 48.73 nm), and high zeta potential (-41.8 ± 3.97 mV). DTX was dispersed in the inner core of the FZLC matrix in an amorphous state. The results proved that DTX/FZLC NPs could increase the DTX dissolution, sustain the DTX release, and enhance the DTX cytotoxicity significantly. The present study provides insight into the formation of zein-based complex nanocarriers for the delivery of anticancer drugs.
Collapse
Affiliation(s)
- Zhenyao Wu
- School
of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Jie Li
- School
of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Xin Zhang
- School
of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Yangjia Li
- School
of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Dongwei Wei
- School
of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Lichang Tang
- Beihai
Food & Drug Inspection and Testing Institute, Beihai 536000, China
| | - Shiming Deng
- School
of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| | - Guijin Liu
- School
of Pharmaceutical Sciences, Hainan University, Haikou 570100, China
| |
Collapse
|
4
|
Sadaquat H, Akhtar M, Nazir M, Ahmad R, Alvi Z, Akhtar N. Biodegradable and biocompatible polymeric nanoparticles for enhanced solubility and safe oral delivery of docetaxel: In vivo toxicity evaluation. Int J Pharm 2021; 598:120363. [PMID: 33556487 DOI: 10.1016/j.ijpharm.2021.120363] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Docetaxel (DTX) is a chemotherapeutic drug with poor hydrophilicity and permeability. Its lipophilic properties decrease its absorption in systemic circulation which hinders its therapeutic efficacy & safety. Cyclodextrins (CDs) with their unique structural properties enhance solubility of chemotherapeutic drugs. The study was designed to formulate docetaxel-cyclodextrins inclusion complexes for enhancement of solubility with sulfobutyl ether β-cyclodextrin (SBE7-β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and β-cyclodextrin (β-CD). Further, by using ionic gelation method polymeric nanoparticles of docetaxel-cyclodextrins were prepared with sodium tri poly phosphate (STPP) and chitosan (CS). Optimization is performed by varying CS and STPP mass ratios. Nanoparticles were analyzed for their physicochemical properties, drug-excipient compatibility, thermal stability and oral toxicity. CDs enhanced the solubility of DTX. Nanoparticles were found within 144.8 ± 65.19 - 372.0 ± 126.9 nm diameters with polydispersity ranging 0.117-0.375. The particles were found round & circular in shape with smooth and non-porous surface. Increased quantity of drug release was observed from DTX-CDs loaded nanoparticles than pure drug loaded nanoparticles. Oral toxicity in rabbits revealed biochemical, histopathological profile with no toxic effect on cellular structure of animals.
Collapse
Affiliation(s)
- Hadia Sadaquat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; Department of Medical Laboratory Technology, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan.
| | | | - Rabbiya Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Zunaira Alvi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Naveed Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| |
Collapse
|
5
|
Study on Solubilization and Stabilization of Eight Flavonoids by 17 Chinese Herbal Polysaccharides. J CHEM-NY 2020. [DOI: 10.1155/2020/6235284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flavonoids are important active components of traditional Chinese medicines (TCMs) because of their many biological activities. We studied the interaction between 17 polysaccharides and eight flavonoids via high-performance liquid chromatography (HPLC) and the effect of the interactions on the solubility and stability of the flavonoids. The effect of the polysaccharides on the solubility of flavonoids was analyzed by statistical methods and showed significant solubility improvements. The constant temperature acceleration method (90°C/pH 9 buffer solution) was used to measure the degradation kinetics and half-life of flavonoids with and without polysaccharides. All the polysaccharides displayed a stabilizing effect on all eight flavonoids. The stabilizing effects varied in the order: quercetin, baicalein > baicalin > galuteolin > daidzin > rutin > luteolin > daidzien. The phase-solubility method was applied to quercetin and baicalein to study the mechanism of action of the polysaccharides. It appeared that the two flavonoids could form 1 : 1 inclusion complexes with polysaccharides, which may be one of the factors increasing solubility and stability. These findings increase our understanding of the role of endogenous polysaccharides in TCM in improving the stability and bioavailability of bioactive flavonoids.
Collapse
|
6
|
Xie J, Qin D, Han Y, Wang L. Synthesis and characterization of a novel hydroxypropyl chitosan-graft-β-Cyclodextrin copolymer as potential drug carrier. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1630837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jun Xie
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, China
| | - Dawei Qin
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, China
| | - Yanhong Han
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, China
| |
Collapse
|
7
|
Zhang D, Cao Y, Ma C, Chen S, Li H. Development of Water-Triggered Chitosan Film Containing Glucamylase for Sustained Release of Resveratrol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2503-2512. [PMID: 28198191 DOI: 10.1021/acs.jafc.6b05380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There is a paradox when incorporating enzyme into an edible chitosan film that chitosan is dissolved in acid solution and enzyme activity is maintained under mild conditions. A method for maintaining the pH of the chitosan solution at 4-6 to prepare a chitosan film containing β-cyclodextrin, resveratrol-β-cyclodextrin inclusion (RCI), was developed, using glucamylase and acetic acid. A considerable amount of resveratrol was released by the glucamylase-incorporated film within 15 days, and the maximum amount released was 46% of the total resveratrol content. The highest resveratrol release ratio (released resveratrol/total resveratrol) was obtained in the film with 6 mL of RCI. Scratches and spores were generated on the surface of the glucamylase-added film immersed in water (GAFW) for 7 days because of β-cyclodextrin hydrolysis during film drying and water immersion. RCI and β-cyclodextrin were extruded from the film surface and formed teardrops, which were erased by water on the GAFW surface but appeared on the glucamylase-added film without water immersion (GAF). The bubbles generated by the reaction of acetic acid and residual sodium bicarbonate were observed in both glucamylase-free films immersed in water (GFFW) for 7 days and without water immersion (GFF). The FT-IR spectra illustrated that the covalent bond was not generated during water immersion and β-cyclodextrin hydrolysis. The crystal structure of chitosan was destroyed by water immersion and β-cyclodextrin hydrolysis, resulting in the lowest chitosan crystallization peak at 22°. The increasing of water holding capacity determined by EDX presented the following order: GAF, GFFW, GFF, and GAFW.
Collapse
Affiliation(s)
- Dongliang Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology , No. 12 Zhangzhou Road, Zhangdian District, Zibo, Shandong Province China
| | - Yanfei Cao
- School of Agricultural Engineering and Food Science, Shandong University of Technology , No. 12 Zhangzhou Road, Zhangdian District, Zibo, Shandong Province China
| | - Chengye Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology , No. 12 Zhangzhou Road, Zhangdian District, Zibo, Shandong Province China
| | - Shanfeng Chen
- School of Agricultural Engineering and Food Science, Shandong University of Technology , No. 12 Zhangzhou Road, Zhangdian District, Zibo, Shandong Province China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology , No. 12 Zhangzhou Road, Zhangdian District, Zibo, Shandong Province China
| |
Collapse
|
8
|
Shi X, Xiang C, Liu Y, Lin H, Xu Y, Ji J. Preparation and evaluation of chitosan/β-cyclodextrin magnetic nanoparticles as a photodegradable and hydrophobic drug delivery carrier. J Appl Polym Sci 2017. [DOI: 10.1002/app.45076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Xu Shi
- Faculty of Pharmaceutical Engineering; College of Chemistry and Chemical Engineering, University of Chongqing; Chongqing 400030 China
| | - Cuncheng Xiang
- Faculty of Pharmaceutical Engineering; College of Chemistry and Chemical Engineering, University of Chongqing; Chongqing 400030 China
| | - Yuehua Liu
- Faculty of Pharmaceutical Engineering; College of Chemistry and Chemical Engineering, University of Chongqing; Chongqing 400030 China
| | - Huihuan Lin
- Faculty of Pharmaceutical Engineering; College of Chemistry and Chemical Engineering, University of Chongqing; Chongqing 400030 China
| | - Yi Xu
- Faculty of Pharmaceutical Engineering; College of Chemistry and Chemical Engineering, University of Chongqing; Chongqing 400030 China
| | - Jingou Ji
- Faculty of Pharmaceutical Engineering; College of Chemistry and Chemical Engineering, University of Chongqing; Chongqing 400030 China
| |
Collapse
|
9
|
Dimethyl-β-cyclodextrin/salazosulfapyridine inclusion complex-loaded chitosan nanoparticles for sustained release. Carbohydr Polym 2017; 156:215-222. [DOI: 10.1016/j.carbpol.2016.09.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 11/18/2022]
|
10
|
Chen YZ, Huang YK, Chen Y, Ye YJ, Lou KY, Gao F. Novel nanoparticles composed of chitosan and β-cyclodextrin derivatives as potential insoluble drug carrier. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.05.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Banik N, Ramteke A, Maji TK. Carboxymethyl chitosan-montmorillonite nanoparticles for controlled delivery of isoniazid: evaluation of the effect of the glutaraldehyde and montmorillonite. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Nibedita Banik
- Department of Chemical Sciences; Tezpur University; Assam 784028 India
| | - Anand Ramteke
- Department of Molecular Biology and Biotechnology; Tezpur University; Assam 784028 India
| | - Tarun K. Maji
- Department of Chemical Sciences; Tezpur University; Assam 784028 India
| |
Collapse
|
12
|
Narayanan D, Jayakumar R, Chennazhi KP. Versatile carboxymethyl chitin and chitosan nanomaterials: a review. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:574-98. [DOI: 10.1002/wnan.1301] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/25/2014] [Accepted: 08/19/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Deepa Narayanan
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre; Amrita Vishwa Vidyapeetham University; Kochi India
| | - R. Jayakumar
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre; Amrita Vishwa Vidyapeetham University; Kochi India
| | - K. P. Chennazhi
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre; Amrita Vishwa Vidyapeetham University; Kochi India
| |
Collapse
|
13
|
Huo W, Zhang W, Wang W, Zhou X. Physicochemical properties and drug release behavior of biguanidino and O-carboxymethyl chitosan microcapsules. Int J Biol Macromol 2014; 70:257-65. [DOI: 10.1016/j.ijbiomac.2014.06.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/07/2014] [Accepted: 06/14/2014] [Indexed: 11/27/2022]
|
14
|
Upadhyaya L, Singh J, Agarwal V, Tewari RP. The implications of recent advances in carboxymethyl chitosan based targeted drug delivery and tissue engineering applications. J Control Release 2014; 186:54-87. [DOI: 10.1016/j.jconrel.2014.04.043] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/21/2014] [Accepted: 04/23/2014] [Indexed: 12/11/2022]
|
15
|
Lu L, Shao X, Jiao Y, Zhou C. Synthesis of chitosan-graft-β-cyclodextrin for improving the loading and release of doxorubicin in the nanopaticles. J Appl Polym Sci 2014. [DOI: 10.1002/app.41034] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Lu Lu
- Department of Materials Science and Engineering; Jinan University; Guangzhou 510632 China
| | - Xiaohong Shao
- Department of Materials Science and Engineering; Jinan University; Guangzhou 510632 China
| | - Yanpeng Jiao
- Department of Materials Science and Engineering; Jinan University; Guangzhou 510632 China
| | - Changren Zhou
- Department of Materials Science and Engineering; Jinan University; Guangzhou 510632 China
| |
Collapse
|
16
|
Prabhakar S, Bajpai J, Bajpai AK, Tiwari A. Cumulative release of cefotaxim from interpenetrating networks of poly(vinyl alcohol-g-acrylamide) and chitosan-g-polyacrylamide chains. Polym Bull (Berl) 2014. [DOI: 10.1007/s00289-014-1105-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Jimtaisong A, Saewan N. Utilization of carboxymethyl chitosan in cosmetics. Int J Cosmet Sci 2013; 36:12-21. [PMID: 24152381 DOI: 10.1111/ics.12102] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/15/2013] [Indexed: 11/29/2022]
Abstract
Carboxymethyl chitosan is a chitosan derivative of the most intensively investigated due to its water solubility in wider pH range compared with the parent compound, thus extended its use in various applications. In this review, different preparation conditions, which resulting in the N- and O-carboxylated chitosan, diverse degree of substitution and water solubility are recapitulated. Five important features of carboxymethyl chitosan from recent studies, which are moisture absorption-retention, anti-microbial properties, antioxidant capacities, delivery system and emulsion stabilization, have been centred and emphasized for cosmetic utilization. Additionally, cytotoxicity information has been inclusively incorporated to ensure its safety in application.
Collapse
Affiliation(s)
- A Jimtaisong
- School of Cosmetic Science, Mae Fah Luang University, Muang, Chiangrai, 57100, Thailand
| | - N Saewan
- School of Cosmetic Science, Mae Fah Luang University, Muang, Chiangrai, 57100, Thailand
| |
Collapse
|
18
|
Yang JS, Yang L. Preparation and application of cyclodextrin immobilized polysaccharides. J Mater Chem B 2013; 1:909-918. [DOI: 10.1039/c2tb00107a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Biomedical applications of carboxymethyl chitosans. Carbohydr Polym 2013; 91:452-66. [DOI: 10.1016/j.carbpol.2012.07.076] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/16/2012] [Accepted: 07/29/2012] [Indexed: 01/27/2023]
|