1
|
Aleman J, Zhong Q. Hydrogels formed with shellac and zein: pH-responsiveness, rheology, and gelation mechanism. Int J Biol Macromol 2025; 308:142729. [PMID: 40180064 DOI: 10.1016/j.ijbiomac.2025.142729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/17/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
Hydrogels responsive to pH have unique applications. Shellac is a pH-responsive molecule soluble above pH 7 but insoluble in acidic conditions. However, shellac-based hydrogels responding to pH have not been reported. In this study, 0.50-4.0 % w/v zein was incorporated in 4 % w/v shellac solutions to form hydrogels during pH-shifting from 12.0 to 6.2-6.4 enabled by gradual and uniform acidification due to hydrolysis of glucono-δ-lactone. These hydrogels maintained their volume when immersed in phosphate buffer at pH 7.0 but shrank at pH 6.0 and 6.5 and swelled or dissolved at pH 7.5 and 8.0. Increasing zein concentration led to greater changes in the hydrogel volume responding to pH changes. An increase in zein concentration facilitated gelation but excess zein weakened the network according to dynamic rheological tests and texture profile analyses. Molecularly, the alkaline pH led to multiple shellac molecules covalently bonded with zein according to gel electrophoresis. Analyses of hydrogel volume changes responding to NaCl, sodium dodecyl sulfate, and urea revealed the primary role of hydrophobic interaction and the secondary role of hydrogel bonds in forming hydrogels. These hydrogels with pH-responsiveness around pH 7.0 may find novel food and non-food applications.
Collapse
Affiliation(s)
- Javier Aleman
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
2
|
Poddar D, Srivastava RK, Pattanayek SK, Goel G. Structure-property relationships in shellac-coated paper: impact of coating parameters on high-barrier bio-based packaging applications. Int J Biol Macromol 2025; 310:143172. [PMID: 40250643 DOI: 10.1016/j.ijbiomac.2025.143172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/01/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Paper coated with bio-based materials has attracted significant interest as an alternative to plastic-based materials for food packaging, with poor moisture barrier of coated paper posing a challenge to broader applications. Shellac is a promising biopolymer because of its low cost, biodegradability, and wide approval as a food additive and food contact material. In this work, we have systematically studied the role of shellac concentration in butanol and the number of coatings on coated paper's moisture and oil barrier properties. We investigated surface, physicochemical, and thermal properties of coated paper to elucidate specific interactions between shellac and paper substrate and characterize coating morphology, and their effect on barrier properties of coated paper. We found that every layer of coating resulted in an improvement in surface properties, with porosity decreasing by 90 % and surface roughness decreasing by 80 % in a single coat of 15 % (w/w) shellac solution. A low concentration of shellac (7.5 % (w/w)) was found to be less effective in improving barrier properties compared to the highest shellac concentration of 15 % (w/w) used in our study, but still caused a significant increase in the GSM (change in coated weight (g.m-2)). Four coatings of the 15 % (w/w) shellac solution resulted in a water vapor transmittance rate (WVTR) of 56 g m-2 day-1, a water barrier (COBB 180) of 1 g m-2, and an oil barrier (KIT) of 12. These results meet the strictest requirements for very high-barrier packaging applications.
Collapse
Affiliation(s)
- Deepak Poddar
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India
| | - Rajiv K Srivastava
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, India
| | | | - Gaurav Goel
- Department of Chemical Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
3
|
Calà E, Croce A, Cagna L, Marangon A, Gatti G, Aceto M. The Characterization of Natural Resins and a Study of Their Degradation in Interactions with Zinc Oxide Pigment. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5416. [PMID: 39597240 PMCID: PMC11595725 DOI: 10.3390/ma17225416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
In the last few years, the role of science in Cultural Heritage has assumed greater significance since diagnostics have become essential for the characterization of artworks. The development of conservation strategies involves growing the study of artworks and the knowledge of the materials used against the degradation plaguing the painted surfaces. This work focuses on the investigation of the degradation processes involving paintings on canvas, in particular delamination and progressive deterioration of the painted surfaces. The main causes of the degradation are attributable to the formation of metal soaps, which originate from the interaction between binders and pigments; as a result, the process leads to the progressive fracturing of the paint film. Using various characterization techniques allowed us to acquire information on the structural and morphological properties of the binder resins and study the binder/pigment interaction during the degradation process to understand the quantity and quality of the acid sites present in the binders and, consequently, the potential reactivity with the cationic part of the pigments. The binders were also analyzed within paint layers in contact with zinc oxide to study the interactions and the possible formation of new species as metal soaps and metal oxalates that can modify the boundary among the painting layers and, consequently, the appearance of the artwork and its artistic value. Modifications after UV and thermal aging processes were observed using Infrared spectroscopy and thermogravimetric analysis. Zinc soap formation was observed after 7 h of a UV aging process and was correlated to the acidity of the resins.
Collapse
Affiliation(s)
- Elisa Calà
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università degli Studi del Piemonte Orientale, Piazza S. Eusebio 5, 13100 Vercelli, Italy; (E.C.); (A.M.); (G.G.); (M.A.)
| | - Alessandro Croce
- SSD Research Laboratories, Research and Innovation Department (DAIRI), Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e Cesare Arrigo, Via Venezia 16, 15121 Alessandria, Italy
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy;
| | - Laura Cagna
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale, Viale Teresa Michel 11, 15121 Alessandria, Italy;
| | - Andrea Marangon
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università degli Studi del Piemonte Orientale, Piazza S. Eusebio 5, 13100 Vercelli, Italy; (E.C.); (A.M.); (G.G.); (M.A.)
| | - Giorgio Gatti
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università degli Studi del Piemonte Orientale, Piazza S. Eusebio 5, 13100 Vercelli, Italy; (E.C.); (A.M.); (G.G.); (M.A.)
| | - Maurizio Aceto
- Dipartimento per lo Sviluppo Sostenibile e la Transizione Ecologica, Università degli Studi del Piemonte Orientale, Piazza S. Eusebio 5, 13100 Vercelli, Italy; (E.C.); (A.M.); (G.G.); (M.A.)
| |
Collapse
|
4
|
Ahuja A, Singh A, Rastogi VK. Thermal crosslinking kinetics of shellac and its coating for stiffened and water stable cellulose-based paper straws. Int J Biol Macromol 2024; 278:135076. [PMID: 39214834 DOI: 10.1016/j.ijbiomac.2024.135076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
In this work, shellac and its crosslinking were studied to produce paper straws for the application of liquid products. Commercial paper straws are not durable for liquid foods due to their hygroscopic nature, and thus, they find it challenging to replace single-use plastics. Shellac is a naturally occurring resin utilized as an adhesive and water-resistant coating over the paper straw. Shellac was cured at 125 °C, 150 °C, 175 °C, and 200 °C, and it was crosslinked in about 210 min, 150 min, 60 min, and 30 min respectively and studied for kinetics. The crosslinking of shellac produced a thermally stable material. Compared to commercial paper straws, these paper shellac straws exhibited high bending stiffness (1356.11 Nmm), tensile strength (13,74 MPa), flexural strength (21.72 MPa), and compression strength (24.99 MPa). Moreover, the paper shellac straws didn't bend in wet conditions under load for up to one day, while the commercial paper straw bends in 8 min. Therefore, paper straws with shellac can replace plastic-based straws for a sustainable future.
Collapse
Affiliation(s)
- Arihant Ahuja
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Anamika Singh
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Vibhore Kumar Rastogi
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
5
|
Ahuja A, Rastogi VK. Physicochemical and thermal characterization of the edible shellac films incorporated with oleic acid to enhance flexibility, water barrier and retard aging. Int J Biol Macromol 2024; 269:132136. [PMID: 38718999 DOI: 10.1016/j.ijbiomac.2024.132136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/24/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
In this work, shellac plasticized with oleic acid was solvent cast to prepare the flexible and water-resistant film for packaging applications. The films were prepared with varying amounts of oleic acid and studied in detail for appearance, surface morphology, thermal, chemical, barrier, mechanical, and robustness. The surface morphology confirmed the smooth surface of films up to SH-OA20 (100:20 w/w; shellac: oleic acid). Fourier-transform infrared spectroscopy confirmed that oleic acid reduced the hydrogen bonding of the shellac matrix to provide a plasticization effect. Also, the thermal analysis showed a reduction in the melting enthalpy. Moreover, the plasticized films had a better barrier to water vapor due to increased smoothness and reduction in brittleness. Adding oleic acid also increased the elongation at break up to 40 % without any changes in tensile strength. The flexibility of the films increased with the oleic acid content, making them resistant to burst, crumbling, bending, rolling, and stretching. Oleic acid also showed the retardation of aging and thermal aging of shellac. In the future, the long-term stability and migration of the films can be investigated.
Collapse
Affiliation(s)
- Arihant Ahuja
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Vibhore Kumar Rastogi
- Department of Paper Technology, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
6
|
Lamkhao S, Tandorn S, Thavornyutikarn P, Chokethawai K, Rujijanagul G, Thongkorn K, Jarupoom P, Randorn C. Synergistic amalgamation of shellac with self-antibacterial hydroxyapatite and carboxymethyl cellulose: An interactive wound dressing for ensuring safety and efficacy in preliminary in vivo studies. Int J Biol Macromol 2023; 253:126809. [PMID: 37709235 DOI: 10.1016/j.ijbiomac.2023.126809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
This study focuses on the synergistic formulation of environmentally friendly blended materials based on carboxymethyl cellulose (CMC) for advanced interactive wound dressing. New CMC hydrogels were prepared with two degrees of functionalization and chemically crosslinked with citric acid (CA) to fine-tune their properties. Additionally, CMC-based hybrids were created by blending with shellac (SHL) and incorporating self-antibacterial hydroxyapatite (HA) to inhibit bacterial growth and promote wound healing. The results demonstrate the successful production of superabsorbent hydrogels with typical swelling degrees ranging from 81% in water to 82% in phosphate-buffered saline (PBS). These hydrogels exhibit distinct morphological features and remarkable improvements in surface mechanical properties, specifically in their tensile properties, which show a significant increase from approximately 0.03 to 2.2 N/mm2 due to the formation of CMC-SHL-HA hybrid nanostructures. Furthermore, the cytocompatibility of these CMC-based hydrogels was investigated by assessing the in vitro cell viability responses of human skin fibroblasts. The results reveal the cell viability responses over 91%, indicating their biocompatibility with human cells. Moreover, the characteristics of surgical wounds were assessed before and after the application of the hydrogel on dogs, and no signs of infection were observed at any of the surgical sites post-surgery.
Collapse
Affiliation(s)
- Suphatchaya Lamkhao
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sujitra Tandorn
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Praput Thavornyutikarn
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Komsanti Chokethawai
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Gobwute Rujijanagul
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kriangkrai Thongkorn
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, 50100, Thailand
| | - Parkpoom Jarupoom
- Department of Industrial Engineering, Faculty of Engineering, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand
| | - Chamnan Randorn
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
7
|
Ramli NA, Adam F, Mohd Amin KN, M. Nor A, Ries ME. Evaluation of Mechanical and Thermal Properties of Carrageenan/Hydroxypropyl Methyl Cellulose Hard Capsule. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nur Amalina Ramli
- Faculty of Chemical and Process Engineering Technology Universiti Malaysia Pahang Kuantan Pahang Malaysia
| | - Fatmawati Adam
- Faculty of Chemical and Process Engineering Technology Universiti Malaysia Pahang Kuantan Pahang Malaysia
- Centre for Research in Advanced Fluid and Processes, Universiti Malaysia Pahang Kuantan Pahang Malaysia
| | - Khairatun Najwa Mohd Amin
- Faculty of Chemical and Process Engineering Technology Universiti Malaysia Pahang Kuantan Pahang Malaysia
| | - Adibi M. Nor
- Institute for Advanced Studies University of Malaya Kuala Lumpur Malaysia
| | - Michael E. Ries
- School of Physics & Astronomy University of Leeds Leeds United Kingdom
| |
Collapse
|
8
|
Zafar N, Akhlaq M, Mahmood A, Ijaz H, Sarfraz RM, Hussain Z, Masood Z. Facile synthesis and in vitro evaluation of semi-interpenetrating polymeric network. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Prawatborisut M, Janprasit J, Seidi F, Wongnate T, Flood A, Yiamsawas D, Crespy D. Preparation of nanoparticles of shellac and shellac-oligomer conjugates. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2021.2022983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mongkhol Prawatborisut
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Jindaporn Janprasit
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Farzad Seidi
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Thanyaporn Wongnate
- Department of Biomolecular Science and Engineering, School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Adrian Flood
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Doungporn Yiamsawas
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| |
Collapse
|
10
|
Yuan Y, He N, Dong L, Guo Q, Zhang X, Li B, Li L. Multiscale Shellac-Based Delivery Systems: From Macro- to Nanoscale. ACS NANO 2021; 15:18794-18821. [PMID: 34806863 DOI: 10.1021/acsnano.1c07121] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Delivery systems play a crucial role in enhancing the activity of active substances; however, they require complex processing techniques and raw material design to achieve the desired properties. In this regard, raw materials that can be easily processed for different delivery systems are garnering attention. Among these raw materials, shellac, which is the only pharmaceutically used resin of animal origin, has been widely used in the development of various delivery systems owing to its pH responsiveness, biocompatibility, and degradability. Notably, shellac performs better on encapsulating hydrophobic active substances than other natural polymers, such as polysaccharides and proteins. In addition, specially designed shellac-based delivery systems can also be used for the codelivery of hydrophilic and hydrophobic active substances. Shellac is most widely used for oral administration, as shellac-based delivery systems can form a compact structure through hydrophobic interaction, protecting transported active substances from the harsh environment of the stomach to achieve targeted delivery in the small intestine or colon. In this review, the advantages of shellac in delivery systems are discussed in detail. Multiscale shellac-based delivery systems from the macroscale to nanoscale are comprehensively introduced, including matrix tablets, films, enteric coatings, hydrogels, microcapsules, microparticles (beads/spheres), nanoparticles, and nanofibers. Furthermore, the hotspots, deficiencies, and future perspectives of shellac-based delivery system development are also analyzed. We hoped this review will increase the understanding of shellac-based delivery systems and inspire their further development.
Collapse
Affiliation(s)
- Yi Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Ni He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Liya Dong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Qiyong Guo
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Bing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
- Engineering Research Center of Starch and Plant Protein Deep Processing, Ministry of Education, South China University of Technology, Guangzhou 510640, China
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
11
|
Manipulation of the Glass Transition Properties of a High-Solid System Made of Acrylic Acid-N,N'-Methylenebisacrylamide Copolymer Grafted on Hydroxypropyl Methyl Cellulose. Int J Mol Sci 2021; 22:ijms22052682. [PMID: 33800956 PMCID: PMC7961604 DOI: 10.3390/ijms22052682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Crosslinking of hydroxypropyl methyl cellulose (HPMC) and acrylic acid (AAc) was carried out at various compositions to develop a high-solid matrix with variable glass transition properties. The matrix was synthesized by the copolymerisation of two monomers, AAc and N,N′-methylenebisacrylamide (MBA) and their grafting onto HMPC. Potassium persulfate (K2S2O8) was used to initiate the free radical polymerization reaction and tetramethylethylenediamine (TEMED) to accelerate radical polymerisation. Structural properties of the network were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), modulated differential scanning calorimetry (MDSC), small-deformation dynamic oscillation in-shear, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The results show the formation of a cohesive macromolecular entity that is highly amorphous. There is a considerable manipulation of the rheological and calorimetric glass transition temperatures as a function of the amount of added acrylic acid, which is followed upon heating by an extensive rubbery plateau. Complementary TGA work demonstrates that the initial composition of all the HPMC-AAc networks is maintained up to 200 °C, an outcome that bodes well for applications of targeted bioactive compound delivery.
Collapse
|
12
|
|
13
|
Acaralı N, Demir S. Physical and chemical effects of quartet structure (bamboo / zinc borate / shellac / surfactant) on organic coatings. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Blends of synthetic plastic-derived polypeptide with Hydroxypropylmethylcellulose and polyvinyl alcohol: unraveling the specific interaction parameters, morphology and thermal stability of the polymers couple. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02191-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Du Y, Wang L, Mu R, Wang Y, Li Y, Wu D, Wu C, Pang J. Fabrication of novel Konjac glucomannan/shellac film with advanced functions for food packaging. Int J Biol Macromol 2019; 131:36-42. [DOI: 10.1016/j.ijbiomac.2019.02.142] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/28/2019] [Accepted: 02/23/2019] [Indexed: 01/28/2023]
|