1
|
Laramée AW, Pellerin C. Raman Analysis of Orientation and Crystallinity in High Tg, Low Crystallinity Electrospun Fibers. APPLIED SPECTROSCOPY 2023; 77:1289-1299. [PMID: 37774683 PMCID: PMC10604433 DOI: 10.1177/00037028231202791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/30/2023] [Indexed: 10/01/2023]
Abstract
Electrospun fibers of amorphous or low-crystallinity polymers typically exhibit a low molecular orientation that can hamper their properties and application. A key stage of the electrospinning process that could be harnessed to mitigate the loss of orientation is jet rigidification, which relates closely to the solvent evaporation rate. Here, we establish quantitative Raman methods to assess the molecular orientation and crystallinity of weakly crystalline poly(2,6-dimethyl-1,4-phenylene oxide) fibers with varying diameters. Our findings demonstrate that solvent volatility can be leveraged to modulate the orientation and crystallinity through its impact on the effective glass transition temperature (Tg,eff) of the polymer jet during the electrospinning process. Specifically, a highly volatile solvent yields a higher and more sustained orientation (median ⟨P2⟩ of 0.53 for diameters < 1.0 µm) because its fast evaporation rapidly increases Tg,eff above room temperature. This vitrification early along the jet path promotes the formation of an oriented amorphous phase and a moderate fraction of strain-induced crystals. Our data reveals that a high Tg is a crucial parameter for reaching high orientation in amorphous or low-crystallinity polymer systems.
Collapse
|
2
|
El-Okaily MS, El-Rafei AM, Basha M, Abdel Ghani NT, El-Sayed MMH, Bhaumik A, Mostafa AA. Efficient drug delivery vehicles of environmentally benign nano-fibers comprising bioactive glass/chitosan/polyvinyl alcohol composites. Int J Biol Macromol 2021; 182:1582-1589. [PMID: 34019926 DOI: 10.1016/j.ijbiomac.2021.05.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/23/2022]
Abstract
Nano-fiber composites have shown promising potential in biomedical and biotechnological applications. Herein, novel nano-fiber composites constituting a blend of polyvinyl alcohol (PVA) and chitosan (CS) along with different weight ratios of nano-bioactive glass (BG) were prepared by electrospinning. Nano-fibers incorporating 10% (by wt.) of BG were uniform, dense and defect-free with a diameter of 20-125 nm. The model osteoporotic drug (Risedronate sodium) was blended with the electrospinning forming solution and the in-vitro drug release was further studied. About 30% of the drug was released after only 30 min and the release pattern was sustained over 96 h. Drug release took place through a two-stage intra-particle diffusion mechanism. BG-incorporated nano-fibers markedly retarded the drug release profile relative to their BG-free counterparts. They also enhanced the drug release efficiency by releasing 93 ± 4% of the drug. The developed nano-fiber composites can be potentially used as drug-delivery vehicles due to their efficiency and sustained drug release capacity.
Collapse
Affiliation(s)
- Mohamed S El-Okaily
- Refractories, Ceramics and Building Materials Department (Biomaterials group), National Research Centre (NRC), El Bohouth St., Dokki, 12622, Cairo, Egypt; Nanomedicine & Tissue Engineering Lab., Medical Research Center of Excellence (MRCE), NRC, Cairo, Egypt
| | - Amira M El-Rafei
- Refractories, Ceramics and Building Materials Department (Biomaterials group), National Research Centre (NRC), El Bohouth St., Dokki, 12622, Cairo, Egypt
| | - Mona Basha
- Pharmaceutical Technology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Nour T Abdel Ghani
- Chemistry Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mayyada M H El-Sayed
- Chemistry Department, American University in Cairo, AUC Avenue, New Cairo 11835, Egypt.
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700, 032, India
| | - Amany A Mostafa
- Refractories, Ceramics and Building Materials Department (Biomaterials group), National Research Centre (NRC), El Bohouth St., Dokki, 12622, Cairo, Egypt; Nanomedicine & Tissue Engineering Lab., Medical Research Center of Excellence (MRCE), NRC, Cairo, Egypt.
| |
Collapse
|
3
|
Li Y, Pan P, Liu C, Zhou W, Li C, Gong C, Li H, Zhang L, Song H. Influence of chain interaction and ordered structures in polymer dispersed liquid crystalline membranes on thermal conductivity. JOURNAL OF POLYMER ENGINEERING 2020. [DOI: 10.1515/polyeng-2020-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Polymer dispersed liquid crystalline (PDLC) membrane with intrinsic thermal conductivity was prepared by dispersing liquid crystalline polysiloxane containing crosslinked structure (liquid crystalline polysiloxane elastomer (LCPE)) into polyvinyl alcohol (PVA). Chemical structures were characterized by Fourier transform infrared (FT-IR) and 1H-NMR, and microscopic structures were analyzed by polarizing optical microscope (POM), scanning electron microscope (SEM) and X-ray diffraction (XRD). The thermal conductivity of PDLC membrane was characterized by hot disk thermal constants analyzer, and the tensile properties were measured by tensile testing machine. Thermal properties were characterized by differential scanning calorimeter (DSC) and thermal gravimetric analyzer (TGA). The results show that LCPE was dispersed in PVA uniformly, and the mesogenic monomer of LCPE formed microscopic ordered structures in PDLC membrane. Meanwhile, hydrogen-bond interaction was formed between LCPE and PVA chain. Both microscopic-ordered structure and the hydrogen-bond interaction improved the phonon transmission path, and the thermal conductivity of PDLC membrane was up to 0.74 W/m⋅K, which was 6 times higher than that of pure PVA film. PDLC membrane possessed proper tensile strength and elongation at break, respectively 5.18 MPa and 338%. As a result, PDLC membrane can be used as thermal conductive membrane in electronic packaging and other related fields.
Collapse
Affiliation(s)
- Ying Li
- College of Material Science and Engineering , Xi’an University of Science and Technology , Xi’an , 710054, Shaan Xi , China
| | - Pan Pan
- College of Material Science and Engineering , Xi’an University of Science and Technology , Xi’an , 710054, Shaan Xi , China
| | - Chao Liu
- College of Material Science and Engineering , Xi’an University of Science and Technology , Xi’an , 710054, Shaan Xi , China
| | - Wenying Zhou
- School of Chemistry and Chemical Engineering , Xi’an University of Science and Technology , Xi’an , 710054, China
| | - Chenggong Li
- College of Material Science and Engineering , Xi’an University of Science and Technology , Xi’an , 710054, Shaan Xi , China
| | - Changdan Gong
- College of Material Science and Engineering , Xi’an University of Science and Technology , Xi’an , 710054, Shaan Xi , China
| | - Huilu Li
- College of Material Science and Engineering , Xi’an University of Science and Technology , Xi’an , 710054, Shaan Xi , China
| | - Liang Zhang
- The First Affiliated Hospital , Xi’an Jiaotong University , Xi’an , 710061, Shaan Xi , China
| | - Hui Song
- College of Material Science and Engineering , Xi’an University of Science and Technology , Xi’an , 710054, Shaan Xi , China
| |
Collapse
|
4
|
Zhu LF, Chen X, Ahmad Z, Peng Y, Chang MW. A core–shell multi-drug platform to improve gastrointestinal tract microbial health using 3D printing. Biofabrication 2020; 12:025026. [DOI: 10.1088/1758-5090/ab782c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Zhu LF, Zheng Y, Fan J, Yao Y, Ahmad Z, Chang MW. A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. Eur J Pharm Sci 2019; 137:105002. [DOI: 10.1016/j.ejps.2019.105002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/31/2022]
|
6
|
Wu S, Li JS, Mai J, Chang MW. Three-Dimensional Electrohydrodynamic Printing and Spinning of Flexible Composite Structures for Oral Multidrug Forms. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24876-24885. [PMID: 29953813 DOI: 10.1021/acsami.8b08880] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A simple method to rapidly customize and to also mass produce oral dosage forms is arguably a current bottleneck in the development of modern personalized medicine. Specifically, delayed-release mechanisms with well-controlled dosage profiles for combinations of traditional Chinese herbal extracts and Western medications are not well established. Herein, we demonstrate a novel multidrug-loaded membrane sandwich with structures infused with ibuprofen (IBU) and Ganoderma lucidum polysaccharide (GLP) using three-dimensional electrohydrodynamic printing and electrospinning techniques. The resulting flexible membrane consists of microscaled, multilayered cellulose acetate (CA) membranes loaded with IBU in the shape of either concentric squares or circles, as the top and bottom layers of a sandwich structure. In between the CA-IBU layers are randomly electrospun polyvinyl pyrrolidone (PVP) layers loaded with GLP. The complete fibrous membrane sandwich can be folded and embedded into a 0-size capsule to achieve oral compliance. Simulated in vitro testing of gastric and intestinal fluids demonstrated a triphasic release profile. There was an immediate release of GLP after gastric juices dissolved the capsule shell and the PVP, followed by the short-term release of 60% of the IBU within an hour afterward, and the remaining IBU was released in a sustained manner following a Fickian diffusion profile. In summary, this multidrug (both hydrophilic and/or hydrophobic) oral system with precision-designed structures should enable personalized therapeutic dosing.
Collapse
Affiliation(s)
| | | | - John Mai
- Alfred E. Mann Institute for Biomedical Engineering at the University of Southern California , Los Angeles 90007 , California , United States
| | | |
Collapse
|