1
|
Wood and Pulping Properties Variation of Acacia crassicarpa A.Cunn. ex Benth. and Sampling Strategies for Accurate Phenotyping. FORESTS 2020. [DOI: 10.3390/f11101043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research Highlights: This study provides a comprehensive set of wood and pulping properties of Acacia crassicarpa A.Cunn. ex Benth. to assess variation and efficient sampling strategies for whole-tree level phenotyping. Background and Objectives: A. crassicarpa is an important tree species in Southeast Asia, with limited knowledge about its wood properties. The objective of this study was to characterize important wood properties and pulping performance of improved germplasm of the species. Furthermore, we investigated within-tree patterns of variation and evaluated the efficiency of phenotyping strategies. Materials and Methods: Second-generation progeny trials were studied, where forty 50-month-old trees were selected for destructive sampling and assessed for wood density, kraft pulp yield, α-cellulose, carbohydrate composition, and lignin content and composition (S/G ratio). We estimated the phenotypic correlations among traits determined within-tree longitudinal variation and its importance for whole-tree level phenotyping. Results: The mean whole-tree disc basic density was 481 kg/m3, and the screened kraft pulp yield was 53.8%. The reliabilities of each sampling position to predict whole-tree properties varied with different traits. For basic density, pulp yield, and glucose content, the ground-level sampling could reliably predict the whole-tree property. With near infrared reflectance spectroscopy predictions as an indirect measurement method for disc basic density, we verified reduced reliability values for breast height sampling but sufficiently correlated to allow accurate ranking and efficient selection of genotypes in a breeding program context. Conclusions: We demonstrated the quality of A. crassicarpa as a wood source for the pulping industry. The wood and pulping traits have high levels of phenotypic variation, and standing tree sampling strategies can be performed for both ranking and high-accuracy phenotyping purposes.
Collapse
|
2
|
Synthesis of Graphene Oxide-Polystyrene Graft Polymer Based on Reversible Addition Fragmentation Chain Transfer and Its Effect on Properties, Crystallization, and Rheological Behavior of Poly (Lactic Acid). ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/9364657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Graphene oxide-polystyrene graft polymer (SGO-PS) was prepared by reversible addition-fragmentation chain transfer radical polymerization method. Orthogonal experiments indicated that the optimum synthesis reaction conditions for SGO-PS were as follows: the millimole ratio of chain transfer agent to initiator was 0.15 : 0.3, and the amount of styrene was 8 mL at 80°C for 12 hours. The products were characterized by Fourier transform infrared spectroscopy and thermal weightlessness analysis, and the highest grafting rate of SGO-PS was 62.46%. Then, PLA/SGO-PS nanocomposites were prepared using SGO-PS as fillers by melt intercalation method, and its crystallinity, mechanical properties, and thermal stability were significantly improved. Compared with pure PLA, the crystallinity of PLA/SGO-PS (0.3 wt%) nanocomposites was increased by 5 times. Multiple melting behavior tests showed that the introduction of SGO-PS caused the PLA molecular chain to be discharged into the unit cell in time, and the melting temperature shifted to a higher temperature, which ultimately made the grain structure of PLA composites more complete and stable than pure PLA. The rheological performance test showed that the uniform dispersion of SGO-PS in the PLA matrix inhibited the free movement of the PLA molecular chain and caused higher flow resistance, resulting in an increase in the complex viscosity, storage modulus, and loss modulus of PLA/SGO-PS.
Collapse
|
3
|
Yang L, Zhen W. Preparation and characterization of phosphorylated graphene oxide grafted with poly(L‐lactide) and its effect on the crystallization, rheological behavior, and performance of poly (lactic acid). POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Li Yang
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous RegionXinjiang University Urumqi China
| | - Weijun Zhen
- Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous RegionXinjiang University Urumqi China
| |
Collapse
|
4
|
Gulitah V, Liew KC. Morpho-mechanical properties of wood fiber plastic composite (WFPC) based on three different recycled plastic codes. INTERNATIONAL JOURNAL OF BIOBASED PLASTICS 2019. [DOI: 10.1080/24759651.2019.1631242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Verra Gulitah
- Faculty of Science and Natural Resources, Forestry Complex, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Kang Chiang Liew
- Faculty of Science and Natural Resources, Forestry Complex, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|