1
|
Shabnum SS, Siranjeevi R, Susmitha R, Raj CK, Nivetha P, Benazir K, Saravanan A, Vickram AS. Enhanced photocatalytic degradation of crystal violet and malachite green oxalate dyes by NiAg 2O infused chitosan nanocomposites. Int J Biol Macromol 2025; 286:138365. [PMID: 39638204 DOI: 10.1016/j.ijbiomac.2024.138365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
The present study investigated the catalysis of Lupeol-loaded chitosan nanoparticles infused with NiAg2O nanoparticles to create a NiAg2O/Lup@CS nanocomposite. Recent advances in nanomaterials with unique architectures and functionalities have successfully treated contaminated soil and industrial wastewaters. Consequently, a lupeol@chitosan nanoparticle loaded with NiAg2O was created, and its catalytic effectiveness in degrading industrial dye pollution was examined. The ionic gelation synthesis route was used to produce the NiAg2O/Lup@CS nanocomposite. After that, the resultant nanocomposite underwent extensive analysis to determine its elemental composition through EDAX, surface bonding, nature, crystallinity using FTIR, FESEM, and XRD, and powdered particle size using HRTEM. Subsequently, the produced nanocomposite's efficacy in photo-catalytically degrading Crystal violet and Malachite green oxalate were evaluated. Moreover, the Crystal violet and Malachite green oxalate degradation kinetics were studied using the Langmuir-Hinshelwood model, which also offered a plausible photocatalytic process. The catalytic mechanism suggested that the addition of Lup@CS nanoparticles would have had the effect of speeding up photocurrent transport by increasing the quantity of electrons and holes produced by the photon's irradiation. This highlights the significance of creating innovative composite photocatalysts. The study also observed the superior photocatalytic activity of NiAg2O/Lup@CS nanocomposite with 86.14 % degradation of Crystal violet and 86.65 % degradation of Malachite green oxalate.
Collapse
Affiliation(s)
- S Sameera Shabnum
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, Tamil Nadu, India
| | - R Siranjeevi
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, Tamil Nadu, India.
| | - R Susmitha
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, Tamil Nadu, India
| | - C Krishna Raj
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, Tamil Nadu, India
| | - P Nivetha
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, Tamil Nadu, India
| | - K Benazir
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602 105, Tamil Nadu, India
| | - A Saravanan
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, Tamil Nadu, India
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
2
|
Shaha CK, Karmaker S, Saha TK. Efficient adsorptive removal of levofloxacin using sulfonated graphene oxide: Adsorption behavior, kinetics, and thermodynamics. Heliyon 2024; 10:e40319. [PMID: 39641076 PMCID: PMC11617717 DOI: 10.1016/j.heliyon.2024.e40319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/03/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Water pollution by antibiotic residues poses a potential threat to environmental and human health. Graphene-based materials are highly stable, recyclable and effective adsorbents for efficiently removing antibiotics from polluted water. In this study, the adsorption behavior of levofloxacin onto sulfonated graphene oxide (SGO) was investigated by varying the contact period, solution pH, adsorbent quantity, levofloxacin concentration, inorganic ions, and solution temperature. Spectroscopic and microscopic techniques were employed to confirm the adsorptive interaction between levofloxacin and SGO. The adsorption process was most accurately characterized by the pseudo-second-order kinetic model and the Langmuir isotherm model, as indicated by their high correlation coefficients (R 2) and low root-mean-square error (RMSE) values. The maximal quantity of levofloxacin that can be adsorbed onto SGO was determined to be 1250 μmol/g at pH 4 and 25 °C using the Langmuir model. Thermodynamic studies reveal that the process of levofloxacin adsorption onto SGO is endothermic and spontaneous in nature. Taking into consideration the results of adsorption, desorption and regeneration studies, it is proposed that SGO can be applied as an economic viable agent for the adsorptive removal of levofloxacin from the aqueous environment.
Collapse
Affiliation(s)
- Chironjit Kumar Shaha
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
- Veterinary Drug Residue Analysis Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment (AERE), Gonokbari, Savar, Dhaka, 1349, Bangladesh
| | - Subarna Karmaker
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Tapan Kumar Saha
- Department of Chemistry, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| |
Collapse
|
3
|
Kashapov R, Razuvayeva Y, Fedorova E, Zakharova L. The role of macrocycles in supramolecular assembly with polymers. SOFT MATTER 2024; 20:8549-8560. [PMID: 39470183 DOI: 10.1039/d4sm01053a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Recently, supramolecular self-assembly has attracted the attention of researchers worldwide because it enables the creation of nanostructures with unique properties without additional costs. Spontaneous organization of molecules allows the design and development of new nanostructures that can interact with drugs and living cells and generate a response. Therefore, supramolecular structures have enormous potential and can be in demand in various fields of healthcare and ecology. One of the widely used building blocks of such supramolecular assemblies is polymers. This review examines the joint aggregation behavior of various macrocycles (cyclodextrins, calixarenes, cucurbiturils, porphyrins, and pillararenes) with polymers, the functional properties of these supramolecular systems and their potential applications.
Collapse
Affiliation(s)
- Ruslan Kashapov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Yuliya Razuvayeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Elena Fedorova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| | - Lucia Zakharova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, 420088, Kazan, Russian Federation.
| |
Collapse
|
4
|
Shaha C, Sarker B, Mahalanobish SK, Hossain MS, Karmaker S, Saha TK. Kinetics, Equilibrium, and Thermodynamics for Conjugation of Chitosan with Insulin-Mimetic [ meso-Tetrakis(4-sulfonatophenyl)porphyrinato]oxovanadate(IV)(4-) in an Aqueous Solution. ACS OMEGA 2023; 8:41612-41623. [PMID: 37970023 PMCID: PMC10634234 DOI: 10.1021/acsomega.3c05804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/17/2023]
Abstract
This study investigated the conjugation of chitosan with the insulin-mimetic [meso-tetrakis(4-sulfonatophenyl)porphyrinato]oxovanadate(IV)(4-), VO(tpps), in an aqueous medium as a function of conjugation time, VO(tpps) concentrations, and temperatures. To validate the synthesis of chitosan-VO(tpps) conjugate, UV-visible and Fourier transform infrared spectrophotometric techniques were utilized. Conjugate formation is ascribed to the electrostatic interaction between the NH3+ units of chitosan and the SO3- units of VO(tpps). Chitosan enhances the stability of VO(tpps) in an aqueous medium (pH 2.5). VO(tpps) conjugation with chitosan was best explained by pseudo-second-order kinetic and Langmuir isotherm models based on kinetic and isotherm studies. The Langmuir equation determined that the maximal ability of VO(tpps) conjugated with each gram of chitosan was 39.22 μmol at a solution temperature of 45 °C. Activation energy and thermodynamic studies (Ea: 8.78 kJ/mol, ΔG: -24.52 to -27.55 kJ/mol, ΔS: 204.22 J/(mol K), and ΔH: 37.30 kJ/mol) reveal that conjugation is endothermic and physical in nature. The discharge of VO(tpps) from conjugate was analyzed in freshly prepared 0.1 mol/L phosphate buffer (pH 7.4) at 37 °C. The release of VO(tpps) from the conjugate is a two-phase process best explained by the Higuchi model, according to a kinetic analysis of the release data. Taking into consideration all experimental findings, it is proposed that chitosan can be used to formulate both solid and liquid insulin-mimetic chitosan-VO(tpps) conjugates.
Collapse
Affiliation(s)
- Chironjit
Kumar Shaha
- Department
of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
- Veterinary
Drug Residue Analysis Division, Institute
of Food and Radiation Biology, Atomic Energy Research Establishment
(AERE), Gonokbari, Savar, Dhaka 1349, Bangladesh
| | - Bithy Sarker
- Department
of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | | | - Md. Sharif Hossain
- Department
of Biotechnology & Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Subarna Karmaker
- Department
of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Tapan Kumar Saha
- Department
of Chemistry, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
5
|
Islam M, Ghosh P, Karmaker S, Saha TK. Kinetics, Equilibrium and Thermodinamic Investigation of New Coccine Adsorption onto Chitosan 10B in Aqueous Solution. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793121100043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|