1
|
Wu LJ, Kottalanka RK, Chu YT, Lin ZI, Chang CJ, Ding S, Chen HY, Wu KH, Chen CK. A comparative study of titanium complexes bearing 2-(arylideneamino)phenolates and 2-((arylimino)methyl)phenolates as catalysts for ring-opening polymerization of ε-caprolactone and L-lactide. Dalton Trans 2024; 53:15660-15673. [PMID: 39247970 DOI: 10.1039/d4dt02282c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Titanium complexes bearing 2-(arylideneamino)phenolates and 2-((arylimino)methyl)phenolates were synthesized, and their catalytic activities in the polymerization of ε-caprolactone and L-lactide were studied. Among five-membered ring Ti complexes bearing 2-(arylideneamino)phenolates, FCl-Ti exhibited the highest level of catalytic activity ([CL] : [FCl-Ti] = 100 : 1, where [CL] = 2 M, and conv. = 86% at 60 °C after 9 h). For six-membered ring Ti complexes bearing 2-((arylimino)methyl)phenolates, SCl-Ti exhibited the highest level of catalytic activity ([CL] : [SCl-Ti] = 100 : 1, where [CL] = 2 M, and conv. = 88% at 60 °C after 118 h). The five-membered ring Ti complexes bearing 2-(arylideneamino)phenolates exhibited a higher level of catalytic activity (6.1-12.8 fold for the polymerization of ε-caprolactone and 6.2-23.0 fold for the polymerization of L-lactide) than the six-membered ring Ti complexes bearing 2-((arylimino)methyl)phenolates. The density functional theory (DFT) results revealed that the free energy of the first transition state FH-Ti-TS1 is 36.49 kcal mol-1 which is lower than that of SH-Ti-TS1 (46.58 kcal mol-1), which was ascribed to the fact that the Ti-Nim bond (2.742 Å) of FH-Ti-TS1 is longer than that of SH-Ti-TS1 (2.229 Å) and reduces the repulsion between ligands.
Collapse
Affiliation(s)
- Ling-Jo Wu
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Ravi Kumar Kottalanka
- Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522213, India
| | - Yu-Ting Chu
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Chun-Juei Chang
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
| | - Shangwu Ding
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Hsuan-Ying Chen
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, 80708, Republic of China.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan, 80424, Republic of China
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan, Republic of China
- National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Kuo-Hui Wu
- Department of Chemistry, National Central University, Taoyuan, Taiwan, 32001, Republic of China
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
2
|
Daikhi S, Hammani S, Guerziz S, Alsaeedi H, Sayegh S, Bechlany M, Barhoum A. Urchin-like WO 3 Particles Form Honeycomb-like Structured PLA/WO 3 Nanocomposites with Enhanced Crystallinity, Thermal Stability, Rheological, and UV-Blocking and Antifungal Activity. Polymers (Basel) 2024; 16:2702. [PMID: 39408414 PMCID: PMC11479109 DOI: 10.3390/polym16192702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
The development of poly(lactic acid) (PLA) nanocomposites incorporating urchin-like WO3 particles through a cost-effective solution-casting method has led to significant enhancements in structural, thermal, optical, and rheological properties. The incorporation of these WO3 particles up to 7 wt% resulted in the formation of an irregular honeycomb-like morphology with broad pore sizes ranging from 14.1 to 24.7 µm, as confirmed by SEM and EDX analysis. The urchin-like WO3 particles acted as effective nucleating agents, increasing the crystallinity of PLA from 40% to 50% and achieving an impressive overall crystallinity rate of 97%. Differential scanning calorimetry (DSC) revealed an 11 K reduction in the crystalline phase transition temperature while maintaining stable melting (Tm) and glass transition (Tg) temperatures. Thermal analysis indicated a significant decrease in the onset of degradation and maximum thermal stability (Tmax), with a reduction of 21 K due to the incorporation of the WO3 particles. Optical measurements showed enhancement of UV-blocking properties from 9% to 55% with the WO3 particle loading. Rheological tests demonstrated substantial improvements in viscoelastic properties, including a remarkable 30-fold increase in storage modulus, suggesting enhanced gel formation. Although the nanocomposites showed minimal antibacterial activity against Escherichia coli and Staphylococcus aureus, they exhibited significant antifungal activity against Candida albicans. These results underscore the potential of the PLA/WO3 nanocomposites for advanced material applications, particularly where enhanced mechanical, thermal, optical, and antifungal performance is required.
Collapse
Affiliation(s)
- Sihem Daikhi
- Laboratoire de Chimie Physique Moléculaire et Macromoléculaire, Faculté de Science, Université de Blida 1, Blida 09000, Algeria; (S.D.); (S.G.)
| | - Salim Hammani
- Laboratoire de Chimie Physique Moléculaire et Macromoléculaire, Faculté de Science, Université de Blida 1, Blida 09000, Algeria; (S.D.); (S.G.)
| | - Soumia Guerziz
- Laboratoire de Chimie Physique Moléculaire et Macromoléculaire, Faculté de Science, Université de Blida 1, Blida 09000, Algeria; (S.D.); (S.G.)
| | - Huda Alsaeedi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Syreina Sayegh
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, F-34095 Montpellier, France; (S.S.); (M.B.)
| | - Mikhael Bechlany
- Institut Européen des Membranes, IEM, UMR-5635, University Montpellier, ENSCM, CNRS, Place Eugene Bataillon, F-34095 Montpellier, France; (S.S.); (M.B.)
- Functional Materials Group, Gulf University for Science and Technology (GUST), Masjid Al Aqsa Street, Mubarak Al-Abdullah 32093, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 4034572, Egypt
| |
Collapse
|
3
|
Kodithuwakku P, Jayasundara D, Munaweera I, Jayasinghe R, Thoradeniya T, Bogahawatta A, Manuda KRJ, Weerasekera M, Kottegoda N. Ilmenite-Grafted Graphene Oxide as an Antimicrobial Coating for Fruit Peels. ACS OMEGA 2024; 9:26568-26581. [PMID: 38911717 PMCID: PMC11191080 DOI: 10.1021/acsomega.4c03231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024]
Abstract
Postharvest loss is a significant global challenge that needs to be urgently addressed to sustain food systems. This study describes a simple microwave-assisted green synthesis method in developing a nanohybrid material combining natural ilmenite (FeTiO3) and graphene oxide (GO) as a promising antimicrobial fruit peel coating to reduce postharvest loss. The natural ilmenite was calcined in an inert environment and was mixed with GO in a microwave reactor to obtain the nanohybrid. The nanohybrid was then incorporated into an alginate biopolymer to form the fruit coating. Microscopic images revealed successful grafting of FeTiO3 nanoparticles onto the GO sheets. Spectroscopic measurements of Raman, X-ray photoemission, and infrared provided insights into the interactions between the two matrices. The optical band gap calculated from Tauc's relation using UV-vis data showed a significant reduction in the band gap of the hybrid compared to that of natural ilmenite. The antimicrobial activity was assessed using Escherichia coli, which showed a substantial decrease in colony counts. Bananas coated with the nanohybrid showed a doubling in the shelf life compared with uncoated fruits. Consistent with this, the electronic nose (E-nose) measurements and freshness indicator tests revealed less deterioration of the physicochemical properties of the coated bananas. Overall, the results show promising applications for the ilmenite-grafted GO nanohybrid as a food coating capable of minimizing food spoilage due to microbial activity.
Collapse
Affiliation(s)
- Piyumi Kodithuwakku
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | | | - Imalka Munaweera
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
- Instrument
Center, Faculty of Applied Sciences, University
of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | - Randika Jayasinghe
- Department
of Civil and Environmental Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Nugegoda 10100, Sri Lanka
| | - Tharanga Thoradeniya
- Department
of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo 003000, Sri Lanka
| | - Achala Bogahawatta
- Department
of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | | | - Manjula Weerasekera
- Department
of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | - Nilwala Kottegoda
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| |
Collapse
|
4
|
Rajendran DS, Venkataraman S, Jha SK, Chakrabarty D, Kumar VV. A review on bio-based polymer polylactic acid potential on sustainable food packaging. Food Sci Biotechnol 2024; 33:1759-1788. [PMID: 38752115 PMCID: PMC11091039 DOI: 10.1007/s10068-024-01543-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 05/18/2024] Open
Abstract
Poly(lactic acid) (PLA) stands as a compelling alternative to conventional plastic-based packaging, signifying a notable shift toward sustainable material utilization. This comprehensive analysis illuminates the manifold applications of PLA composites within the realm of the food industry, emphasizing its pivotal role in food packaging and preservation. Noteworthy attributes of PLA composites with phenolic active compounds (phenolic acid and aldehyde, terpenes, carotenoid, and so on) include robust antimicrobial and antioxidant properties, significantly enhancing its capability to bolster adherence to stringent food safety standards. The incorporation of microbial and synthetic biopolymers, polysaccharides, oligosaccharides, oils, proteins and peptides to PLA in packaging solutions arises from its inherent non-toxicity and outstanding mechanical as well as thermal resilience. Functioning as a proficient film producer, PLA constructs an ideal preservation environment by merging optical and permeability traits. Esteemed as a pioneer in environmentally mindful packaging, PLA diminishes ecological footprints owing to its innate biodegradability. Primarily, the adoption of PLA extends the shelf life of products and encourages an eco-centric approach, marking a significant stride toward the food industry's embrace of sustainable packaging methodologies. Graphical abstract
Collapse
Affiliation(s)
- Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Satyendra Kumar Jha
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Disha Chakrabarty
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India
| |
Collapse
|
5
|
Yaman M, Yildiz S, Özdemir A, Yemiş GP. Multicomponent system for development of antimicrobial PLA-based films with enhanced physical characteristics. Int J Biol Macromol 2024; 262:129832. [PMID: 38331069 DOI: 10.1016/j.ijbiomac.2024.129832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024]
Abstract
This study aims to develop polylactic acid (PLA)-based packaging films with imparted antimicrobial properties and enhanced physical characteristics by evaluating the likely interaction among multiple film components. For this purpose; epoxidized soybean oil (ES) (20 %) serves as a plasticizer, spruce resin (SR) (15 %) functions as both a plasticizer and antimicrobial agent, ZnO (0.1 %) acts as a nanofiller and antimicrobial, and finally thyme and clove essential oil mixture (5 % and 10 %) serves as an antimicrobial agent were incorporated to PLA film formulation. Composite materials were prepared by the solvent casting method using methylene chloride as the solvent. The developed films were characterized in terms of physical, mechanical, thermal, and antimicrobial properties. Tensile strength (59 MPa) and elastic modulus (2625 MPa) of the neat PLA film gradually decreased to 8.99 MPa and 725.4 MPa, respectively, with the sequential addition of all components, indicating enhanced flexibility. SR, ZnO, and EOs significantly imparted antimicrobial property to the PLA film as demonstrated by the inhibition zone of 13.83 mm and 15.67 mm observed for E. coli and S. aureus, respectively. The barrier properties of the films were enhanced by the addition of SR and ZnO; however, EOs increased the water vapor permeability from 0.080 to 0.090 g.mm/m2.day.kPa compared to the neat PLA film. Principal component and hierarchical cluster analysis enabled the successful discrimination of the films, demonstrating how the film properties are affected by the film components. Therefore, this study suggests that selection of a proper combination is essential to highly benefit from the multicomponent film systems for designing alternative food packaging materials with desired properties.
Collapse
Affiliation(s)
- Merve Yaman
- Department of Chemistry, Faculty of Science, Sakarya University, 54187, Sakarya, Turkey
| | - Semanur Yildiz
- Department of Food Engineering, Faculty of Engineering, Sakarya University, 54050, Sakarya, Turkey
| | - Abdil Özdemir
- Department of Chemistry, Faculty of Science, Sakarya University, 54187, Sakarya, Turkey.
| | - Gökçe Polat Yemiş
- Department of Food Engineering, Faculty of Engineering, Sakarya University, 54050, Sakarya, Turkey
| |
Collapse
|
6
|
Shahid-Ul-Islam, Jaiswal V, Butola BS, Majumdar A. Production of PVA-chitosan films using green synthesized ZnO NPs enriched with dragon fruit extract envisaging food packaging applications. Int J Biol Macromol 2023; 252:126457. [PMID: 37611684 DOI: 10.1016/j.ijbiomac.2023.126457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
In this work, the PVA-chitosan composite packaging films doped with biomass-fabricated zinc oxide nanoparticles (ZnO NPs) and dragon fruit waste extract (DFE) were developed for potential use in food packaging applications. ZnO NPs were synthesized using a sustainable method employing C. sinensis waste extract as a reducing agent. Chitosan and PVA were blended in a specific ratio (1: 1 w/w) to obtain a film-forming solution, into which the ZnO NPs and dragon fruit waste extract were incorporated. The resulting solution was cast into films, which were characterized using various analytical techniques. Mechanical properties, water solubility, and thermal stability of the films were also evaluated. The results demonstrated that the incorporation of green ZnO NPs and dragon fruit waste extract enhanced the mechanical strength and thermal stability of the films while reducing water vapor permeability. Moreover, the films exhibited biocidal and excellent 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging properties, indicating their use in the food packaging sector. The production of these films offers a practical approach to produce bioactive food packaging materials. The use of plant extract and waste material as reducing agents can reduce the overall cost of production while providing added benefits, such as antioxidant and antibacterial properties.
Collapse
Affiliation(s)
- Shahid-Ul-Islam
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Vivek Jaiswal
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - B S Butola
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Abhijit Majumdar
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
7
|
Valtsifer VA, Sivtseva AV, Kondrashova NB, Shamsutdinov AS, Averkina AS, Valtsifer IV, Feklistova IN, Strelnikov VN. Influence of Synthesis Conditions on the Properties of Zinc Oxide Obtained in the Presence of Nonionic Structure-Forming Compounds. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2537. [PMID: 37764565 PMCID: PMC10536475 DOI: 10.3390/nano13182537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
This work investigated the influence of synthesis conditions, including the use of nonionic structure-forming compounds (surfactants) with different molecular weights (400-12,600 g/mol) and various hydrophilic/hydrophobic characteristics, as well as the use of a glass substrate and hydrothermal exposure on the texture and structural properties of ZnO samples. By X-ray analysis, it was determined that the synthesis intermediate in all cases is the compound Zn5(OH)8(NO3)2∙2H2O. It was shown that thermolysis of this compound at 600 °C, regardless of the physicochemical properties of the surfactants, leads to the formation of ZnO with a wurtzite structure and spherical or oval particles. The particle size increased slightly as the molecular weight and viscosity of the surfactants grew, from 30 nm using Pluronic F-127 (MM = 12,600) to 80 nm using Pluronic L-31 (MM = 1100), PE-block-PEG (MM = 500) and PEG (MM = 400). Holding the pre-washed synthetic intermediates (Zn5(OH)8(NO3)2∙2H2O) under hydrothermal conditions resulted in the formation of hexagonal ZnO rod crystal structures of various sizes. It was shown that the largest ZnO particles (10-15 μm) were observed in a sample obtained during hydrothermal exposure using Pluronic P-123 (MM = 5800). Atomic adsorption spectroscopy performed comparative quantitative analysis of residual Zn2+ ions in the supernatant of ZnO samples with different particle sizes and shapes. It was shown that the residual amount of Zn2+ ions was higher in the case of examining ZnO samples which have spherical particles of 30-80 nm. For example, in the supernatant of a ZnO sample that had a particle size of 30 nm, the quantitative content of Zn2+ ions was 10.22 mg/L.
Collapse
Affiliation(s)
- Viktor A. Valtsifer
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Anastasia V. Sivtseva
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Natalia B. Kondrashova
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Artem S. Shamsutdinov
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Anastasia S. Averkina
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | - Igor V. Valtsifer
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| | | | - Vladimir N. Strelnikov
- Institute of Technical Chemistry, Ural Branch, Russian Academy of Sciences, Perm Federal Research Center, Russian Academy of Sciences, 614013 Perm, Russia; (V.A.V.); (A.V.S.); (N.B.K.); (A.S.A.); (I.V.V.); (V.N.S.)
| |
Collapse
|
8
|
Perera KY, Jaiswal AK, Jaiswal S. Biopolymer-Based Sustainable Food Packaging Materials: Challenges, Solutions, and Applications. Foods 2023; 12:2422. [PMID: 37372632 DOI: 10.3390/foods12122422] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Biopolymer-based packaging materials have become of greater interest to the world due to their biodegradability, renewability, and biocompatibility. In recent years, numerous biopolymers-such as starch, chitosan, carrageenan, polylactic acid, etc.-have been investigated for their potential application in food packaging. Reinforcement agents such as nanofillers and active agents improve the properties of the biopolymers, making them suitable for active and intelligent packaging. Some of the packaging materials, e.g., cellulose, starch, polylactic acid, and polybutylene adipate terephthalate, are currently used in the packaging industry. The trend of using biopolymers in the packaging industry has increased immensely; therefore, many legislations have been approved by various organizations. This review article describes various challenges and possible solutions associated with food packaging materials. It covers a wide range of biopolymers used in food packaging and the limitations of using them in their pure form. Finally, a SWOT analysis is presented for biopolymers, and the future trends are discussed. Biopolymers are eco-friendly, biodegradable, nontoxic, renewable, and biocompatible alternatives to synthetic packaging materials. Research shows that biopolymer-based packaging materials are of great essence in combined form, and further studies are needed for them to be used as an alternative packaging material.
Collapse
Affiliation(s)
- Kalpani Y Perera
- Sustainable Packaging and Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, City Campus, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| | - Amit K Jaiswal
- Sustainable Packaging and Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, City Campus, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| | - Swarna Jaiswal
- Sustainable Packaging and Bioproducts Research (SPBR) Group, School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin, City Campus, Grangegorman, D07 ADY7 Dublin, Ireland
- Environmental Sustainability and Health Institute, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| |
Collapse
|
9
|
Hu X, Lu C, Tang H, Pouri H, Joulin E, Zhang J. Active Food Packaging Made of Biopolymer-Based Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 16:279. [PMID: 36614617 PMCID: PMC9821968 DOI: 10.3390/ma16010279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Food packaging plays a vital role in protecting food products from environmental damage and preventing contamination from microorganisms. Conventional food packaging made of plastics produced from unrenewable fossil resources is hard to degrade and poses a negative impact on environmental sustainability. Natural biopolymers are attracting interest for reducing environmental problems to achieve a sustainable society, because of their abundance, biocompatibility, biodegradability, chemical stability, and non-toxicity. Active packaging systems composed of these biopolymers and biopolymer-based composites go beyond simply acting as a barrier to maintain food quality. This review provides a comprehensive overview of natural biopolymer materials used as matrices for food packaging. The antioxidant, water barrier, and oxygen barrier properties of these composites are compared and discussed. Furthermore, biopolymer-based composites integrated with antimicrobial agents-such as inorganic nanostructures and natural products-are reviewed, and the related mechanisms are discussed in terms of antimicrobial function. In summary, composites used for active food packaging systems can inhibit microbial growth and maintain food quality.
Collapse
Affiliation(s)
- Xuanjun Hu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Chao Lu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Howyn Tang
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Hossein Pouri
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Etienne Joulin
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
10
|
Design and Practical Considerations for Active Polymeric Films in Food Packaging. Int J Mol Sci 2022; 23:ijms23116295. [PMID: 35682975 PMCID: PMC9181398 DOI: 10.3390/ijms23116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 12/07/2022] Open
Abstract
Polymeric films for active food packaging have been playing an important role in food preservation due to favorable properties including high structural flexibility and high property tunability. Over the years, different polymeric active packaging films have been developed. Many of them have found real applications in food production. This article reviews, using a practical perspective, the principles of designing polymeric active packaging films. Different factors to be considered during materials selection and film generation are delineated. Practical considerations for the use of the generated polymeric films in active food packaging are also discussed. It is hoped that this article cannot only present a snapshot of latest advances in the design and optimization of polymeric active food packaging films, but insights into film development to achieve more effective active food packaging can be attained for future research.
Collapse
|