1
|
Valent B. Dynamic Gene-for-Gene Interactions Undermine Durable Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:104-117. [PMID: 40272515 DOI: 10.1094/mpmi-02-25-0022-hh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Harold Flor's gene-for-gene model explained boom-bust cycles in which resistance (R) genes are deployed in farmers' fields, only to have pathogens overcome resistance by modifying or losing corresponding active avirulence (AVR) genes. Flor understood that host R genes with corresponding low rates of virulence mutation in the pathogen should maintain resistance for longer periods of time. This review focuses on AVR gene dynamics of the haploid Ascomycete fungus Pyricularia oryzae, which causes rice blast disease, a gene-for-gene system with a complex race structure and a very rapid boom-bust cycle due to high rates of AVR gene mutation. Highly mutable blast AVR genes are often characterized by deletion and by movement to new chromosomal locations, implying a loss/regain mechanism in response to R gene deployment. Beyond rice blast, the recent emergence of two serious new blast diseases on wheat and Lolium ryegrasses highlighted the role of AVR genes that act at the host genus level and serve as infection barriers that separate host genus-specialized P. oryzae subpopulations. Wheat and ryegrass blast diseases apparently evolved through sexual crosses involving fungal individuals from five host-adapted subpopulations, with the host jump enabled by the introduction of virulence alleles of key host-specificity AVR genes. Despite identification of wheat AVR/R gene interactions operating at the host genus specificity level, the paucity of effective R genes identified thus far limits control of wheat blast disease. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506-5502, U.S.A
| |
Collapse
|
2
|
Madhushan A, Weerasingha DB, Ilyukhin E, Taylor PWJ, Ratnayake AS, Liu JK, Maharachchikumbura SSN. From Natural Hosts to Agricultural Threats: The Evolutionary Journey of Phytopathogenic Fungi. J Fungi (Basel) 2025; 11:25. [PMID: 39852444 PMCID: PMC11766330 DOI: 10.3390/jof11010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Since the domestication of plants, pathogenic fungi have consistently threatened crop production, evolving genetically to develop increased virulence under various selection pressures. Understanding their evolutionary trends is crucial for predicting and designing control measures against future disease outbreaks. This paper reviews the evolution of fungal pathogens from natural habitats to agricultural settings, focusing on eight significant phytopathogens: Pyricularia oryzae, Botrytis cinerea, Puccinia spp., Fusarium graminearum, F. oxysporum, Blumeria graminis, Zymoseptoria tritici, and Colletotrichum spp. Also, we explore the mechanism used to understand evolutionary trends in these fungi. The studied pathogens have evolved in agroecosystems through either (1) introduction from elsewhere; or (2) local origins involving co-evolution with host plants, host shifts, or genetic variations within existing strains. Genetic variation, generated via sexual recombination and various asexual mechanisms, often drives pathogen evolution. While sexual recombination is rare and mainly occurs at the center of origin of the pathogen, asexual mechanisms such as mutations, parasexual recombination, horizontal gene or chromosome transfer, and chromosomal structural variations are predominant. Farming practices like mono-cropping resistant cultivars and prolonged use of fungicides with the same mode of action can drive the emergence of new pathotypes. Furthermore, host range does not necessarily impact pathogen adaptation and evolution. Although halting pathogen evolution is impractical, its pace can be slowed by managing selective pressures, optimizing farming practices, and enforcing quarantine regulations. The study of pathogen evolution has been transformed by advancements in molecular biology, genomics, and bioinformatics, utilizing methods like next-generation sequencing, comparative genomics, transcriptomics and population genomics. However, continuous research remains essential to monitor how pathogens evolve over time and to develop proactive strategies that mitigate their impact on agriculture.
Collapse
Affiliation(s)
- Asanka Madhushan
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Dulan Bhanuka Weerasingha
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Evgeny Ilyukhin
- Laboratory of Plant Pathology, Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada;
| | - Paul W. J. Taylor
- Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Amila Sandaruwan Ratnayake
- Department of Applied Earth Sciences, Faculty of Applied Sciences, Uva Wellassa University, Passara Road, Badulla 90000, Sri Lanka;
| | - Jian-Kui Liu
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Sajeewa S. N. Maharachchikumbura
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| |
Collapse
|
3
|
Peng Z, Oliveira-Garcia E, Lin G, Hu Y, Dalby M, Migeon P, Tang H, Farman M, Cook D, White FF, Valent B, Liu S. Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus. PLoS Genet 2019; 15:e1008272. [PMID: 31513573 PMCID: PMC6741851 DOI: 10.1371/journal.pgen.1008272] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/24/2019] [Indexed: 11/28/2022] Open
Abstract
Newly emerged wheat blast disease is a serious threat to global wheat production. Wheat blast is caused by a distinct, exceptionally diverse lineage of the fungus causing rice blast disease. Through sequencing a recent field isolate, we report a reference genome that includes seven core chromosomes and mini-chromosome sequences that harbor effector genes normally found on ends of core chromosomes in other strains. No mini-chromosomes were observed in an early field strain, and at least two from another isolate each contain different effector genes and core chromosome end sequences. The mini-chromosome is enriched in transposons occurring most frequently at core chromosome ends. Additionally, transposons in mini-chromosomes lack the characteristic signature for inactivation by repeat-induced point (RIP) mutation genome defenses. Our results, collectively, indicate that dispensable mini-chromosomes and core chromosomes undergo divergent evolutionary trajectories, and mini-chromosomes and core chromosome ends are coupled as a mobile, fast-evolving effector compartment in the wheat pathogen genome.
Collapse
Affiliation(s)
- Zhao Peng
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States of America
| | - Ely Oliveira-Garcia
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Guifang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Ying Hu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Melinda Dalby
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Pierre Migeon
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Haibao Tang
- Center for Genomics and Biotechnology and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fujian, China
| | - Mark Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| | - David Cook
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Frank F. White
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States of America
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| |
Collapse
|
4
|
Peng Z, Oliveira-Garcia E, Lin G, Hu Y, Dalby M, Migeon P, Tang H, Farman M, Cook D, White FF, Valent B, Liu S. Effector gene reshuffling involves dispensable mini-chromosomes in the wheat blast fungus. PLoS Genet 2019; 15:e1008272. [PMID: 31513573 DOI: 10.1101/359455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/24/2019] [Indexed: 05/26/2023] Open
Abstract
Newly emerged wheat blast disease is a serious threat to global wheat production. Wheat blast is caused by a distinct, exceptionally diverse lineage of the fungus causing rice blast disease. Through sequencing a recent field isolate, we report a reference genome that includes seven core chromosomes and mini-chromosome sequences that harbor effector genes normally found on ends of core chromosomes in other strains. No mini-chromosomes were observed in an early field strain, and at least two from another isolate each contain different effector genes and core chromosome end sequences. The mini-chromosome is enriched in transposons occurring most frequently at core chromosome ends. Additionally, transposons in mini-chromosomes lack the characteristic signature for inactivation by repeat-induced point (RIP) mutation genome defenses. Our results, collectively, indicate that dispensable mini-chromosomes and core chromosomes undergo divergent evolutionary trajectories, and mini-chromosomes and core chromosome ends are coupled as a mobile, fast-evolving effector compartment in the wheat pathogen genome.
Collapse
Affiliation(s)
- Zhao Peng
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States of America
| | - Ely Oliveira-Garcia
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Guifang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Ying Hu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Melinda Dalby
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Pierre Migeon
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Haibao Tang
- Center for Genomics and Biotechnology and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fujian, China
| | - Mark Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY, United States of America
| | - David Cook
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Frank F White
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States of America
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States of America
| |
Collapse
|
5
|
Tsushima A, Gan P, Kumakura N, Narusaka M, Takano Y, Narusaka Y, Shirasu K. Genomic Plasticity Mediated by Transposable Elements in the Plant Pathogenic Fungus Colletotrichum higginsianum. Genome Biol Evol 2019; 11:1487-1500. [PMID: 31028389 PMCID: PMC6535813 DOI: 10.1093/gbe/evz087] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 12/22/2022] Open
Abstract
Phytopathogen genomes are under constant pressure to change, as pathogens are locked in an evolutionary arms race with their hosts, where pathogens evolve effector genes to manipulate their hosts, whereas the hosts evolve immune components to recognize the products of these genes. Colletotrichum higginsianum (Ch), a fungal pathogen with no known sexual morph, infects Brassicaceae plants including Arabidopsis thaliana. Previous studies revealed that Ch differs in its virulence toward various Arabidopsis thaliana ecotypes, indicating the existence of coevolutionary selective pressures. However, between-strain genomic variations in Ch have not been studied. Here, we sequenced and assembled the genome of a Ch strain, resulting in a highly contiguous genome assembly, which was compared with the chromosome-level genome assembly of another strain to identify genomic variations between strains. We found that the two closely related strains vary in terms of large-scale rearrangements, the existence of strain-specific regions, and effector candidate gene sets and that these variations are frequently associated with transposable elements (TEs). Ch has a compartmentalized genome consisting of gene-sparse, TE-dense regions with more effector candidate genes and gene-dense, TE-sparse regions harboring conserved genes. Additionally, analysis of the conservation patterns and syntenic regions of effector candidate genes indicated that the two strains vary in their effector candidate gene sets because of de novo evolution, horizontal gene transfer, or gene loss after divergence. Our results reveal mechanisms for generating genomic diversity in this asexual pathogen, which are important for understanding its adaption to hosts.
Collapse
Affiliation(s)
- Ayako Tsushima
- Graduate School of Science, The University of Tokyo, Bunkyo, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | - Pamela Gan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | | | - Mari Narusaka
- Research Institute for Biological Sciences Okayama, Kaga-gun, Japan
| | | | | | - Ken Shirasu
- Graduate School of Science, The University of Tokyo, Bunkyo, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| |
Collapse
|
6
|
Soyer JL, Balesdent MH, Rouxel T, Dean RA. To B or not to B: a tale of unorthodox chromosomes. Curr Opin Microbiol 2018; 46:50-57. [PMID: 29579575 DOI: 10.1016/j.mib.2018.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Jessica L Soyer
- UMR BIOGER, INRA, AgroParisTech, Paris-Saclay University, Thiverval-Grignon, France
| | | | - Thierry Rouxel
- UMR BIOGER, INRA, AgroParisTech, Paris-Saclay University, Thiverval-Grignon, France
| | - Ralph A Dean
- Center for Integrated Fungal Research, North Carolina State University & Department of Entomology and Plant Pathology, North Carolina State University, United States.
| |
Collapse
|
7
|
|
8
|
Qin S, Ji C, Li Y, Wang Z. Comparative Transcriptomic Analysis of Race 1 and Race 4 of Fusarium oxysporum f. sp. cubense Induced with Different Carbon Sources. G3 (BETHESDA, MD.) 2017; 7:2125-2138. [PMID: 28468818 PMCID: PMC5499122 DOI: 10.1534/g3.117.042226] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 04/30/2017] [Indexed: 12/13/2022]
Abstract
The fungal pathogen Fusarium oxysporum f. sp. cubense causes Fusarium wilt, one of the most destructive diseases in banana and plantain cultivars. Pathogenic race 1 attacks the "Gros Michel" banana cultivar, and race 4 is pathogenic to the Cavendish banana cultivar and those cultivars that are susceptible to Foc1. To understand the divergence in gene expression modules between the two races during degradation of the host cell wall, we performed RNA sequencing to compare the genome-wide transcriptional profiles of the two races grown in media containing banana cell wall, pectin, or glucose as the sole carbon source. Overall, the gene expression profiles of Foc1 and Foc4 in response to host cell wall or pectin appeared remarkably different. When grown with host cell wall, a much larger number of genes showed altered levels of expression in Foc4 in comparison with Foc1, including genes encoding carbohydrate-active enzymes (CAZymes) and other virulence-related genes. Additionally, the levels of gene expression were higher in Foc4 than in Foc1 when grown with host cell wall or pectin. Furthermore, a great majority of genes were differentially expressed in a variety-specific manner when induced by host cell wall or pectin. More specific CAZymes and other pathogenesis-related genes were expressed in Foc4 than in Foc1 when grown with host cell wall. The first transcriptome profiles obtained for Foc during degradation of the host cell wall may provide new insights into the mechanism of banana cell wall polysaccharide decomposition and the genetic basis of Foc host specificity.
Collapse
Affiliation(s)
- Shiwen Qin
- Laboratory of Physiological Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Chunyan Ji
- Laboratory of Physiological Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Yunfeng Li
- Laboratory of Physiological Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Zhenzhong Wang
- Laboratory of Physiological Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Mehrabi R, Taga M, Kema GH. Electrophoretic and cytological karyotyping of the foliar wheat pathogenMycosphaerella graminicolareveals many chromosomes with a large size range. Mycologia 2017. [DOI: 10.1080/15572536.2007.11832518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rahim Mehrabi
- Wageningen University and Research Centre, Plant Research International B.V., P.O. Box 16, 6700 AA, Wageningen, the Netherlands
| | - Masatoki Taga
- Department of Biology, Faculty of Science, Okayama University, Tsushima-naka, Okayama 700-8530, Japan
| | - Gert H.J. Kema
- Plant Research International B.V., P.O. Box 16, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
10
|
Microbial genome-enabled insights into plant–microorganism interactions. Nat Rev Genet 2014; 15:797-813. [DOI: 10.1038/nrg3748] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Balesdent MH, Fudal I, Ollivier B, Bally P, Grandaubert J, Eber F, Chèvre AM, Leflon M, Rouxel T. The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. THE NEW PHYTOLOGIST 2013; 198:887-898. [PMID: 23406519 DOI: 10.1111/nph.12178] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/10/2013] [Indexed: 05/02/2023]
Abstract
Phytopathogenic fungi frequently contain dispensable chromosomes, some of which contribute to host range or pathogenicity. In Leptosphaeria maculans, the stem canker agent of oilseed rape (Brassica napus), the minichromosome was previously suggested to be dispensable, without evidence for any role in pathogenicity. Using genetic and genomic approaches, we investigated the inheritance and molecular determinant of an L. maculans-Brassica rapa incompatible interaction. Single gene control of the resistance was found, while all markers located on the L. maculans minichromosome, absent in the virulent parental isolate, co-segregated with the avirulent phenotype. Only one candidate avirulence gene was identified on the minichromosome, validated by complementation experiments and termed AvrLm11. The minichromosome was frequently lost following meiosis, but the frequency of isolates lacking it remained stable in field populations sampled at a 10-yr time interval, despite a yearly sexual stage in the L. maculans life cycle. This work led to the cloning of a new 'lost in the middle of nowhere' avirulence gene of L. maculans, interacting with a B. rapa resistance gene termed Rlm11 and introgressed into B. napus. It demonstrated the dispensability of the L. maculans minichromosome and suggested that its loss generates a fitness deficit.
Collapse
Affiliation(s)
- Marie-Hélène Balesdent
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Isabelle Fudal
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Bénédicte Ollivier
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Pascal Bally
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Jonathan Grandaubert
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Frédérique Eber
- INRA, UMR1349 IGEPP, BP35327, F-35653, Le Rheu Cedex, France
| | | | - Martine Leflon
- CETIOM, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Thierry Rouxel
- INRA, UR1290 BIOGER, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| |
Collapse
|
12
|
Genomic characterization of the conditionally dispensable chromosome in Alternaria arborescens provides evidence for horizontal gene transfer. BMC Genomics 2012; 13:171. [PMID: 22559316 PMCID: PMC3443068 DOI: 10.1186/1471-2164-13-171] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 03/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fungal plant pathogens cause serious agricultural losses worldwide. Alternaria arborescens is a major pathogen of tomato, with its virulence determined by the presence of a conditionally dispensable chromosome (CDC) carrying host-specific toxin genes. Genes encoding these toxins are well-studied, however the genomic content and organization of the CDC is not known. RESULTS To gain a richer understanding of the molecular determinants of virulence and the evolution of pathogenicity, we performed whole genome sequencing of A. arborescens. Here we present the de-novo assembly of the CDC and its predicted gene content. Also presented is hybridization data validating the CDC assembly. Predicted genes were functionally annotated through BLAST. Gene ontology terms were assigned, and conserved domains were identified. Differences in nucleotide usage were found between CDC genes and those on the essential chromosome (EC), including GC3-content, codon usage bias, and repeat region load. Genes carrying PKS and NRPS domains were identified in clusters on the CDC and evidence supporting the origin of the CDC through horizontal transfer from an unrelated fungus was found. CONCLUSIONS We provide evidence supporting the hypothesis that the CDC in A. arborescens was acquired through horizontal transfer, likely from an unrelated fungus. We also identified several predicted CDC genes under positive selection that may serve as candidate virulence factors.
Collapse
|
13
|
Schmidt SM, Panstruga R. Pathogenomics of fungal plant parasites: what have we learnt about pathogenesis? CURRENT OPINION IN PLANT BIOLOGY 2011; 14:392-9. [PMID: 21458359 DOI: 10.1016/j.pbi.2011.03.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/03/2011] [Accepted: 03/07/2011] [Indexed: 05/09/2023]
Abstract
Members of the kingdom fungi comprise numerous plant pathogens, including the causal agents of many agriculturally relevant plant diseases such as rust, powdery mildew, rice blast and cereal head blight. Data from recent sequencing projects provide deep insight into the genomes of a range of fungi that infect different organs of monocotyledonous or dicotyledonous hosts and that have diverse pathogenic lifestyles. These studies have revealed that, similar to sequenced phytopathogenic oomycetes, these plant parasites possess very plastic and dynamic genomes, which typically encode several hundred candidate secreted effector proteins that can be highly divergent even among related species. A new insight is the presence of lineage-specific genes on mobile and partly dispensable chromosomes that are transferred intraspecifically and possibly interspecifically, thereby constituting pathogenicity and host range determinants. Convergent lifestyle-specific adaptations have shaped the parasite genomes to maximize pathogenic success according to the different infection strategies employed.
Collapse
Affiliation(s)
- Sarah Maria Schmidt
- University of Amsterdam, Swammerdam Institute for Life Science, Postbus 94215, 1090 GE Amsterdam, The Netherlands
| | | |
Collapse
|
14
|
Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, Yoshida K, Terauchi R, Fujita Y, Nakayashiki H, Valent B, Tosa Y. Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog 2011; 7:e1002147. [PMID: 21829350 PMCID: PMC3145791 DOI: 10.1371/journal.ppat.1002147] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 05/17/2011] [Indexed: 01/22/2023] Open
Abstract
Magnaporthe oryzae is the causal agent of rice blast disease, a devastating problem worldwide. This fungus has caused breakdown of resistance conferred by newly developed commercial cultivars. To address how the rice blast fungus adapts itself to new resistance genes so quickly, we examined chromosomal locations of AVR-Pita, a subtelomeric gene family corresponding to the Pita resistance gene, in various isolates of M. oryzae (including wheat and millet pathogens) and its related species. We found that AVR-Pita (AVR-Pita1 and AVR-Pita2) is highly variable in its genome location, occurring in chromosomes 1, 3, 4, 5, 6, 7, and supernumerary chromosomes, particularly in rice-infecting isolates. When expressed in M. oryzae, most of the AVR-Pita homologs could elicit Pita-mediated resistance, even those from non-rice isolates. AVR-Pita was flanked by a retrotransposon, which presumably contributed to its multiple translocation across the genome. On the other hand, family member AVR-Pita3, which lacks avirulence activity, was stably located on chromosome 7 in a vast majority of isolates. These results suggest that the diversification in genome location of AVR-Pita in the rice isolates is a consequence of recognition by Pita in rice. We propose a model that the multiple translocation of AVR-Pita may be associated with its frequent loss and recovery mediated by its transfer among individuals in asexual populations. This model implies that the high mobility of AVR-Pita is a key mechanism accounting for the rapid adaptation toward Pita. Dynamic adaptation of some fungal plant pathogens may be achieved by deletion and recovery of avirulence genes using a population as a unit of adaptation.
Collapse
Affiliation(s)
- Izumi Chuma
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Chihiro Isobe
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Yuma Hotta
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Kana Ibaragi
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | - Natsuru Futamata
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
| | | | | | | | | | | | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Yukio Tosa
- Graduate School of Agricultural Sciences, Kobe University, Kobe, Japan
- * E-mail:
| |
Collapse
|
15
|
Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola. PLoS One 2009; 4:e5863. [PMID: 19516898 PMCID: PMC2689623 DOI: 10.1371/journal.pone.0005863] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 03/27/2009] [Indexed: 11/24/2022] Open
Abstract
Meiosis in the haploid plant-pathogenic fungus Mycosphaerella graminicola results in eight ascospores due to a mitotic division following the two meiotic divisions. The transient diploid phase allows for recombination among homologous chromosomes. However, some chromosomes of M. graminicola lack homologs and do not pair during meiosis. Because these chromosomes are not present universally in the genome of the organism they can be considered to be dispensable. To analyze the meiotic transmission of unequal chromosome numbers, two segregating populations were generated by crossing genetically unrelated parent isolates originating from Algeria and The Netherlands that had pathogenicity towards durum or bread wheat, respectively. Detailed genetic analyses of these progenies using high-density mapping (1793 DArT, 258 AFLP and 25 SSR markers) and graphical genotyping revealed that M. graminicola has up to eight dispensable chromosomes, the highest number reported in filamentous fungi. These chromosomes vary from 0.39 to 0.77 Mb in size, and represent up to 38% of the chromosomal complement. Chromosome numbers among progeny isolates varied widely, with some progeny missing up to three chromosomes, while other strains were disomic for one or more chromosomes. Between 15–20% of the progeny isolates lacked one or more chromosomes that were present in both parents. The two high-density maps showed no recombination of dispensable chromosomes and hence, their meiotic processing may require distributive disjunction, a phenomenon that is rarely observed in fungi. The maps also enabled the identification of individual twin isolates from a single ascus that shared the same missing or doubled chromosomes indicating that the chromosomal polymorphisms were mitotically stable and originated from nondisjunction during the second division and, less frequently, during the first division of fungal meiosis. High genome plasticity could be among the strategies enabling this versatile pathogen to quickly overcome adverse biotic and abiotic conditions in wheat fields.
Collapse
|
16
|
Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. THE PLANT CELL 2009; 21:1573-91. [PMID: 19454732 PMCID: PMC2700537 DOI: 10.1105/tpc.109.066324] [Citation(s) in RCA: 290] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 04/18/2009] [Accepted: 04/30/2009] [Indexed: 05/18/2023]
Abstract
To subvert rice (Oryza sativa) host defenses, the devastating ascomycete fungus pathogen Magnaporthe oryzae produces a battery of effector molecules, including some with avirulence (AVR) activity, which are recognized by host resistance (R) proteins resulting in rapid and effective activation of innate immunity. To isolate novel avirulence genes from M. oryzae, we examined DNA polymorphisms of secreted protein genes predicted from the genome sequence of isolate 70-15 and looked for an association with AVR activity. This large-scale study found significantly more presence/absence polymorphisms than nucleotide polymorphisms among 1032 putative secreted protein genes. Nucleotide diversity of M. oryzae among 46 isolates of a worldwide collection was extremely low (theta=8.2x10(-5)), suggestive of recent pathogen dispersal. However, no association between DNA polymorphism and AVR was identified. Therefore, we used genome resequencing of Ina168, an M. oryzae isolate that contains nine AVR genes. Remarkably, a total of 1.68 Mb regions, comprising 316 candidate effector genes, were present in Ina168 but absent in the assembled sequence of isolate 70-15. Association analyses of these 316 genes revealed three novel AVR genes, AVR-Pia, AVR-Pii, and AVR-Pik/km/kp, corresponding to five previously known AVR genes, whose products are recognized inside rice cells possessing the cognate R genes. AVR-Pia and AVR-Pii have evolved by gene gain/loss processes, whereas AVR-Pik/km/kp has evolved by nucleotide substitutions and gene gain/loss.
Collapse
Affiliation(s)
- Kentaro Yoshida
- Iwate Biotechnology Research Center, Kitakami, Iwate, 024-0003 Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLoS One 2007; 3:e2879. [PMID: 18663385 PMCID: PMC2488364 DOI: 10.1371/journal.pone.0002879] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 06/08/2008] [Indexed: 12/23/2022] Open
Abstract
Meiosis is a defining feature of eukaryotes but its phylogenetic distribution has not been broadly determined, especially among eukaryotic microorganisms (i.e. protists)-which represent the majority of eukaryotic 'supergroups'. We surveyed genomes of animals, fungi, plants and protists for meiotic genes, focusing on the evolutionarily divergent parasitic protist Trichomonas vaginalis. We identified homologs of 29 components of the meiotic recombination machinery, as well as the synaptonemal and meiotic sister chromatid cohesion complexes. T. vaginalis has orthologs of 27 of 29 meiotic genes, including eight of nine genes that encode meiosis-specific proteins in model organisms. Although meiosis has not been observed in T. vaginalis, our findings suggest it is either currently sexual or a recent asexual, consistent with observed, albeit unusual, sexual cycles in their distant parabasalid relatives, the hypermastigotes. T. vaginalis may use meiotic gene homologs to mediate homologous recombination and genetic exchange. Overall, this expanded inventory of meiotic genes forms a useful "meiosis detection toolkit". Our analyses indicate that these meiotic genes arose, or were already present, early in eukaryotic evolution; thus, the eukaryotic cenancestor contained most or all components of this set and was likely capable of performing meiotic recombination using near-universal meiotic machinery.
Collapse
|
18
|
Feng S, Wang L, Ma J, Lin F, Pan Q. Genetic and physical mapping of AvrPi7, a novel avirulence gene of Magnaporthe oryzae using physical position-ready markers. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0125-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Ebbole DJ. Magnaporthe as a model for understanding host-pathogen interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:437-56. [PMID: 17489691 DOI: 10.1146/annurev.phyto.45.062806.094346] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The rice blast pathosystem has been the subject of intense interest in part because of the importance of the disease to world agriculture, but also because both Magnaporthe oryzae and its host are amenable to advanced experimental approaches. The goal of this review is to provide an overview of the system and to point out recent significant studies that update our understanding of the biology of M. oryzae. The genome sequence of M. oryzae has provided insight into how genome structure and pathogen population genetic variability has been shaped by transposable elements. The sequence allows systematic approaches to long-standing areas of investigation, including pathogen development and the molecular basis of compatible and incompatible interactions with its host. Rice blast provides an integrated system to illustrate most of the important concepts governing fungal/plant interactions and serves as an excellent starting point for gaining a broad perspective of issues in plant pathology.
Collapse
Affiliation(s)
- Daniel J Ebbole
- Program for the Biology of Filamentous Fungi, Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843-2132, USA.
| |
Collapse
|
20
|
Luo CX, Yin LF, Ohtaka K, Kusaba M. The 1.6Mb chromosome carrying the avirulence gene AvrPik in Magnaporthe oryzae isolate 84R-62B is a chimera containing chromosome 1 sequences. ACTA ACUST UNITED AC 2006; 111:232-9. [PMID: 17188484 DOI: 10.1016/j.mycres.2006.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 10/14/2006] [Accepted: 10/25/2006] [Indexed: 10/23/2022]
Abstract
A genetic map was constructed previously from a cross between Magnaporthe oryzae isolates 84R-62B and Y93-245c-2, and genetic markers closely linked to the cultivar-specific avirulence (Avr) gene, AvrPik, were assigned to a 1.6Mb small chromosome of 84R-62B that is absent from Y93-245c-2. In the present study, the 1.6Mb chromosome was characterized by using contour-clamped homogeneous electric fields (CHEF) electrophoresis and hybridization analysis. CHEF electrophoresis analysis showed that the 1.6Mb chromosome was inherited in Mendelian fashion, and co-segregated with AvrPik. Southern hybridization analysis revealed that the 1.6Mb chromosome carried sequences only distributed to the supernumerary chromosome in M. oryzae isolates, as well as sequences corresponding to those in the supercontig 17 of chromosome 1 in the M. grisea database. Thus, we conclude that the Mendelian 1.6Mb chromosome is a chimera containing sequences from chromosome 1 and from supernumerary chromosomes in M. oryzae.
Collapse
Affiliation(s)
- Chao-Xi Luo
- Faculty of Agriculture, Saga University, Saga, Japan
| | | | | | | |
Collapse
|