1
|
Bourgeois NM, Black JJ, Bhondeley M, Liu Z. Protein Kinase A Negatively Regulates the Acetic Acid Stress Response in S. cerevisiae. Microorganisms 2024; 12:1452. [PMID: 39065219 PMCID: PMC11278818 DOI: 10.3390/microorganisms12071452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Bioethanol fermentation from lignocellulosic hydrolysates is negatively affected by the presence of acetic acid. The budding yeast S. cerevisiae adapts to acetic acid stress partly by activating the transcription factor, Haa1. Haa1 induces the expression of many genes, which are responsible for increased fitness in the presence of acetic acid. Here, we show that protein kinase A (PKA) is a negative regulator of Haa1-dependent gene expression under both basal and acetic acid stress conditions. Deletions of RAS2, encoding a positive regulator of PKA, and PDE2, encoding a negative regulator of PKA, lead to an increased and decreased expression of Haa1-regulated genes, respectively. Importantly, the deletion of HAA1 largely reverses the effects of ras2∆. Additionally, the expression of a dominant, hyperactive RAS2A18V19 mutant allele also reduces the expression of Haa1-regulated genes. We found that both pde2Δ and RAS2A18V19 reduce cell fitness in response to acetic acid stress, while ras2Δ increases cellular adaptation. There are three PKA catalytic subunits in yeast, encoded by TPK1, TPK2, and TPK3. We show that single mutations in TPK1 and TPK3 lead to the increased expression of Haa1-regulated genes, while tpk2Δ reduces their expression. Among tpk double mutations, tpk1Δ tpk3Δ greatly increases the expression of Haa1-regulated genes. We found that acetic acid stress in a tpk1Δ tpk3Δ double mutant induces a flocculation phenotype, which is reversed by haa1Δ. Our findings reveal PKA to be a negative regulator of the acetic acid stress response and may help engineer yeast strains with increased efficiency of bioethanol fermentation.
Collapse
Affiliation(s)
- Natasha M. Bourgeois
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Joshua J. Black
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manika Bhondeley
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
- Kudo Biotechnology, 117 Kendrick Street, Needham, MA 02494, USA
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
2
|
Weith M, Großbach J, Clement‐Ziza M, Gillet L, Rodríguez‐López M, Marguerat S, Workman CT, Picotti P, Bähler J, Aebersold R, Beyer A. Genetic effects on molecular network states explain complex traits. Mol Syst Biol 2023; 19:e11493. [PMID: 37485750 PMCID: PMC10407735 DOI: 10.15252/msb.202211493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023] Open
Abstract
The complexity of many cellular and organismal traits results from the integration of genetic and environmental factors via molecular networks. Network structure and effect propagation are best understood at the level of functional modules, but so far, no concept has been established to include the global network state. Here, we show when and how genetic perturbations lead to molecular changes that are confined to small parts of a network versus when they lead to modulation of network states. Integrating multi-omics profiling of genetically heterogeneous budding and fission yeast strains with an array of cellular traits identified a central state transition of the yeast molecular network that is related to PKA and TOR (PT) signaling. Genetic variants affecting this PT state globally shifted the molecular network along a single-dimensional axis, thereby modulating processes including energy and amino acid metabolism, transcription, translation, cell cycle control, and cellular stress response. We propose that genetic effects can propagate through large parts of molecular networks because of the functional requirement to centrally coordinate the activity of fundamental cellular processes.
Collapse
Affiliation(s)
- Matthias Weith
- Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesUniversity of CologneCologneGermany
| | - Jan Großbach
- Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesUniversity of CologneCologneGermany
| | | | - Ludovic Gillet
- Department of BiologyInstitute of Molecular Systems Biology, ETH ZürichZürichSwitzerland
| | - María Rodríguez‐López
- Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentUniversity College LondonLondonUK
| | - Samuel Marguerat
- Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentUniversity College LondonLondonUK
| | - Christopher T Workman
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Paola Picotti
- Department of BiologyInstitute of Molecular Systems Biology, ETH ZürichZürichSwitzerland
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution & EnvironmentUniversity College LondonLondonUK
| | - Ruedi Aebersold
- Department of BiologyInstitute of Molecular Systems Biology, ETH ZürichZürichSwitzerland
| | - Andreas Beyer
- Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesUniversity of CologneCologneGermany
| |
Collapse
|
3
|
Molinet J, Cubillos FA, Salinas F, Liti G, Martínez C. Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation. PLoS One 2019; 14:e0220515. [PMID: 31348805 PMCID: PMC6660096 DOI: 10.1371/journal.pone.0220515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022] Open
Abstract
In the alcoholic fermentation process, Saccharomyces cerevisiae strains present differences in their nitrogen consumption profiles, these phenotypic outcomes have complex genetic and molecular architectures. In this sense, variations in nitrogen signaling pathways regulated by TORC1 represent one of the main sources of phenotypic diversity in nitrogen consumption. This emphasizes the possible roles that allelic variants from the TORC1 pathway have in the nitrogen consumption differences observed in yeast during the alcoholic fermentation. Here, we studied the allelic diversity in the TORC1 pathway across four yeast strains and determined how these polymorphisms directly impact nitrogen consumption during alcoholic fermentation. Using a reciprocal hemizygosity approach combined with phenotyping under fermentative conditions, we found that allelic variants of GTR1, TOR2, SIT4, SAP185, EAP1, NPR1 and SCH9 underlie differences in the ammonium and amino acids consumption phenotypes. Among these, GTR1 alleles from the Wine/European and West African genetic backgrounds showed the greatest effects on ammonium and amino acid consumption, respectively. Furthermore, we identified allelic variants of SAP185, TOR2, SCH9 and NPR1 from an oak isolate that increased the amino acid consumption preference over ammonium; representing putative candidates coming from a non-domesticated strain that could be used for genetic improvement programs. In conclusion, our results demonstrated that a large number of allelic variants within the TORC1 pathway significantly impacts on regulatory mechanisms of nitrogen assimilation during alcoholic fermentation.
Collapse
Affiliation(s)
- Jennifer Molinet
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco A. Cubillos
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Francisco Salinas
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Gianni Liti
- Institute for Research on Cancer and Ageing of Nice (IRCAN), Centre National de la Recherche Scientifique (CNRS), INSERM, University of Côte d’Azur, Nice, France
| | - Claudio Martínez
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
| |
Collapse
|
4
|
Rutherford JC, Bahn YS, van den Berg B, Heitman J, Xue C. Nutrient and Stress Sensing in Pathogenic Yeasts. Front Microbiol 2019; 10:442. [PMID: 30930866 PMCID: PMC6423903 DOI: 10.3389/fmicb.2019.00442] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/20/2019] [Indexed: 12/23/2022] Open
Abstract
More than 1.5 million fungal species are estimated to live in vastly different environmental niches. Despite each unique host environment, fungal cells sense certain fundamentally conserved elements, such as nutrients, pheromones and stress, for adaptation to their niches. Sensing these extracellular signals is critical for pathogens to adapt to the hostile host environment and cause disease. Hence, dissecting the complex extracellular signal-sensing mechanisms that aid in this is pivotal and may facilitate the development of new therapeutic approaches to control fungal infections. In this review, we summarize the current knowledge on how two important pathogenic yeasts, Candida albicans and Cryptococcus neoformans, sense nutrient availability, such as carbon sources, amino acids, and ammonium, and different stress signals to regulate their morphogenesis and pathogenicity in comparison with the non-pathogenic model yeast Saccharomyces cerevisiae. The molecular interactions between extracellular signals and their respective sensory systems are described in detail. The potential implication of analyzing nutrient and stress-sensing systems in antifungal drug development is also discussed.
Collapse
Affiliation(s)
- Julian C Rutherford
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, South Korea
| | - Bert van den Berg
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Chaoyang Xue
- Public Health Research Institute, Rutgers University, Newark, NJ, United States.,Department of Molecular Genetics, Biochemistry and Microbiology, Rutgers University, Newark, NJ, United States
| |
Collapse
|
5
|
Abstract
The term “transcriptional network” refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms.
Collapse
|
6
|
Liu J, Huang X, Withers BR, Blalock E, Liu K, Dickson RC. Reducing sphingolipid synthesis orchestrates global changes to extend yeast lifespan. Aging Cell 2013; 12:833-41. [PMID: 23725375 DOI: 10.1111/acel.12107] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2013] [Indexed: 01/09/2023] Open
Abstract
Studies of aging and longevity are revealing how diseases that shorten life can be controlled to improve the quality of life and lifespan itself. Two strategies under intense study to accomplish these goals are rapamycin treatment and calorie restriction. New strategies are being discovered including one that uses low-dose myriocin treatment. Myriocin inhibits the first enzyme in sphingolipid synthesis in all eukaryotes, and we showed recently that low-dose myriocin treatment increases yeast lifespan at least in part by down-regulating the sphingolipid-controlled Pkh1/2-Sch9 (ortholog of mammalian S6 kinase) signaling pathway. Here we show that myriocin treatment induces global effects and changes expression of approximately forty percent of the yeast genome with 1252 genes up-regulated and 1497 down-regulated (P < 0.05) compared with untreated cells. These changes are due to modulation of evolutionarily conserved signaling pathways including activation of the Snf1/AMPK pathway and down-regulation of the protein kinase A (PKA) and target of rapamycin complex 1 (TORC1) pathways. Many processes that enhance lifespan are regulated by these pathways in response to myriocin treatment including respiration, carbon metabolism, stress resistance, protein synthesis, and autophagy. These extensive effects of myriocin match those of rapamycin and calorie restriction. Our studies in yeast together with other studies in mammals reveal the potential of myriocin or related compounds to lower the incidence of age-related diseases in humans and improve health span.
Collapse
Affiliation(s)
| | - Xinhe Huang
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center; University of Kentucky College of Medicine; Lexington; KY; 40536; USA
| | - Bradley R. Withers
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center; University of Kentucky College of Medicine; Lexington; KY; 40536; USA
| | - Eric Blalock
- Department of Molecular and Biomedical Pharmacology; University of Kentucky College of Medicine; Lexington; KY; 40536; USA
| | - Ke Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education; College of Life Science, Sichuan University; Chengdu; 610064; China
| | - Robert C. Dickson
- Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center; University of Kentucky College of Medicine; Lexington; KY; 40536; USA
| |
Collapse
|
7
|
Cartwright SP, Bill RM, Hipkiss AR. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner. PLoS One 2012; 7:e45006. [PMID: 22984600 PMCID: PMC3440334 DOI: 10.1371/journal.pone.0045006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/11/2012] [Indexed: 01/02/2023] Open
Abstract
The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.
Collapse
Affiliation(s)
- Stephanie P. Cartwright
- Aston Research Centre for Healthy Ageing, School of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Roslyn M. Bill
- Aston Research Centre for Healthy Ageing, School of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- * E-mail: (RMB); (ARH)
| | - Alan R. Hipkiss
- Aston Research Centre for Healthy Ageing, School of Health and Life Sciences, Aston University, Birmingham, United Kingdom
- * E-mail: (RMB); (ARH)
| |
Collapse
|
8
|
|
9
|
Casado C, González A, Platara M, Ruiz A, Ariño J. The role of the protein kinase A pathway in the response to alkaline pH stress in yeast. Biochem J 2011; 438:523-533. [PMID: 21749328 PMCID: PMC3253439 DOI: 10.1042/bj20110607] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 11/17/2022]
Abstract
Exposure of Saccharomyces cerevisiae to alkaline pH provokes a stress condition that generates a compensatory reaction. In the present study we examined a possible role for the PKA (protein kinase A) pathway in this response. Phenotypic analysis revealed that mutations that activate the PKA pathway (ira1 ira2, bcy1) tend to cause sensitivity to alkaline pH, whereas its deactivation enhances tolerance to this stress. We observed that alkalinization causes a transient decrease in cAMP, the main regulator of the pathway. Alkaline pH causes rapid nuclear localization of the PKA-regulated Msn2 transcription factor which, together with Msn4, mediates a general stress response by binding with STRE (stress response element) sequences in many promoters. Consequently, a synthetic STRE-LacZ reporter shows a rapid induction in response to alkaline stress. A msn2 msn4 mutant is sensitive to alkaline pH, and transcriptomic analysis reveals that after 10 min of alkaline stress, the expression of many induced genes (47%) depends, at least in part, on the presence of Msn2 and Msn4. Taken together, these results demonstrate that inhibition of the PKA pathway by alkaline pH represents a substantial part of the adaptive response to this kind of stress and that this response involves Msn2/Msn4-mediated genome expression remodelling. However, the relevance of attenuation of PKA in high pH tolerance is probably not restricted to regulation of Msn2 function.
Collapse
Key Words
- alkaline stress
- gene expression
- msn2
- msn4
- protein kinase a (pka)
- saccharomyces cerevisiae
- transcription factor
- cdre, calcineurin-dependent response element
- cy3, indocarbocyanine
- cy5, indodicarbocyanine
- gap, gtpase activating proteins
- gef, guanine-nucleotide-exchange factor
- gfp, green fluorescent protein
- go, gene ontology
- pka, protein kinase a
- stre, stress response element
- tor, target of rapamycin
Collapse
Affiliation(s)
- Carlos Casado
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra 08193, Barcelona, Spain
| | - Asier González
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra 08193, Barcelona, Spain
| | - Maria Platara
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra 08193, Barcelona, Spain
| | - Amparo Ruiz
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra 08193, Barcelona, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|
10
|
Graef M, Nunnari J. Mitochondria regulate autophagy by conserved signalling pathways. EMBO J 2011; 30:2101-14. [PMID: 21468027 DOI: 10.1038/emboj.2011.104] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 03/16/2011] [Indexed: 11/10/2022] Open
Abstract
Autophagy is a conserved degradative process that is crucial for cellular homeostasis and cellular quality control via the selective removal of subcellular structures such as mitochondria. We demonstrate that a regulatory link exists between mitochondrial function and autophagy in Saccharomyces cerevisiae. During amino-acid starvation, the autophagic response consists of two independent regulatory arms-autophagy gene induction and autophagic flux-and our analysis indicates that mitochondrial respiratory deficiency severely compromises both. We show that the evolutionarily conserved protein kinases Atg1, target of rapamycin kinase complex I, and protein kinase A (PKA) regulate autophagic flux, whereas autophagy gene induction depends solely on PKA. Within this regulatory network, mitochondrial respiratory deficiency suppresses autophagic flux, autophagy gene induction, and recruitment of the Atg1-Atg13 kinase complex to the pre-autophagosomal structure by stimulating PKA activity. Our findings indicate an interrelation of two common risk factors-mitochondrial dysfunction and autophagy inhibition-for ageing, cancerogenesis, and neurodegeneration.
Collapse
Affiliation(s)
- Martin Graef
- Department of Molecular and Cellular Biology, Davis University of California, Davis, CA, USA
| | | |
Collapse
|
11
|
Joo YJ, Kim JH, Kang UB, Yu MH, Kim J. Gcn4p-mediated transcriptional repression of ribosomal protein genes under amino-acid starvation. EMBO J 2010; 30:859-72. [PMID: 21183953 DOI: 10.1038/emboj.2010.332] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 11/16/2010] [Indexed: 11/09/2022] Open
Abstract
Gcn4p is a well-characterized bZIP transcription factor that activates more than 500 genes encoding amino acids and purine biosynthesis enzymes, and many stress-response genes under various stress conditions. Under these stresses, it had been shown that transcriptions of ribosomal protein (RP) genes were decreased. However, the detailed mechanism of this downregulation has not been elucidated. In this study, we present a novel mechanistic model for a repressive role of Gcn4p on RP transcription, especially under amino-acid starvation. It was found that Gcn4p bound directly to Rap1p, which in turn inhibited Esa1p-Rap1p binding. The inhibition of Esa1p recruitment to RP promoters ultimately reduced the level of histone H4 acetylation and RP transcription. These data revealed that Gcn4p has simultaneous dual roles as a repressor for RP genes as well as an activator for amino-acid biosynthesis genes. Moreover, our results showed evidence of a novel link between general control of amino-acid biosynthesis and ribosome biogenesis mediated by Gcn4p at an early stage of adaptation to amino-acid starvation.
Collapse
Affiliation(s)
- Yoo Jin Joo
- Laboratory of Biochemistry, School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
12
|
Soliman GA, Acosta-Jaquez HA, Fingar DC. mTORC1 inhibition via rapamycin promotes triacylglycerol lipolysis and release of free fatty acids in 3T3-L1 adipocytes. Lipids 2010; 45:1089-100. [PMID: 21042876 DOI: 10.1007/s11745-010-3488-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 10/07/2010] [Indexed: 12/30/2022]
Abstract
Signaling by mTOR complex 1 (mTORC1) promotes anabolic cellular processes in response to growth factors, nutrients, and hormonal cues. Numerous clinical trials employing the mTORC1 inhibitor rapamycin (aka sirolimus) to immuno-suppress patients following organ transplantation have documented the development of hypertriglyceridemia and elevated serum free fatty acids (FFA). We therefore investigated the cellular role of mTORC1 in control of triacylglycerol (TAG) metabolism using cultured murine 3T3-L1 adipocytes. We found that treatment of adipocytes with rapamycin reduced insulin-stimulated TAG storage ~50%. To determine whether rapamycin reduces TAG storage by upregulating lipolytic rate, we treated adipocytes in the absence and presence of rapamycin and isoproterenol, a β2-adrenergic agonist that activates the cAMP/protein kinase A (PKA) pathway to promote lipolysis. We found that rapamycin augmented isoproterenol-induced lipolysis without altering cAMP levels. Rapamycin enhanced the isoproterenol-stimulated phosphorylation of hormone sensitive lipase (HSL) on Ser-563 (a PKA site), but had no effect on the phosphorylation of HSL S565 (an AMPK site). Additionally, rapamycin did not affect the isoproterenol-mediated phosphorylation of perilipin, a protein that coats the lipid droplet to initiate lipolysis upon phosphorylation by PKA. These data demonstrate that inhibition of mTORC1 signaling synergizes with the β-adrenergic-cAMP/PKA pathway to augment phosphorylation of HSL to promote hormone-induced lipolysis. Moreover, they reveal a novel metabolic function for mTORC1; mTORC1 signaling suppresses lipolysis, thus augmenting TAG storage.
Collapse
Affiliation(s)
- Ghada A Soliman
- Division of Metabolism, Endocrinology, and Diabetes, Department of Medicine, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA.
| | | | | |
Collapse
|
13
|
Galdieri L, Mehrotra S, Yu S, Vancura A. Transcriptional regulation in yeast during diauxic shift and stationary phase. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2010; 14:629-38. [PMID: 20863251 DOI: 10.1089/omi.2010.0069] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The preferred source of carbon and energy for yeast cells is glucose. When yeast cells are grown in liquid cultures, they metabolize glucose predominantly by glycolysis, releasing ethanol in the medium. When glucose becomes limiting, the cells enter diauxic shift characterized by decreased growth rate and by switching metabolism from glycolysis to aerobic utilization of ethanol. When ethanol is depleted from the medium, cells enter quiescent or stationary phase G(0). Cells in diauxic shift and stationary phase are stressed by the lack of nutrients and by accumulation of toxic metabolites, primarily from the oxidative metabolism, and are differentiated in ways that allow them to maintain viability for extended periods of time. The transition of yeast cells from exponential phase to quiescence is regulated by protein kinase A, TOR, Snf1p, and Rim15p pathways that signal changes in availability of nutrients, converge on transcriptional factors Msn2p, Msn4p, and Gis1p, and elicit extensive reprogramming of the transcription machinery. However, the events in transcriptional regulation during diauxic shift and quiescence are incompletely understood. Because cells from multicellular eukaryotic organisms spend most of their life in G(0) phase, understanding transcriptional regulation in quiescence will inform other fields, such as cancer, development, and aging.
Collapse
Affiliation(s)
- Luciano Galdieri
- Department of Biological Sciences, St. John's University, Queens, New York, USA
| | | | | | | |
Collapse
|
14
|
Tate JJ, Georis I, Dubois E, Cooper TG. Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae. J Biol Chem 2010; 285:17880-95. [PMID: 20378536 PMCID: PMC2878551 DOI: 10.1074/jbc.m109.085712] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 03/09/2010] [Indexed: 12/21/2022] Open
Abstract
In yeast, rapamycin (Rap)-inhibited TorC1, and the phosphatases it regulates (Sit4 and PP2A) are components of a conserved pathway regulating the response of eukaryotic cells to nutrient availability. TorC1 and intracellular nitrogen levels regulate the localization of Gln3 and Gat1, the activators of nitrogen catabolite repression (NCR)-sensitive genes whose products are required to utilize poor nitrogen sources. In nitrogen excess, Gln3 and Gat1 are cytoplasmic, and NCR-sensitive transcription is repressed. During nitrogen limitation or Rap treatment, Gln3 and Gat1 are nuclear, and transcription is derepressed. We previously demonstrated that the Sit4 and Pph21/22-Tpd3-Cdc55/Rts1 requirements for nuclear Gln3 localization differ. We now show that Sit4 and Pph21/22-Tpd3-Cdc55/Rts1 requirements for NCR-sensitive and Rap-induced nuclear Gat1 localization markedly differ from those of Gln3. Our data suggest that Gln3 and Gat1 localizations are controlled by two different regulatory pathways. Gln3 localization predominantly responds to intracellular nitrogen levels, as reflected by its stronger NCR-sensitivity, weaker response to Rap treatment, and strong response to methionine sulfoximine (Msx, a glutamine synthetase inhibitor). In contrast, Gat1 localization predominantly responds to TorC1 regulation as reflected by its weaker NCR sensitivity, stronger response to Rap, and immunity to the effects of Msx. Nuclear Gln3 localization in proline-grown (nitrogen limited) cells exhibits no requirement for Pph21/22-Tpd3/Cdc55, whereas nuclear Gat1 localization under these conditions is absolutely dependent on Pph21/22-Tpd3/Cdc55. Furthermore, the extent to which Pph21/22-Tpd3-Cdc55 is required for the TorC1 pathway (Rap) to induce nuclear Gat1 localization is regulated in parallel with Pph21/22-Tpd3-Cdc55-dependent Gln3 dephosphorylation and NCR-sensitive transcription, being highest in limiting nitrogen and lowest when nitrogen is in excess.
Collapse
Affiliation(s)
- Jennifer J. Tate
- From the Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163 and
| | - Isabelle Georis
- the Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie, Université Libre de Bruxelles, B1070 Brussels, Belgium
| | - Evelyne Dubois
- the Institut de Recherches Microbiologiques J.-M. Wiame, Laboratoire de Microbiologie, Université Libre de Bruxelles, B1070 Brussels, Belgium
| | - Terrance G. Cooper
- From the Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163 and
| |
Collapse
|
15
|
Petkova MI, Pujol-Carrion N, Arroyo J, García-Cantalejo J, Angeles de la Torre-Ruiz M. Mtl1 is required to activate general stress response through Tor1 and Ras2 inhibition under conditions of glucose starvation and oxidative stress. J Biol Chem 2010; 285:19521-31. [PMID: 20388713 DOI: 10.1074/jbc.m109.085282] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mtl1 is a member of the cell wall integrity (CWI) pathway of Saccharomyces cerevisiae, which functions as a cell wall sensor for oxidative stress. Genome-wide transcriptional analysis revealed a cluster of genes that were down-regulated in the absence of Mtl1. Many of these genes were potentially regulated by the general stress response factor Msn2/Msn4. In response to rapamycin, caffeine, glucose starvation and oxidative stress provoked by H(2)O(2), mtl1 presents a significant loss of viability as well as a deficiency in the transcriptional response mediated by Msn2/Msn4. The Mtl1 function was required (i) to induce ribosomal gene repression, (ii) to induce the general stress response driven by the transcription factor Msn2/Msn4, and (iii) to activate the CWI pathway in response to both glucose starvation and oxidative stress. We also detected higher cAMP levels in the mtl1 mutant than in wild type cells indicative of up-regulated RAS2-PKA activity. Disruption of TOR1, disruption of RAS2, or hyperactivation of Rho1 restored both the viability and the transcriptional function (both ribosomal and Msn2/Msn4-dependent gene expression) in the mtl1 mutant to almost wild type levels when cells were starved of glucose or stressed with H(2)O(2). Taking our results together, we propose an essential role for Mtl1 in signaling oxidative stress and quiescence to the CWI pathway and to the general stress response through Rho1 and the inhibition of either the TOR1 or RAS2 functions. These mechanisms would be required to allow cells to adapt to both oxidative and nutritional stresses.
Collapse
Affiliation(s)
- Mima Ivanova Petkova
- Departament de Ciències Mèdiques Bàsiques-IRBLleida, Facultad de Medicina, Universidad de Lleida, Lleida 25008, Spain
| | | | | | | | | |
Collapse
|
16
|
Rubio-Texeira M, Van Zeebroeck G, Voordeckers K, Thevelein JM. Saccharomyces cerevisiae plasma membrane nutrient sensors and their role in PKA signaling. FEMS Yeast Res 2010; 10:134-49. [DOI: 10.1111/j.1567-1364.2009.00587.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Sphingolipid metabolism in trans-golgi/endosomal membranes and the regulation of intracellular homeostatic processes in eukaryotic cells. ACTA ACUST UNITED AC 2010; 50:339-48. [DOI: 10.1016/j.advenzreg.2009.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Pelechano V, Jimeno-González S, Rodríguez-Gil A, García-Martínez J, Pérez-Ortín JE, Chávez S. Regulon-specific control of transcription elongation across the yeast genome. PLoS Genet 2009; 5:e1000614. [PMID: 19696888 PMCID: PMC2721418 DOI: 10.1371/journal.pgen.1000614] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 07/24/2009] [Indexed: 11/19/2022] Open
Abstract
Transcription elongation by RNA polymerase II was often considered an invariant non-regulated process. However, genome-wide studies have shown that transcriptional pausing during elongation is a frequent phenomenon in tightly-regulated metazoan genes. Using a combination of ChIP-on-chip and genomic run-on approaches, we found that the proportion of transcriptionally active RNA polymerase II (active versus total) present throughout the yeast genome is characteristic of some functional gene classes, like those related to ribosomes and mitochondria. This proportion also responds to regulatory stimuli mediated by protein kinase A and, in relation to cytosolic ribosomal-protein genes, it is mediated by the silencing domain of Rap1. We found that this inactive form of RNA polymerase II, which accumulates along the full length of ribosomal protein genes, is phosphorylated in the Ser5 residue of the CTD, but is hypophosphorylated in Ser2. Using the same experimental approach, we show that the in vivo–depletion of FACT, a chromatin-related elongation factor, also produces a regulon-specific effect on the expression of the yeast genome. This work demonstrates that the regulation of transcription elongation is a widespread, gene class–dependent phenomenon that also affects housekeeping genes. Transcription of DNA–encoded information into RNA is the first step in gene regulation. RNA polymerases initiate transcription at the promoter region and elongate the transcripts traveling throughout the gene until reaching the termination sequences. Classical models of transcriptional regulation were focused on the initiation step, but there is increasing evidence for gene regulation after initiation. We have investigated the importance of elongation in gene regulation using the yeast Saccharomyces cerevisiae, one of the main experimental systems in modern biology. By comparing the genomic distribution of RNA polymerase molecules with the actual transcriptional signal across the genome, we have detected that many genes are regulated at the elongation level. We show that yeast cells use this step to modulate the expression of several groups of genes, which have to be simultaneously regulated in a very coordinated manner. Genes encoding essential functions, like those related to protein synthesis and respiration, change their transcriptional activities in response to environmental stimuli, without changing in the same extension the amount of RNA polymerase that is physically associated to them. We also show that this kind of regulation, in spite of taking place during the elongation step, can be mediated by promoter-binding transcription factors.
Collapse
Affiliation(s)
- Vicent Pelechano
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Spain
| | | | | | - José García-Martínez
- Sección de Chips de DNA, Servei Central de Suport a la Investigació, Universitat de València, Burjassot, Spain
| | - José E. Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Spain
- * E-mail: (JEPO); (SC)
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
- * E-mail: (JEPO); (SC)
| |
Collapse
|
19
|
González A, Ruiz A, Casamayor A, Ariño J. Normal function of the yeast TOR pathway requires the type 2C protein phosphatase Ptc1. Mol Cell Biol 2009; 29:2876-88. [PMID: 19273591 PMCID: PMC2682041 DOI: 10.1128/mcb.01740-08] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/15/2008] [Accepted: 02/24/2009] [Indexed: 12/21/2022] Open
Abstract
Yeast ptc1 mutants are rapamycin and caffeine sensitive, suggesting a functional connection between Ptc1 and the TOR pathway that is not shared by most members of the type 2C phosphatase family. Genome-wide profiling revealed that the ptc1 mutation largely attenuates the transcriptional response to rapamycin. The lack of Ptc1 significantly prevents the nuclear translocation of Gln3 and Msn2 transcription factors to the nucleus, as well as the dephosphorylation of the Npr1 kinase, in response to rapamycin. This could explain the observed decrease in both the basal and rapamycin-induced expression of several genes subjected to nitrogen catabolite repression (GAT1, MEP1, and GLN1) and stress response element (STRE)-driven promoters. Interestingly, this decrease is abolished in the absence of the Sit4 phosphatase. Epitasis analysis indicates that the mutation of SIT4 or TIP41, encoding a Tap42-interacting protein, abolishes the sensitivity of the ptc1 strain to rapamycin and caffeine. All of these results suggest that Ptc1 is required for normal TOR signaling, possibly by regulating a step upstream of Sit4 function. According to this hypothesis, we observe that the mutation of PTC1 drastically diminishes the rapamycin-induced interaction between Tap42 and Tip41, and this can be explained by lower-than-normal levels of Tip41 in ptc1 cells. Ptc1 is not necessary for the normal expression of the TIP41 gene; instead, its absence dramatically affects the stability of Tip41. The lack of Ptc1 partially abolishes the rapamycin-induced dephosphorylation of Tip41, which may further decrease Tap42 binding. Reduced Tip41 levels contribute to the ptc1 phenotypes, although additional Ptc1 targets must exist. All of these results provide the first evidence showing that a type 2C protein phosphatase is required for the normal functioning of the TOR pathway.
Collapse
Affiliation(s)
- Asier González
- Departament de Bioquímica i Biologia Molecular, Ed. V, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Spain
| | | | | | | |
Collapse
|
20
|
Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M. A molecular mechanism of chronological aging in yeast. Cell Cycle 2009; 8:1256-70. [PMID: 19305133 DOI: 10.4161/cc.8.8.8287] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The molecular mechanisms that cause organismal aging are a topic of intense scrutiny and debate. Dietary restriction extends the life span of many organisms, including yeast, and efforts are underway to understand the biochemical and genetic pathways that regulate this life span extension in model organisms. Here we describe the mechanism by which dietary restriction extends yeast chronological life span, defined as the length of time stationary yeast cells remain viable in a quiescent state. We find that aging under standard culture conditions is the result of a cell-extrinsic component that is linked to the pH of the culture medium. We identify acetic acid as a cell-extrinsic mediator of cell death during chronological aging, and demonstrate that dietary restriction, growth in a non-fermentable carbon source, or transferring cells to water increases chronological life span by reducing or eliminating extracellular acetic acid. Other life span extending environmental and genetic interventions, such as growth in high osmolarity media, deletion of SCH9 or RAS2, increase cellular resistance to acetic acid. We conclude that acetic acid induced mortality is the primary mechanism of chronological aging in yeast under standard conditions.
Collapse
Affiliation(s)
- Christopher R Burtner
- Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
21
|
Roux AE, Leroux A, Alaamery MA, Hoffman CS, Chartrand P, Ferbeyre G, Rokeach LA. Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast. PLoS Genet 2009; 5:e1000408. [PMID: 19266076 PMCID: PMC2646135 DOI: 10.1371/journal.pgen.1000408] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 02/05/2009] [Indexed: 01/28/2023] Open
Abstract
Glucose is the preferred carbon and energy source in prokaryotes, unicellular eukaryotes, and metazoans. However, excess of glucose has been associated with several diseases, including diabetes and the less understood process of aging. On the contrary, limiting glucose (i.e., calorie restriction) slows aging and age-related diseases in most species. Understanding the mechanism by which glucose limits life span is therefore important for any attempt to control aging and age-related diseases. Here, we use the yeast Schizosaccharomyces pombe as a model to study the regulation of chronological life span by glucose. Growth of S. pombe at a reduced concentration of glucose increased life span and oxidative stress resistance as reported before for many other organisms. Surprisingly, loss of the Git3 glucose receptor, a G protein-coupled receptor, also increased life span in conditions where glucose consumption was not affected. These results suggest a role for glucose-signaling pathways in life span regulation. In agreement, constitutive activation of the Gα subunit acting downstream of Git3 accelerated aging in S. pombe and inhibited the effects of calorie restriction. A similar pro-aging effect of glucose was documented in mutants of hexokinase, which cannot metabolize glucose and, therefore, are exposed to constitutive glucose signaling. The pro-aging effect of glucose signaling on life span correlated with an increase in reactive oxygen species and a decrease in oxidative stress resistance and respiration rate. Likewise, the anti-aging effect of both calorie restriction and the Δgit3 mutation was accompanied by increased respiration and lower reactive oxygen species production. Altogether, our data suggest an important role for glucose signaling through the Git3/PKA pathway to regulate S. pombe life span. Lowering caloric intake by limiting glucose (the preferred carbon and energy source) increases life span in various species. Excess glucose can have deleterious effects, but it is not clear whether this is due to the caloric contribution of glucose or to some other effect. Glucose sensed by the cells activates signaling pathways that, in yeast, favor the metabolic machinery that makes energy (glycolysis) and cell growth. The sensing of glucose also reduces stress resistance and the ability to live long. Does glucose provoke a pro-aging effect as a result of its metabolic activity or by activating signaling pathways? Here we addressed this question by studying the role of a glucose-signaling pathway in the life span of the fission yeast S. pombe. Genetic inactivation of the glucose-signaling pathway prolonged life span in this yeast, while its constitutive activation shortened it and blocked the longevity effects of calorie restriction. The pro-aging effects of glucose signaling correlated with a decrease in mitochondrial respiration and an increase in reactive oxygen species production. Moreover, a strain without glucose metabolism is still sensitive to detrimental effects of glucose due to signaling. Our work shows that glucose signaling through the glucose receptor GIT3 constitutes the main cause responsible for the pro-aging effects of glucose in fission yeast.
Collapse
Affiliation(s)
- Antoine E. Roux
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Alexandre Leroux
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
| | - Manal A. Alaamery
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Charles S. Hoffman
- Biology Department, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Pascal Chartrand
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
- * E-mail: (PC); (GF); (LAR)
| | - Gerardo Ferbeyre
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
- * E-mail: (PC); (GF); (LAR)
| | - Luis A. Rokeach
- Department of Biochemistry, Université de Montréal, Montréal, Québec, Canada
- * E-mail: (PC); (GF); (LAR)
| |
Collapse
|
22
|
Cardona F, Aranda A, del Olmo M. Ubiquitin ligase Rsp5p is involved in the gene expression changes during nutrient limitation in Saccharomyces cerevisiae. Yeast 2009; 26:1-15. [PMID: 19180642 DOI: 10.1002/yea.1645] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Rsp5p is an essential ubiquitin ligase involved in many different cellular events, including amino acid transporters degradation, transcription initiation and mRNA export. It plays important role in both stress resistance and adaptation to the change of nutrients. We have found that ubiquitination machinery is necessary for the correct induction of the stress response SPI1 gene at the entry of the stationary phase. SPI1 is a gene whose expression is regulated by the nutritional status of the cell and whose deletion causes hypersensitivity to various stresses, such as heat shock, alkaline stress and oxidative stress. Its regulation is mastered by Rsp5p, as mutations in this gene lead to a lower SPI1 expression. In this process, Rsp5p is helped by several proteins, such as Rsp5p-interacting proteins Bul1p/2p, the ubiquitin conjugating protein Ubc1p and ubiquitin proteases Ubp4p and Ubp16p. Moreover, a mutation in the RSP5 gene has a global effect at the gene expression level when cells enter the stationary phase. Rsp5p particularly controls the levels of the ribosomal proteins mRNAs at this stage. Rsp5p is also necessary for a correct induction of p-bodies under stress conditions, indicating that this protein plays an important role in the post-transcriptional fate of mRNA under nutrient starvation.
Collapse
Affiliation(s)
- F Cardona
- Department of Biochemistry and Molecular Biology, University of Valencia, Spain
| | | | | |
Collapse
|
23
|
Hosiner D, Lempiäinen H, Reiter W, Urban J, Loewith R, Ammerer G, Schweyen R, Shore D, Schüller C. Arsenic toxicity to Saccharomyces cerevisiae is a consequence of inhibition of the TORC1 kinase combined with a chronic stress response. Mol Biol Cell 2008; 20:1048-57. [PMID: 19073887 DOI: 10.1091/mbc.e08-04-0438] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The conserved Target Of Rapamycin (TOR) growth control signaling pathway is a major regulator of genes required for protein synthesis. The ubiquitous toxic metalloid arsenic, as well as mercury and nickel, are shown here to efficiently inhibit the rapamycin-sensitive TORC1 (TOR complex 1) protein kinase. This rapid inhibition of the TORC1 kinase is demonstrated in vivo by the dephosphorylation and inactivation of its downstream effector, the yeast S6 kinase homolog Sch9. Arsenic, mercury, and nickel cause reduction of transcription of ribosome biogenesis genes, which are under the control of Sfp1, a TORC1-regulated transcriptional activator. We report that arsenic stress deactivates Sfp1 as it becomes dephosphorylated, dissociates from chromatin, and exits the nucleus. Curiously, whereas loss of SFP1 function leads to increased arsenic resistance, absence of TOR1 or SCH9 has the opposite effect suggesting that TORC1 has a role beyond down-regulation of Sfp1. Indeed, we show that arsenic activates the transcription factors Msn2 and Msn4 both of which are targets of TORC1 and protein kinase A (PKA). In contrast to TORC1, PKA activity is not repressed during acute arsenic stress. A normal level of PKA activity might serve to dampen the stress response since hyperactive Msn2 will decrease arsenic tolerance. Thus arsenic toxicity in yeast might be determined by the balance between chronic activation of general stress factors in combination with lowered TORC1 kinase activity.
Collapse
Affiliation(s)
- Dagmar Hosiner
- Department of Genetics, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lee P, Cho BR, Joo HS, Hahn JS. Yeast Yak1 kinase, a bridge between PKA and stress-responsive transcription factors, Hsf1 and Msn2/Msn4. Mol Microbiol 2008; 70:882-95. [PMID: 18793336 DOI: 10.1111/j.1365-2958.2008.06450.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hsf1 and Msn2/Msn4 transcription factors in Saccharomyces cerevisiae play important roles in cellular homeostasis by activating gene expression in response to multiple stresses including heat shock, oxidative stress and nutrient starvation. Although it has been known that nuclear import of Msn2 is inhibited by PKA-dependent phosphorylation, the mechanism for PKA-dependent regulation of Hsf1 is not well understood. Here we demonstrate that Yak1 kinase, which is under the negative control of PKA, activates both Hsf1 and Msn2 by phosphorylation when PKA activity is lowered by glucose depletion or by overexpressing Pde2 that hydrolyses cAMP. We show that Yak1 directly phosphorylates Hsf1 in vitro, leading to the increase in DNA binding activity of Hsf1. We also demonstrate that Yak1 phosphorylates Msn2 in vitro, but does not affect DNA binding activity of Msn2 or nuclear localization of Msn2 upon glucose depletion. These results suggest a central role for Yak1 in mediating PKA-dependent inhibition of Hsf1 and Msn2/Msn4.
Collapse
Affiliation(s)
- Peter Lee
- School of Chemical and Biological Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
| | | | | | | |
Collapse
|
25
|
Mousley CJ, Tyeryar K, Ile KE, Schaaf G, Brost RL, Boone C, Guan X, Wenk MR, Bankaitis VA. Trans-Golgi network and endosome dynamics connect ceramide homeostasis with regulation of the unfolded protein response and TOR signaling in yeast. Mol Biol Cell 2008; 19:4785-803. [PMID: 18753406 DOI: 10.1091/mbc.e08-04-0426] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Synthetic genetic array analyses identify powerful genetic interactions between a thermosensitive allele (sec14-1(ts)) of the structural gene for the major yeast phosphatidylinositol transfer protein (SEC14) and a structural gene deletion allele (tlg2Delta) for the Tlg2 target membrane-soluble N-ethylmaleimide-sensitive factor attachment protein receptor. The data further demonstrate Sec14 is required for proper trans-Golgi network (TGN)/endosomal dynamics in yeast. Paradoxically, combinatorial depletion of Sec14 and Tlg2 activities elicits trafficking defects from the endoplasmic reticulum, and these defects are accompanied by compromise of the unfolded protein response (UPR). UPR failure occurs downstream of Hac1 mRNA splicing, and it is further accompanied by defects in TOR signaling. The data link TGN/endosomal dynamics with ceramide homeostasis, UPR activity, and TOR signaling in yeast, and they identify the Sit4 protein phosphatase as a primary conduit through which ceramides link to the UPR. We suggest combinatorial Sec14/Tlg2 dysfunction evokes inappropriate turnover of complex sphingolipids in endosomes. One result of this turnover is potentiation of ceramide-activated phosphatase-mediated down-regulation of the UPR. These results provide new insight into Sec14 function, and they emphasize the TGN/endosomal system as a central hub for homeostatic regulation in eukaryotes.
Collapse
Affiliation(s)
- Carl J Mousley
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7090, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Quezada H, Aranda C, DeLuna A, Hernández H, Calcagno ML, Marín-Hernández Á, González A. Specialization of the paralogue LYS21 determines lysine biosynthesis under respiratory metabolism in Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2008; 154:1656-1667. [PMID: 18524920 DOI: 10.1099/mic.0.2008/017103-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the first committed step of the lysine biosynthetic pathway is catalysed by two homocitrate synthases encoded by LYS20 and LYS21. We undertook a study of the duplicate homocitrate synthases to analyse whether their retention and presumable specialization have affected the efficiency of lysine biosynthesis in yeast. Our results show that during growth on ethanol, homocitrate is mainly synthesized through Lys21p, while under fermentative metabolism, Lys20p and Lys21p play redundant roles. Furthermore, results presented in this paper indicate that, in contrast to that which had been found for Lys20p, lysine is a strong allosteric inhibitor of Lys21p (K(i) 0.053 mM), which, in addition, induces positive co-operativity for alpha-ketoglutarate (alpha-KG) binding. Differential lysine inhibition and modulation by alpha-KG of the two isozymes, and the regulation of the intracellular amount of the two isoforms, give rise to an exquisite regulatory system, which balances the rate at which alpha-KG is diverted to lysine biosynthesis or to other metabolic pathways. It can thus be concluded that retention and further biochemical specialization of the LYS20- and LYS21-encoded enzymes with partially overlapping roles contributed to the acquisition of facultative metabolism.
Collapse
Affiliation(s)
- Héctor Quezada
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México DF 04510, México
| | - Cristina Aranda
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México DF 04510, México
| | - Alexander DeLuna
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México DF 04510, México
| | - Hugo Hernández
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México DF 04510, México
| | - Mario L Calcagno
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, México DF 04510, México
| | - Álvaro Marín-Hernández
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Tlalpan, México DF, México
| | - Alicia González
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, México DF 04510, México
| |
Collapse
|
27
|
Willis IM, Chua G, Tong AH, Brost RL, Hughes TR, Boone C, Moir RD. Genetic interactions of MAF1 identify a role for Med20 in transcriptional repression of ribosomal protein genes. PLoS Genet 2008; 4:e1000112. [PMID: 18604275 PMCID: PMC2435279 DOI: 10.1371/journal.pgen.1000112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 05/28/2008] [Indexed: 11/19/2022] Open
Abstract
Transcriptional repression of ribosomal components and tRNAs is coordinately regulated in response to a wide variety of environmental stresses. Part of this response involves the convergence of different nutritional and stress signaling pathways on Maf1, a protein that is essential for repressing transcription by RNA polymerase (pol) III in Saccharomyces cerevisiae. Here we identify the functions buffering yeast cells that are unable to down-regulate transcription by RNA pol III. MAF1 genetic interactions identified in screens of non-essential gene-deletions and conditionally expressed essential genes reveal a highly interconnected network of 64 genes involved in ribosome biogenesis, RNA pol II transcription, tRNA modification, ubiquitin-dependent proteolysis and other processes. A survey of non-essential MAF1 synthetic sick/lethal (SSL) genes identified six gene-deletions that are defective in transcriptional repression of ribosomal protein (RP) genes following rapamycin treatment. This subset of MAF1 SSL genes included MED20 which encodes a head module subunit of the RNA pol II Mediator complex. Genetic interactions between MAF1 and subunits in each structural module of Mediator were investigated to examine the functional relationship between these transcriptional regulators. Gene expression profiling identified a prominent and highly selective role for Med20 in the repression of RP gene transcription under multiple conditions. In addition, attenuated repression of RP genes by rapamycin was observed in a strain deleted for the Mediator tail module subunit Med16. The data suggest that Mediator and Maf1 function in parallel pathways to negatively regulate RP mRNA and tRNA synthesis. The Maf1 protein is an essential negative regulator of transcription by RNA polymerase III in S. cerevisiae and functions to integrate responses from diverse nutritional and stress signaling pathways that coordinately regulate ribosome and tRNA synthesis. These signaling pathways are not well-defined, and efforts to understand the role of Maf1 in this process have been complicated by a lack of known functional motifs in the protein and by a paucity of direct physical interactions with Maf1. To understand the biological importance of down-regulating RNA polymerase III transcription and to identify functional relationships with Maf1, we employed synthetic genetic array (SGA) analysis. We show that the genetic neighborhood around Maf1 is highly interconnected and enriched for a small number of functional categories, most of which are logically linked to the function of Maf1 as the regulator of RNA polymerase III transcription. We found that deletions in a subset of MAF1 SSL genes, including subunits of the RNA polymerase II Mediator complex, lead to defects in transcriptional repression of ribosomal protein (RP) genes. Since Mediator subunits are not efficiently cross-linked to RP genes in chromatin, our results suggest that Mediator interactions with these highly expressed genes are fundamentally different from many other genes.
Collapse
Affiliation(s)
- Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America.
| | | | | | | | | | | | | |
Collapse
|
28
|
Involvement of Saccharomyces cerevisiae Avo3p/Tsc11p in maintaining TOR complex 2 integrity and coupling to downstream signaling. EUKARYOTIC CELL 2008; 7:1328-43. [PMID: 18552287 DOI: 10.1128/ec.00065-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Target-of-rapamycin proteins (TORs) are Ser/Thr kinases serving a central role in cell growth control. TORs function in two conserved multiprotein complexes, TOR complex 1 (TORC1) and TORC2; the mechanisms underlying their actions and regulation are not fully elucidated. Saccharomyces TORC2, containing Tor2p, Avo1p, Avo2p, Avo3p/Tsc11p, Bit61p, and Lst8p, regulates cell integrity and actin organization. Two classes of avo3 temperature-sensitive (avo3(ts)) mutants that we previously identified display cell integrity and actin defects, yet one is suppressed by AVO1 while the other is suppressed by AVO2 or SLM1, defining two TORC2 downstream signaling mechanisms, one mediated by Avo1p and the other by Avo2p/Slm1p. Employing these mutants, we explored Avo3p functions in TORC2 structure and signaling. By observing binary protein interactions using coimmunoprecipitation, we discovered that the composition of TORC2 and its recruitment of the downstream effectors Slm1p and Slm2p were differentially affected in different avo3(ts) mutants. These molecular defects can be corrected only by expressing AVO3, not by expressing suppressors, highlighting the role of Avo3p as a structural and signaling scaffold for TORC2. Phenotypic modifications of avo3(ts) mutants by deletion of individual Rho1p-GTPase-activating proteins indicate that two TORC2 downstream signaling branches converge on Rho1p activation. Our results also suggest that Avo2p/Slm1p-mediated signaling, but not Avo1p-mediated signaling, links to Rho1p activation specifically through the Rho1p-guanine nucleotide exchange factor Tus1p.
Collapse
|
29
|
Wu X, Jiang YW. Overproduction of non-translatable mRNA silences. The transcription of Ty1 retrotransposons in S. cerevisiae via functional inactivation of the nuclear cap-binding complex and subsequent hyperstimulation of the TORC1 pathway. Yeast 2008; 25:327-47. [PMID: 18435413 DOI: 10.1002/yea.1591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Co-suppression is high gene copy number-triggered homology-dependent gene silencing, and co-suppression may have evolved in eukaryotes to counter invasive molecular parasites, such as viruses and transposons. We previously reported 'Ty1 transcriptional co-suppression'-high Ty1 copy number-triggered transient transcriptional silencing of Ty1 retrotransposons in S. cerevisiae. We report here that this phenomenon is unlikely to be homology-dependent, despite the copy number dependence. The Ty1 mRNA is an extremely poor template for translation, and overproduction of non-translatable mRNA without Ty1 homology is sufficient to initiate the transient Ty1 transcriptional silencing. We present genetic evidence that overproduction of non-translatable mRNA may functionally inactivate the nuclear cap-binding complex (CBC), and inactivation of CBC may then hyperstimulate the TORC1 pathway to mediate Ty1 transcriptional silencing. Our results point to a potent regulatory function of non-translatable mRNA in vivo (via CBC and TORC1) to potentially modulate a variety of intracellular activities, such as Ty1 transcription. Although overproduction of non-translatable mRNA causes transient Ty1 transcriptional silencing, it does not play a detectable role in controlling Ty1 retrotransposition.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Department of Cell Biology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | | |
Collapse
|
30
|
Rohde JR, Bastidas R, Puria R, Cardenas ME. Nutritional control via Tor signaling in Saccharomyces cerevisiae. Curr Opin Microbiol 2008; 11:153-60. [PMID: 18396450 DOI: 10.1016/j.mib.2008.02.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 02/05/2008] [Accepted: 02/08/2008] [Indexed: 01/15/2023]
Abstract
The yeast Saccharomyces cerevisiae senses and responds to nutrients by adapting its growth rate and undergoing morphogenic transitions to ensure survival. The Tor pathway is a major integrator of nutrient-derived signals that in coordination with other signaling pathways orchestrates cell growth. Recent advances have identified novel Tor kinase substrates and established the protein trafficking membranous network and the nucleus as platforms for Tor signaling. These and other recent findings delineate distinct signaling branches emanating from membrane-associated Tor complexes to control cell growth.
Collapse
Affiliation(s)
- John R Rohde
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Room 1078, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | | | | | | |
Collapse
|
31
|
Impairment of microtubule system increases α-synuclein aggregation and toxicity. Biochem Biophys Res Commun 2008; 365:628-35. [DOI: 10.1016/j.bbrc.2007.11.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 11/02/2007] [Indexed: 11/22/2022]
|
32
|
Pleiss JA, Whitworth GB, Bergkessel M, Guthrie C. Rapid, transcript-specific changes in splicing in response to environmental stress. Mol Cell 2007; 27:928-37. [PMID: 17889666 PMCID: PMC2081968 DOI: 10.1016/j.molcel.2007.07.018] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 06/05/2007] [Accepted: 07/17/2007] [Indexed: 11/30/2022]
Abstract
While the core splicing machinery is highly conserved between budding yeast and mammals, the absence of alternative splicing in Saccharomyces cerevisiae raises the fundamental question of why introns have been retained in approximately 5% of the 6000 genes. Because ribosomal protein-encoding genes (RPGs) are highly overrepresented in the set of intron-containing genes, we tested the hypothesis that splicing of these transcripts would be regulated under conditions in which translation is impaired. Using a microarray-based strategy, we find that, within minutes after the induction of amino acid starvation, the splicing of the majority of RPGs is specifically inhibited. In response to an unrelated stress, exposure to toxic levels of ethanol, splicing of a different group of transcripts is inhibited, while the splicing of a third set is actually improved. We propose that regulation of splicing, like transcription, can afford rapid and specific changes in gene expression in response to the environment.
Collapse
Affiliation(s)
- Jeffrey A. Pleiss
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, Genentech Hall, Room N-374, San Francisco, CA 94143-2200, USA
| | - Gregg B. Whitworth
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, Genentech Hall, Room N-374, San Francisco, CA 94143-2200, USA
| | - Megan Bergkessel
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, Genentech Hall, Room N-374, San Francisco, CA 94143-2200, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, Genentech Hall, Room N-374, San Francisco, CA 94143-2200, USA
- *Correspondence:
| |
Collapse
|
33
|
Yorimitsu T, Zaman S, Broach JR, Klionsky DJ. Protein kinase A and Sch9 cooperatively regulate induction of autophagy in Saccharomyces cerevisiae. Mol Biol Cell 2007; 18:4180-9. [PMID: 17699586 PMCID: PMC1995722 DOI: 10.1091/mbc.e07-05-0485] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Autophagy is a highly conserved, degradative process in eukaryotic cells. The rapamycin-sensitive Tor kinase complex 1 (TORC1) has a major role in regulating induction of autophagy; however, the regulatory mechanisms are not fully understood. Here, we find that the protein kinase A (PKA) and Sch9 signaling pathways regulate autophagy cooperatively in yeast. Autophagy is induced in cells when PKA and Sch9 are simultaneously inactivated. Mutant alleles of these kinases bearing a mutation that confers sensitivity to the ATP-analogue inhibitor C3-1'-naphthyl-methyl PP1 revealed that autophagy was induced independently of effects on Tor kinase. The PKA-Sch9-mediated autophagy depends on the autophagy-related 1 kinase complex, which is also essential for TORC1-regulated autophagy, the transcription factors Msn2/4, and the Rim15 kinase. The present results suggest that autophagy is controlled by the signals from at least three partly separate nutrient-sensing pathways that include PKA, Sch9, and TORC1.
Collapse
Affiliation(s)
- Tomohiro Yorimitsu
- *Life Sciences Institute and Departments of Molecular, Cellular, and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109; and
| | - Shadia Zaman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - James R. Broach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Daniel J. Klionsky
- *Life Sciences Institute and Departments of Molecular, Cellular, and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor, MI 48109; and
| |
Collapse
|
34
|
Aronova S, Wedaman K, Anderson S, Yates J, Powers T. Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae. Mol Biol Cell 2007; 18:2779-94. [PMID: 17507646 PMCID: PMC1949386 DOI: 10.1091/mbc.e07-03-0274] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The TOR kinases are regulators of growth in eukaryotic cells that assemble into two distinct protein complexes, TORC1 and TORC2, where TORC1 is inhibited by the antibiotic rapamycin. Present models favor a view wherein TORC1 regulates cell mass accumulation, and TORC2 regulates spatial aspects of growth, including organization of the actin cytoskeleton. Here, we demonstrate that in yeast both TORC1 and TORC2 fractionate with a novel form of detergent-resistant membranes that are distinct from detergent-resistant plasma membrane "rafts." Proteomic analysis of these TOR-associated membranes revealed the presence of regulators of endocytosis and the actin cytoskeleton. Genetic analyses revealed a significant number of interactions between these components and TORC1, demonstrating a functional link between TORC1 and actin/endocytosis-related genes. Moreover, we found that inhibition of TORC1 by rapamycin 1) disrupted actin polarization, 2) delayed actin repolarization after glucose starvation, and 3) delayed accumulation of lucifer yellow within the vacuole. By combining our genetic results with database mining, we constructed a map of interactions that led to the identification of additional genetic interactions between TORC1 and components involved in membrane trafficking. Together, these results reveal the broad scope of cellular processes influenced by TORC1, and they underscore the functional overlap between TORC1 and TORC2.
Collapse
Affiliation(s)
- Sofia Aronova
- *Section of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616; and
| | - Karen Wedaman
- *Section of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616; and
| | - Scott Anderson
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - John Yates
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Ted Powers
- *Section of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, Davis, CA 95616; and
| |
Collapse
|
35
|
Murray DB, Beckmann M, Kitano H. Regulation of yeast oscillatory dynamics. Proc Natl Acad Sci U S A 2007; 104:2241-6. [PMID: 17284613 PMCID: PMC1794218 DOI: 10.1073/pnas.0606677104] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Indexed: 11/18/2022] Open
Abstract
When yeast cells are grown continuously at high cell density, a respiratory oscillation percolates throughout the population. Many essential cellular functions have been shown to be separated temporally during each cycle; however, the regulatory mechanisms involved in oscillatory dynamics remain to be elucidated. Through GC-MS analysis we found that the majority of metabolites show oscillatory dynamics, with 70% of the identified metabolite concentrations peaking in conjunction with NAD(P)H. Through statistical analyses of microarray data, we identified that biosynthetic events have a defined order, and this program is initiated when respiration rates are increasing. We then combined metabolic, transcriptional data and statistical analyses of transcription factor activity, identified the top oscillatory parameters, and filtered a large-scale yeast interaction network according to these parameters. The analyses and controlled experimental perturbation provided evidence that a transcriptional complex formed part of the timing circuit for biosynthetic, reductive, and cell cycle programs in the cell. This circuitry does not act in isolation because both have strong translational, proteomic, and metabolic regulatory mechanisms. Our data lead us to conclude that the regulation of the respiratory oscillation revolves around coupled subgraphs containing large numbers of proteins and metabolites, with a potential to oscillate, and no definable hierarchy, i.e., heterarchical control.
Collapse
Affiliation(s)
- Douglas B Murray
- ERATO-SORST Kitano Symbiotic Systems Project, Japan Science and Technology Agency, 9S3 Shinanomachi Research Park, Keio University School of Medicine, 35 Shinanomachi, Tokyo 160-8582, Japan.
| | | | | |
Collapse
|
36
|
Bahn YS, Xue C, Idnurm A, Rutherford JC, Heitman J, Cardenas ME. Sensing the environment: lessons from fungi. Nat Rev Microbiol 2007; 5:57-69. [PMID: 17170747 DOI: 10.1038/nrmicro1578] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
All living organisms use numerous signal-transduction systems to sense and respond to their environments and thereby survive and proliferate in a range of biological niches. Molecular dissection of these signalling networks has increased our understanding of these communication processes and provides a platform for therapeutic intervention when these pathways malfunction in disease states, including infection. Owing to the expanding availability of sequenced genomes, a wealth of genetic and molecular tools and the conservation of signalling networks, members of the fungal kingdom serve as excellent model systems for more complex, multicellular organisms. Here, we review recent progress in our understanding of how fungal-signalling circuits operate at the molecular level to sense and respond to a plethora of environmental cues.
Collapse
Affiliation(s)
- Yong-Sun Bahn
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 156-743, Korea
| | | | | | | | | | | |
Collapse
|
37
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
38
|
Lezon TR, Banavar JR, Cieplak M, Maritan A, Fedoroff NV. Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns. Proc Natl Acad Sci U S A 2006; 103:19033-8. [PMID: 17138668 PMCID: PMC1748172 DOI: 10.1073/pnas.0609152103] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a method based on the principle of entropy maximization to identify the gene interaction network with the highest probability of giving rise to experimentally observed transcript profiles. In its simplest form, the method yields the pairwise gene interaction network, but it can also be extended to deduce higher-order interactions. Analysis of microarray data from genes in Saccharomyces cerevisiae chemostat cultures exhibiting energy metabolic oscillations identifies a gene interaction network that reflects the intracellular communication pathways that adjust cellular metabolic activity and cell division to the limiting nutrient conditions that trigger metabolic oscillations. The success of the present approach in extracting meaningful genetic connections suggests that the maximum entropy principle is a useful concept for understanding living systems, as it is for other complex, nonequilibrium systems.
Collapse
Affiliation(s)
| | | | - Marek Cieplak
- Institute of Physics, Polish Academy of Science, Aleja Lotnikow 32/48, 02-668 Warsaw, Poland; and
| | - Amos Maritan
- Dipartimento di Fisica, Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia and Istituto Nazionale di Fisica Nucleare, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Nina V. Fedoroff
- Department of Biology and Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
- Santa Fe Institute, Santa Fe, NM 87501
- To whom correspondence should be addressed at:
Pennsylvania State University, 219 Wartik Laboratory, University Park, PA 16802. E-mail:
| |
Collapse
|
39
|
Abstract
The story of rapamycin is a pharmaceutical fairytale. Discovered as an antifungal activity in a soil sample collected on Easter Island, this macrocyclic lactone and its derivatives are now billion dollar drugs, used in, and being evaluated for, a number of clinical applications. Taking advantage of its antifungal property, the molecular Target Of Rapamycin, TOR, was first described in the budding yeast Saccharomyces cerevisiae. TORs encode large, Ser/Thr protein kinases that reside in two distinct, structurally and functionally conserved, multi-protein complexes. In yeast, these complexes coordinate many different aspects of cell growth. TOR complex 1, TORC1, promotes protein synthesis and other anabolic processes, while inhibiting macroautophagy and other catabolic and stress-response processes. TORC2 primarily regulates cell polarity, although additional readouts of this complex are beginning to be characterized. TORC1 appears to be activated by nutrient cues and inhibited by stresses and rapamycin; however, detailed mechanisms are not known. In contrast, TORC2 is insensitive to rapamycin and physiological regulators of this complex have yet to be defined. Given the unsurpassed resources available to yeast researchers, this simple eukaryote continues to contribute to our understanding of eukaryotic cell growth in general and TOR function in particular.
Collapse
Affiliation(s)
- C De Virgilio
- Département de Microbiologie et Médecine Moléculaire, Université de Genève, CMU, Geneva, Switzerland.
| | | |
Collapse
|
40
|
Reinke A, Chen JCY, Aronova S, Powers T. Caffeine Targets TOR Complex I and Provides Evidence for a Regulatory Link between the FRB and Kinase Domains of Tor1p. J Biol Chem 2006. [DOI: 10.1016/s0021-9258(19)84075-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|