1
|
Konada L, Aricthota S, Vadla R, Haldar D. Fission Yeast Sirtuin Hst4 Functions in Preserving Genomic Integrity by Regulating Replisome Component Mcl1. Sci Rep 2018; 8:8496. [PMID: 29855479 PMCID: PMC5981605 DOI: 10.1038/s41598-018-26476-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 04/19/2018] [Indexed: 11/09/2022] Open
Abstract
The Schizosaccharomyces pombe sirtuin Hst4, functions in the maintenance of genome stability by regulating histone H3 lysine56 acetylation (H3K56ac) and promoting cell survival during replicative stress. However, its molecular function in DNA damage survival is unclear. Here, we show that hst4 deficiency in the fission yeast causes S phase delay and DNA synthesis defects. We identified a novel functional link between hst4 and the replisome component mcl1 in a suppressor screen aimed to identify genes that could restore the slow growth and Methyl methanesulphonate (MMS) sensitivity phenotypes of the hst4Δ mutant. Expression of the replisome component Mcl1 rescues hst4Δ phenotypes. Interestingly, hst4 and mcl1 show an epistatic interaction and suppression of hst4Δ phenotypes by mcl1 is H3K56 acetylation dependent. Furthermore, Hst4 was found to regulate the expression of mcl1. Finally, we show that hSIRT2 depletion results in decreased levels of And-1 (human orthologue of Mcl1), establishing the conservation of this mechanism. Moreover, on induction of replication stress (MMS treatment), Mcl1 levels decrease upon Hst4 down regulation. Our results identify a novel function of Hst4 in regulation of DNA replication that is dependent on H3K56 acetylation. Both SIRT2 and And-1 are deregulated in cancers. Therefore, these findings could be of therapeutic importance in future.
Collapse
Affiliation(s)
- Lahiri Konada
- Centre for DNA Fingerprinting and Diagnostics, Survey Nos. 728, 729, 730 & 734, Opposite Uppal Water Tank, Beside BSNL T E Building, Uppal, Ranga Reddy District, Hyderabad, 500039, India.,Graduate Studies, Manipal University, Manipal, India
| | - Shalini Aricthota
- Centre for DNA Fingerprinting and Diagnostics, Survey Nos. 728, 729, 730 & 734, Opposite Uppal Water Tank, Beside BSNL T E Building, Uppal, Ranga Reddy District, Hyderabad, 500039, India.,Graduate Studies, Manipal University, Manipal, India
| | - Raghavendra Vadla
- Centre for DNA Fingerprinting and Diagnostics, Survey Nos. 728, 729, 730 & 734, Opposite Uppal Water Tank, Beside BSNL T E Building, Uppal, Ranga Reddy District, Hyderabad, 500039, India.,Graduate Studies, Manipal University, Manipal, India
| | - Devyani Haldar
- Centre for DNA Fingerprinting and Diagnostics, Survey Nos. 728, 729, 730 & 734, Opposite Uppal Water Tank, Beside BSNL T E Building, Uppal, Ranga Reddy District, Hyderabad, 500039, India.
| |
Collapse
|
2
|
Jahn LJ, Mason B, Brøgger P, Toteva T, Nielsen DK, Thon G. Dependency of Heterochromatin Domains on Replication Factors. G3 (BETHESDA, MD.) 2018; 8:477-489. [PMID: 29187422 PMCID: PMC5919735 DOI: 10.1534/g3.117.300341] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/20/2017] [Indexed: 01/26/2023]
Abstract
Chromatin structure regulates both genome expression and dynamics in eukaryotes, where large heterochromatic regions are epigenetically silenced through the methylation of histone H3K9, histone deacetylation, and the assembly of repressive complexes. Previous genetic screens with the fission yeast Schizosaccharomyces pombe have led to the identification of key enzymatic activities and structural constituents of heterochromatin. We report here on additional factors discovered by screening a library of deletion mutants for silencing defects at the edge of a heterochromatic domain bound by its natural boundary-the IR-R+ element-or by ectopic boundaries. We found that several components of the DNA replication progression complex (RPC), including Mrc1/Claspin, Mcl1/Ctf4, Swi1/Timeless, Swi3/Tipin, and the FACT subunit Pob3, are essential for robust heterochromatic silencing, as are the ubiquitin ligase components Pof3 and Def1, which have been implicated in the removal of stalled DNA and RNA polymerases from chromatin. Moreover, the search identified the cohesin release factor Wpl1 and the forkhead protein Fkh2, both likely to function through genome organization, the Ssz1 chaperone, the Fkbp39 proline cis-trans isomerase, which acts on histone H3P30 and P38 in Saccharomyces cerevisiae, and the chromatin remodeler Fft3. In addition to their effects in the mating-type region, to varying extents, these factors take part in heterochromatic silencing in pericentromeric regions and telomeres, revealing for many a general effect in heterochromatin. This list of factors provides precious new clues with which to study the spatiotemporal organization and dynamics of heterochromatic regions in connection with DNA replication.
Collapse
Affiliation(s)
| | - Bethany Mason
- Department of Biology, University of Copenhagen, BioCenter, 2200, Denmark
| | - Peter Brøgger
- Department of Biology, University of Copenhagen, BioCenter, 2200, Denmark
| | - Tea Toteva
- Department of Biology, University of Copenhagen, BioCenter, 2200, Denmark
| | - Dennis Kim Nielsen
- Department of Biology, University of Copenhagen, BioCenter, 2200, Denmark
| | - Genevieve Thon
- Department of Biology, University of Copenhagen, BioCenter, 2200, Denmark
| |
Collapse
|
3
|
Sasaki M, Kobayashi T. Ctf4 Prevents Genome Rearrangements by Suppressing DNA Double-Strand Break Formation and Its End Resection at Arrested Replication Forks. Mol Cell 2017; 66:533-545.e5. [PMID: 28525744 DOI: 10.1016/j.molcel.2017.04.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/20/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022]
Abstract
Arrested replication forks lead to DNA double-strand breaks (DSBs), which are a major source of genome rearrangements. Yet DSB repair in the context of broken forks remains poorly understood. Here we demonstrate that DSBs that are formed at arrested forks in the budding yeast ribosomal RNA gene (rDNA) locus are normally repaired by pathways dependent on the Mre11-Rad50-Xrs2 complex but independent of HR. HR is also dispensable for DSB repair at stalled forks at tRNA genes. In contrast, in cells lacking the core replisome component Ctf4, DSBs are formed more frequently, and these DSBs undergo end resection and HR-mediated repair that is prone to rDNA hyper-amplification; this highlights Ctf4 as a key regulator of DSB end resection at arrested forks. End resection also occurs during physiological rDNA amplification even in the presence of Ctf4. Suppression of end resection is thus important for protecting DSBs at arrested forks from chromosome rearrangements.
Collapse
MESH Headings
- DNA Breaks, Double-Stranded
- DNA Repair
- DNA Replication
- DNA, Fungal/biosynthesis
- DNA, Fungal/chemistry
- DNA, Fungal/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Endodeoxyribonucleases/genetics
- Endodeoxyribonucleases/metabolism
- Exodeoxyribonucleases/genetics
- Exodeoxyribonucleases/metabolism
- Gene Rearrangement
- Microbial Viability
- Mutation
- Nucleic Acid Conformation
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Replication Origin
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Time Factors
Collapse
Affiliation(s)
- Mariko Sasaki
- Laboratory of Genome Regeneration, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute of Molecular and Cellular Biosciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
4
|
Li Y, Li Z, Wu R, Han Z, Zhu W. And-1 is required for homologous recombination repair by regulating DNA end resection. Nucleic Acids Res 2017; 45:2531-2545. [PMID: 27940557 PMCID: PMC5389477 DOI: 10.1093/nar/gkw1241] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/28/2016] [Indexed: 11/29/2022] Open
Abstract
Homologous recombination (HR) is a major mechanism to repair DNA double-strand breaks (DSBs). Although tumor suppressor CtIP is critical for DSB end resection, a key initial event of HR repair, the mechanism regulating the recruitment of CtIP to DSB sites remains largely unknown. Here, we show that acidic nucleoplasmic DNA‐binding protein 1 (And‐1) forms complexes with CtIP as well as other repair proteins, and is essential for HR repair by regulating DSB end resection. Furthermore, And-1 is recruited to DNA DSB sites in a manner dependent on MDC1, BRCA1 and ATM, down-regulation of And-1 impairs end resection by reducing the recruitment of CtIP to damage sites, and considerably reduces Chk1 activation and other damage response during HR repair. These findings collectively demonstrate a hitherto unknown role of MDC1→And-1→CtIP axis that regulates CtIP-mediated DNA end resection and cellular response to DSBs.
Collapse
Affiliation(s)
- Yongming Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Science, 2300 Eye Street, N.W., Washington, DC 20037, USA
| | - Zongzhu Li
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Science, 2300 Eye Street, N.W., Washington, DC 20037, USA
| | - Ruiqin Wu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Science, 2300 Eye Street, N.W., Washington, DC 20037, USA
| | - Zhiyong Han
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Science, 2300 Eye Street, N.W., Washington, DC 20037, USA
| | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Science, 2300 Eye Street, N.W., Washington, DC 20037, USA
| |
Collapse
|
5
|
Samora CP, Saksouk J, Goswami P, Wade BO, Singleton MR, Bates PA, Lengronne A, Costa A, Uhlmann F. Ctf4 Links DNA Replication with Sister Chromatid Cohesion Establishment by Recruiting the Chl1 Helicase to the Replisome. Mol Cell 2016; 63:371-84. [PMID: 27397686 PMCID: PMC4980427 DOI: 10.1016/j.molcel.2016.05.036] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/24/2016] [Accepted: 05/26/2016] [Indexed: 12/02/2022]
Abstract
DNA replication during S phase is accompanied by establishment of sister chromatid cohesion to ensure faithful chromosome segregation. The Eco1 acetyltransferase, helped by factors including Ctf4 and Chl1, concomitantly acetylates the chromosomal cohesin complex to stabilize its cohesive links. Here we show that Ctf4 recruits the Chl1 helicase to the replisome via a conserved interaction motif that Chl1 shares with GINS and polymerase α. We visualize recruitment by EM analysis of a reconstituted Chl1-Ctf4-GINS assembly. The Chl1 helicase facilitates replication fork progression under conditions of nucleotide depletion, partly independently of Ctf4 interaction. Conversely, Ctf4 interaction, but not helicase activity, is required for Chl1's role in sister chromatid cohesion. A physical interaction between Chl1 and the cohesin complex during S phase suggests that Chl1 contacts cohesin to facilitate its acetylation. Our results reveal how Ctf4 forms a replisomal interaction hub that coordinates replication fork progression and sister chromatid cohesion establishment.
Collapse
MESH Headings
- Acetyltransferases/metabolism
- Acylation
- Cell Cycle Proteins/metabolism
- Chromatids/enzymology
- Chromatids/genetics
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/ultrastructure
- Chromosomes, Fungal/enzymology
- Chromosomes, Fungal/genetics
- DNA, Fungal/biosynthesis
- DNA, Fungal/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/ultrastructure
- Microscopy, Electron, Transmission
- Models, Molecular
- Multiprotein Complexes
- Nuclear Proteins/metabolism
- Protein Binding
- Protein Interaction Domains and Motifs
- S Phase
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Saccharomyces cerevisiae Proteins/ultrastructure
- Structure-Activity Relationship
- Time Factors
- Cohesins
Collapse
Affiliation(s)
- Catarina P Samora
- Chromosome Segregation Laboratory, Francis Crick Institute, London WC2A 3LY, UK
| | - Julie Saksouk
- Institute of Human Genetics (IGH), CNRS, 34396 Montpellier, France
| | - Panchali Goswami
- Macromolecular Machines Laboratory, Francis Crick Institute, South Mimms EN6 3LD, UK
| | - Ben O Wade
- Structural Biology of Chromosome Segregation Laboratory, Francis Crick Institute, London WC2A 3LY, UK
| | - Martin R Singleton
- Structural Biology of Chromosome Segregation Laboratory, Francis Crick Institute, London WC2A 3LY, UK
| | - Paul A Bates
- Biomolecular Modelling Laboratory, Francis Crick Institute, London WC2A 3LY, UK
| | | | - Alessandro Costa
- Macromolecular Machines Laboratory, Francis Crick Institute, South Mimms EN6 3LD, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, Francis Crick Institute, London WC2A 3LY, UK.
| |
Collapse
|
6
|
Hao J, de Renty C, Li Y, Xiao H, Kemp MG, Han Z, DePamphilis ML, Zhu W. And-1 coordinates with Claspin for efficient Chk1 activation in response to replication stress. EMBO J 2015; 34:2096-110. [PMID: 26082189 DOI: 10.15252/embj.201488016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/08/2015] [Indexed: 11/09/2022] Open
Abstract
The replisome is important for DNA replication checkpoint activation, but how specific components of the replisome coordinate with ATR to activate Chk1 in human cells remains largely unknown. Here, we demonstrate that And-1, a replisome component, acts together with ATR to activate Chk1. And-1 is phosphorylated at T826 by ATR following replication stress, and this phosphorylation is required for And-1 to accumulate at the damage sites, where And-1 promotes the interaction between Claspin and Chk1, thereby stimulating efficient Chk1 activation by ATR. Significantly, And-1 binds directly to ssDNA and facilitates the association of Claspin with ssDNA. Furthermore, And-1 associates with replication forks and is required for the recovery of stalled forks. These studies establish a novel ATR-And-1 axis as an important regulator for efficient Chk1 activation and reveal a novel mechanism of how the replisome regulates the replication checkpoint and genomic stability.
Collapse
Affiliation(s)
- Jing Hao
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| | | | - Yongming Li
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| | - Haijie Xiao
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| | - Michael G Kemp
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, FL, USA
| | - Zhiyong Han
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| | | | - Wenge Zhu
- Department of Biochemistry and Molecular Medicine, The George Washington University Medical School, Washington, DC, USA
| |
Collapse
|
7
|
Uzunova SD, Zarkov AS, Ivanova AM, Stoynov SS, Nedelcheva-Veleva MN. The subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3: dynamics and interdependence. Cell Div 2014; 9:4. [PMID: 25379053 PMCID: PMC4221646 DOI: 10.1186/1747-1028-9-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/17/2014] [Indexed: 01/22/2023] Open
Abstract
Background The S-phase checkpoint aims to prevent cells from generation of extensive single-stranded DNA that predisposes to genome instability. The S. cerevisiae complex Tof1/Csm3/Mrc1 acts to restrain the replicative MCM helicase when DNA synthesis is prohibited. Keeping the replication machinery intact allows restart of the replication fork when the block is relieved. Although the subunits of the Tof1/Csm3/Mrc1 complex are well studied, the impact of every single subunit on the triple complex formation and function needs to be established. Findings This work studies the cellular localization and the chromatin binding of GFP-tagged subunits when the complex is intact and when a subunit is missing. We demonstrate that the complex is formed in cell nucleus, not the cytoplasm, as Tof1, Csm3 and Mrc1 enter the nucleus independently from one another. Via in situ chromatin binding assay we show that a Tof1-Csm3 dimer formation and chromatin binding is required to ensure the attachment of Mrc1 to chromatin. Our study indicates that the translocation into the nucleus is not the process to regulate the timing of chromatin association of Mrc1. We also studied the nuclear behavior of Mrc1 subunit in the process of adaptation to the presence hydroxyurea. Our results indicate that after prolonged HU incubation, cells bypass the S-phase checkpoint and proceed throughout the cell cycle. This process is accompanied by Mrc1 chromatin detachment and Rad53 dephosphorylation. Conclusions In S. cerevisiae the subunits of the S-phase checkpoint complex Mrc1/Tof1/Csm3 independently enter the cell nucleus, where a Tof1-Csm3 dimer is formed to ensure the chromatin binding of Mrc1 and favor DNA replication and S-phase checkpoint fork arrest. In the process of adaptation to the presence of hydroxyurea Mrc1 is detached from chromatin and Rad53 checkpoint activity is diminished in order to allow S-phase checkpoint escape and completion of the cell cycle.
Collapse
Affiliation(s)
- Sonya Dimitrova Uzunova
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 "Acad. George Bonchev" Str., 1113 Sofia, Bulgaria
| | - Alexander Stefanov Zarkov
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 "Acad. George Bonchev" Str., 1113 Sofia, Bulgaria
| | - Anna Marianova Ivanova
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 "Acad. George Bonchev" Str., 1113 Sofia, Bulgaria
| | - Stoyno Stefanov Stoynov
- Institute of Molecular Biology "Roumen Tsanev", Bulgarian Academy of Sciences, 21 "Acad. George Bonchev" Str., 1113 Sofia, Bulgaria
| | | |
Collapse
|
8
|
Does a shift to limited glucose activate checkpoint control in fission yeast? FEBS Lett 2014; 588:2373-8. [PMID: 24815688 DOI: 10.1016/j.febslet.2014.04.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 11/20/2022]
Abstract
Here we review cell cycle control in the fission yeast, Schizosaccharomyces pombe, in response to an abrupt reduction of glucose concentration in culture media. S. pombe arrests cell cycle progression when transferred from media containing 2.0% glucose to media containing 0.1%. After a delay, S. pombe resumes cell division at a surprisingly fast rate, comparable to that observed in 2% glucose. We found that a number of genes, including zinc-finger transcription factor Scr1, CaMKK-like protein kinase Ssp1, and glucose transporter Ght5, enable rapid cell division in low glucose. In this article, we examine whether cell cycle checkpoint-like control operates during the delay and after resumption of cell division in limited-glucose. Using microarray analysis and genetic screening, we identified several candidate genes that may be involved in controlling this low-glucose adaptation.
Collapse
|
9
|
Interaction between human Ctf4 and the Cdc45/Mcm2-7/GINS (CMG) replicative helicase. Proc Natl Acad Sci U S A 2013; 110:19760-5. [PMID: 24255107 DOI: 10.1073/pnas.1320202110] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromosome transmission fidelity 4 (Ctf4) is a conserved protein required for DNA replication. In this report, interactions between human Ctf4 (hCtf4) and the replicative helicase containing the cell division cycle 45 (Cdc45)/minichromosome maintenance 2-7 (Mcm2-7)/Go, Ichi, Nii, and San (GINS) (CMG) proteins [human CMG (hCMG) complex] were examined. The hCtf4-CMG complex was isolated following in vitro interaction of purified proteins (hCtf4 plus the hCMG complex), coinfection of Spodoptera frugiperda (Sf9) insect cells with viruses expressing the hCMG complex and hCtf4, and from HeLa cell chromatin after benzonase and immunoprecipitation steps. The stability of the hCtf4-CMG complex depends upon interactions between hCtf4 and multiple components of the hCMG complex. The hCtf4-CMG complex, like the hCMG complex, contains DNA helicase activity that is more salt-resistant than the helicase activity of the hCMG complex. We demonstrate that the hCtf4-CMG complex contains a homodimeric hCtf4 and a monomeric hCMG complex and suggest that the homodimeric hCtf4 acts as a platform linking polymerase α to the hCMG complex. The role of the hCMG complex as the core of the replisome is also discussed.
Collapse
|
10
|
Li Y, Xiao H, de Renty C, Jaramillo-Lambert A, Han Z, DePamphilis ML, Brown KJ, Zhu W. The involvement of acidic nucleoplasmic DNA-binding protein (And-1) in the regulation of prereplicative complex (pre-RC) assembly in human cells. J Biol Chem 2012; 287:42469-79. [PMID: 23093411 DOI: 10.1074/jbc.m112.404277] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA replication in all eukaryotes starts with the process of loading the replicative helicase MCM2-7 onto chromatin during late mitosis of the cell cycle. MCM2-7 is a key component of the prereplicative complex (pre-RC), which is loaded onto chromatin by the concerted action of origin recognition complex, Cdc6, and Cdt1. Here, we demonstrate that And-1 is assembled onto chromatin in late mitosis and early G(1) phase before the assembly of pre-RC in human cells. And-1 forms complexes with MCM2-7 to facilitate the assembly of MCM2-7 onto chromatin at replication origins in late mitosis and G(1) phase. We also present data to show that depletion of And-1 significantly reduces the interaction between Cdt1 and MCM7 in G(1) phase cells. Thus, human And-1 facilitates loading of the MCM2-7 helicase onto chromatin during the assembly of pre-RC.
Collapse
Affiliation(s)
- Yongming Li
- Department of Biochemistry and Molecular Biology, The George Washington University Medical School, Washington, D. C. 20037, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Errico A, Costanzo V. Mechanisms of replication fork protection: a safeguard for genome stability. Crit Rev Biochem Mol Biol 2012; 47:222-35. [DOI: 10.3109/10409238.2012.655374] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Sacco E, Hasan MM, Alberghina L, Vanoni M. Comparative analysis of the molecular mechanisms controlling the initiation of chromosomal DNA replication in yeast and in mammalian cells. Biotechnol Adv 2012; 30:73-98. [DOI: 10.1016/j.biotechadv.2011.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/14/2011] [Indexed: 11/26/2022]
|
13
|
Abstract
Histone acetyltransferases (HATs) play a central role in the modification of chromatin as well as in pathogenesis of a broad set of diseases including cancers. Gcn5 is the first identified transcription-related histone acetyltransferase (HAT) that has been implicated in the regulation of diverse cellular functions. However, how Gcn5 proteins are regulated remains largely unknown. Here we show that And-1 (a HMG domain-containing protein) has remarkable capability to regulate the stability of Gcn5 proteins and thereby histone H3 acetylation. We find that And-1 forms a complex with both histone H3 and Gcn5. Downregulation of And-1 results in Gcn5 degradation, leading to the reduction of H3K9 and H3K56 acetylation. And-1 overexpression stabilizes Gcn5 through protein-protein interactions in vivo. Furthermore, And-1 expression is increased in cancer cells in a manner correlating with increased Gcn5 and H3K9Ac and H3K56Ac. Thus, our data reveal not only a functional link between Gcn5 and And-1 that is essential to regulate Gcn5 protein stability and histone H3 acetylation, but also a potential role of And-1 in cancer.
Collapse
|
14
|
Fortini BK, Pokharel S, Polaczek P, Balakrishnan L, Bambara RA, Campbell JL. Characterization of the endonuclease and ATP-dependent flap endo/exonuclease of Dna2. J Biol Chem 2011; 286:23763-70. [PMID: 21572043 DOI: 10.1074/jbc.m111.243071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two processes, DNA replication and DNA damage repair, are key to maintaining genomic fidelity. The Dna2 enzyme lies at the heart of both of these processes, acting in conjunction with flap endonuclease 1 and replication protein A in DNA lagging strand replication and with BLM/Sgs1 and MRN/X in double strand break repair. In vitro, Dna2 helicase and flap endo/exonuclease activities require an unblocked 5' single-stranded DNA end to unwind or cleave DNA. In this study we characterize a Dna2 nuclease activity that does not require, and in fact can create, 5' single-stranded DNA ends. Both endonuclease and flap endo/exonuclease are abolished by the Dna2-K677R mutation, implicating the same active site in catalysis. In addition, we define a novel ATP-dependent flap endo/exonuclease activity, which is observed only in the presence of Mn(2+). The endonuclease is blocked by ATP and is thus experimentally distinguishable from the flap endo/exonuclease function. Thus, Dna2 activities resemble those of RecB and AddAB nucleases even more closely than previously appreciated. This work has important implications for understanding the mechanism of action of Dna2 in multiprotein complexes, where dissection of enzymatic activities and cofactor requirements of individual components contributing to orderly and precise execution of multistep replication/repair processes depends on detailed characterization of each individual activity.
Collapse
Affiliation(s)
- Barbara K Fortini
- Braun Laboratories, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | |
Collapse
|
15
|
Kang YH, Lee CH, Seo YS. Dna2 on the road to Okazaki fragment processing and genome stability in eukaryotes. Crit Rev Biochem Mol Biol 2010; 45:71-96. [PMID: 20131965 DOI: 10.3109/10409230903578593] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
DNA replication is a primary mechanism for maintaining genome integrity, but it serves this purpose best by cooperating with other proteins involved in DNA repair and recombination. Unlike leading strand synthesis, lagging strand synthesis has a greater risk of faulty replication for several reasons: First, a significant part of DNA is synthesized by polymerase alpha, which lacks a proofreading function. Second, a great number of Okazaki fragments are synthesized, processed and ligated per cell division. Third, the principal mechanism of Okazaki fragment processing is via generation of flaps, which have the potential to form a variety of structures in their sequence context. Finally, many proteins for the lagging strand interact with factors involved in repair and recombination. Thus, lagging strand DNA synthesis could be the best example of a converging place of both replication and repair proteins. To achieve the risky task with extraordinary fidelity, Okazaki fragment processing may depend on multiple layers of redundant, but connected pathways. An essential Dna2 endonuclease/helicase plays a pivotal role in processing common structural intermediates that occur during diverse DNA metabolisms (e.g. lagging strand synthesis and telomere maintenance). Many roles of Dna2 suggest that the preemptive removal of long or structured flaps ultimately contributes to genome maintenance in eukaryotes. In this review, we describe the function of Dna2 in Okazaki fragment processing, and discuss its role in the maintenance of genome integrity with an emphasis on its functional interactions with other factors required for genome maintenance.
Collapse
Affiliation(s)
- Young-Hoon Kang
- Center for DNA Replication and Genome Instability, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | | | | |
Collapse
|
16
|
Wang J, Wu R, Lu Y, Liang C. Ctf4p facilitates Mcm10p to promote DNA replication in budding yeast. Biochem Biophys Res Commun 2010; 395:336-41. [PMID: 20381454 DOI: 10.1016/j.bbrc.2010.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 04/01/2010] [Indexed: 11/28/2022]
Abstract
Ctf4p (chromosome transmission fidelity) has been reported to function in DNA metabolism and sister chromatid cohesion in Saccharomyces cerevisiae. In this study, a ctf4(S143F) mutant was isolated from a yeast genetic screen to identify replication-initiation proteins. The ctf4(S143F) mutant exhibits plasmid maintenance defects which can be suppressed by the addition of multiple origins to the plasmid, like other known replication-initiation mutants. We show that both ctf4(S143F) and ctf4Delta strains have defects in S phase entry and S phase progression at the restrictive temperature of 38 degrees C. Ctf4p localizes in the nucleus throughout the cell cycle but only starts to bind chromatin at the G1/S transition and then disassociates from chromatin after DNA replication. Furthermore, Ctf4p interacts with Mcm10p physically and genetically, and the chromatin association of Ctf4p depends on Mcm10p. Finally, deletion of CTF4 destabilizes Mcm10p and Pol alpha in both mcm10-1 and MCM10 cells. These data indicate that Ctf4p facilitates Mcm10p to promote the DNA replication.
Collapse
Affiliation(s)
- Jiafeng Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | | | | | | |
Collapse
|
17
|
Huang H, Weiner BE, Zhang H, Fuller BE, Gao Y, Wile BM, Zhao K, Arnett DR, Chazin WJ, Fanning E. Structure of a DNA polymerase alpha-primase domain that docks on the SV40 helicase and activates the viral primosome. J Biol Chem 2010; 285:17112-22. [PMID: 20234039 DOI: 10.1074/jbc.m110.116830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase alpha-primase (pol-prim) plays a central role in DNA replication in higher eukaryotes, initiating synthesis on both leading and lagging strand single-stranded DNA templates. Pol-prim consists of a primase heterodimer that synthesizes RNA primers, a DNA polymerase that extends them, and a fourth subunit, p68 (also termed B-subunit), that is thought to regulate the complex. Although significant knowledge about single-subunit primases of prokaryotes has accumulated, the functions and regulation of pol-prim remain poorly understood. In the SV40 replication model, the p68 subunit is required for primosome activity and binds directly to the hexameric viral helicase T antigen, suggesting a functional link between T antigen-p68 interaction and primosome activity. To explore this link, we first mapped the interacting regions of the two proteins and discovered a previously unrecognized N-terminal globular domain of p68 (p68N) that physically interacts with the T antigen helicase domain. NMR spectroscopy was used to determine the solution structure of p68N and map its interface with the T antigen helicase domain. Structure-guided mutagenesis of p68 residues in the interface diminished T antigen-p68 interaction, confirming the interaction site. SV40 primosome activity of corresponding pol-prim mutants decreased in proportion to the reduction in p68N-T antigen affinity, confirming that p68-T antigen interaction is vital for primosome function. A model is presented for how this interaction regulates SV40 primosome activity, and the implications of our findings are discussed in regard to the molecular mechanisms of eukaryotic DNA replication initiation.
Collapse
Affiliation(s)
- Hao Huang
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Differences in the DNA replication of unicellular eukaryotes and metazoans: known unknowns. EMBO Rep 2010; 11:270-8. [PMID: 20203697 DOI: 10.1038/embor.2010.27] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 01/28/2010] [Indexed: 01/01/2023] Open
Abstract
Although the basic mechanisms of DNA synthesis are conserved across species, there are differences between simple and complex organisms. In contrast to lower eukaryotes, replication origins in complex eukaryotes lack DNA sequence specificity, can be activated in response to stressful conditions and require poorly conserved factors for replication firing. The response to replication fork damage is monitored by conserved proteins, such as the TIPIN-TIM-CLASPIN complex. The absence of this complex induces severe effects on yeast replication, whereas in higher eukaryotes it is only crucial when the availability of replication origins is limiting. Finally, the dependence of DNA replication on homologous recombination proteins such as RAD51 and the MRE11-RAD50-NBS1 complex is also different; they are dispensable for yeast S-phase but essential for accurate DNA replication in metazoans under unchallenged conditions. The reasons for these differences are not yet understood. Here, we focus on some of these known unknowns of DNA replication.
Collapse
|
19
|
Sato N, Koinuma J, Fujita M, Hosokawa M, Ito T, Tsuchiya E, Kondo S, Nakamura Y, Daigo Y. Activation of WD repeat and high-mobility group box DNA binding protein 1 in pulmonary and esophageal carcinogenesis. Clin Cancer Res 2009; 16:226-39. [PMID: 20028748 DOI: 10.1158/1078-0432.ccr-09-1405] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We attempted to identify novel biomarkers and therapeutic targets for lung and esophageal cancers. EXPERIMENTAL DESIGN We screened for genes that were overexpressed in a large proportion of lung and esophageal carcinomas using a cDNA microarray representing 27,648 genes or expressed sequence tags. A gene encoding WDHD1, a WD repeat and high-mobility group box DNA binding protein 1, was selected as a candidate. Tumor tissue microarray containing 267 archival non-small cell lung cancers and 283 esophageal squamous cell carcinomas (ESCC) was used to investigate the clinicopathologic significance of WDHD1 expression. The role of WDHD1 in cancer cell growth and/or survival was examined by small interfering RNA experiments and cell growth assays. The mechanism of WDHD1 activation through its phosphorylation in cancer cells was examined by immunoprecipitation and kinase assays. RESULTS Positive WDHD1 immunostaining was associated with a poor prognosis for patients with non-small cell lung cancer (P = 0.0403) as well as ESCC (P = 0.0426). Multivariate analysis indicated it to be an independent prognostic factor for ESCC (P = 0.0104). Suppression of WDHD1 expression with small interfering RNAs effectively suppressed lung and esophageal cancer cell growth. In addition, induction of the exogenous expression of WDHD1 promoted the growth of mammalian cells. AKT1 kinase seemed to phosphorylate and stabilize the WDHD1 protein in cancer cells. CONCLUSIONS WDHD1 expression is likely to play an important role in lung and esophageal carcinogenesis as a cell cycle regulator and a downstream molecule in the phosphoinositide 3-kinase/AKT pathway, and that WDHD1 is a candidate biomarker and a promising therapeutic target for cancer.
Collapse
Affiliation(s)
- Nagato Sato
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tipin/Tim1/And1 protein complex promotes Pol alpha chromatin binding and sister chromatid cohesion. EMBO J 2009; 28:3681-92. [PMID: 19893489 PMCID: PMC2775894 DOI: 10.1038/emboj.2009.304] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 09/18/2009] [Indexed: 01/05/2023] Open
Abstract
The Tipin/Tim1 complex plays an important role in the S-phase checkpoint and replication fork stability. However, the biochemical function of this complex is poorly understood. Using Xenopus laevis egg extract we show that Tipin is required for DNA replication in the presence of limiting amount of replication origins. Under these conditions the DNA replication defect correlates with decreased levels of DNA Polalpha on chromatin. We identified And1, a Polalpha chromatin-loading factor, as new Tipin-binding partner. We found that both Tipin and And1 promote stable binding of Polalpha to chromatin and that this is required for DNA replication under unchallenged conditions. Strikingly, extracts lacking Tipin and And1 also show reduced sister chromatids cohesion. These data indicate that Tipin/Tim1/And1 form a complex that links stabilization of replication fork and establishment of sister chromatid cohesion.
Collapse
|
21
|
Assembly of the Cdc45-Mcm2-7-GINS complex in human cells requires the Ctf4/And-1, RecQL4, and Mcm10 proteins. Proc Natl Acad Sci U S A 2009; 106:15628-32. [PMID: 19805216 DOI: 10.1073/pnas.0908039106] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, the activation of the prereplicative complex and assembly of an active DNA unwinding complex are critical but poorly understood steps required for the initiation of DNA replication. In this report, we have used bimolecular fluorescence complementation assays in HeLa cells to examine the interactions between Cdc45, Mcm2-7, and the GINS complex (collectively called the CMG complex), which seem to play a key role in the formation and progression of replication forks. Interactions between the CMG components were observed only after the G(1)/S transition of the cell cycle and were abolished by treatment of cells with either a CDK inhibitor or siRNA against the Cdc7 kinase. Stable association of CMG required all three components of the CMG complex as well as RecQL4, Ctf4/And-1, and Mcm10. Surprisingly, depletion of TopBP1, a homologue of Dpb11 that plays an essential role in the chromatin loading of Cdc45 and GINS in yeast cells, did not significantly affect CMG complex formation. These results suggest that the proteins involved in the assembly of initiation complexes in human cells may differ somewhat from those in yeast systems.
Collapse
|
22
|
Yoshizawa-Sugata N, Masai H. Roles of human AND-1 in chromosome transactions in S phase. J Biol Chem 2009; 284:20718-28. [PMID: 19439411 PMCID: PMC2742837 DOI: 10.1074/jbc.m806711200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 03/02/2009] [Indexed: 11/06/2022] Open
Abstract
Coordinated execution of DNA replication, checkpoint activation, and postreplicative chromatid cohesion is intimately related to the replication fork machinery. Human AND-1/chromosome transmission fidelity 4 is localized adjacent to replication foci and is required for efficient DNA synthesis. In S phase, AND-1 is phosphorylated in response to replication arrest in a manner dependent on checkpoint kinase, ataxia telangiectasia-mutated, ataxia telangiectasia-mutated and Rad3-related protein, and Cdc7 kinase but not on Chk1. Depletion of AND-1 increases DNA damage, delays progression of S phase, leads to accumulation of late S and/or G2 phase cells, and induces cell death in cancer cells. It also elevated UV-radioresistant DNA synthesis and caused premature recovery of replication after hydroxyurea arrest, indicating that lack of AND-1 compromises checkpoint activation. This may be partly due to the decreased levels of Chk1 protein in AND-1-depleted cells. Furthermore, AND-1 interacts with cohesin proteins Smc1, Smc3, and Rad21/Scc1, consistent with proposed roles of yeast counterparts of AND-1 in sister chromatid cohesion. Depletion of AND-1 leads to significant inhibition of homologous recombination repair of an I-SceI-driven double strand break. Based on these data, we propose that AND-1 coordinates multiple cellular events in S phase and G2 phase, such as DNA replication, checkpoint activation, sister chromatid cohesion, and DNA damage repair, thus playing a pivotal role in maintenance of genome integrity.
Collapse
Affiliation(s)
- Naoko Yoshizawa-Sugata
- From the Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hisao Masai
- From the Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
23
|
Tanaka H, Katou Y, Yagura M, Saitoh K, Itoh T, Araki H, Bando M, Shirahige K. Ctf4 coordinates the progression of helicase and DNA polymerase alpha. Genes Cells 2009; 14:807-20. [PMID: 19496828 DOI: 10.1111/j.1365-2443.2009.01310.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ctf4 is a protein conserved in eukaryotes and a constituent of the replisome progression complex. It also plays a role in the establishment of sister chromatid cohesion. In our current study, we demonstrate that the replication checkpoint is activated in the absence of Ctf4, and that the interaction between the MCM helicase-go ichi ni san (GINS) complex and DNA polymerase alpha (Pol alpha)-primase is destabilized specifically in a ctf4Delta mutant. An in vitro interaction between GINS and DNA Pol alpha was also found to be mediated by Ctf4. The same interaction was not affected in the absence of the replication checkpoint mediators Tof1 or Mrc1. In ctf4Delta cells, DNA pol alpha became significantly unstable and was barely detectable at the replication forks in HU. In contrast, the quantities of helicase and DNA pol epsilon bound to replication forks were almost unchanged but their localizations were widely and abnormally dispersed in the mutant cells compared with wild type. These results lead us to propose that Ctf4 is a key connector between DNA helicase and Pol alpha and is required for the coordinated progression of the replisome.
Collapse
Affiliation(s)
- Hirokazu Tanaka
- Laboratory of Chromosome Structure and Function, Department of Biological Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama City, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Deshpande GP, Hayles J, Hoe KL, Kim DU, Park HO, Hartsuiker E. Screening a genome-wide S. pombe deletion library identifies novel genes and pathways involved in genome stability maintenance. DNA Repair (Amst) 2009; 8:672-9. [PMID: 19264558 DOI: 10.1016/j.dnarep.2009.01.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 01/19/2009] [Accepted: 01/20/2009] [Indexed: 11/27/2022]
Abstract
The maintenance of genome stability is essential for an organism to avoid cell death and cancer. Based on screens for mutant sensitivity against DNA damaging agents a large number of DNA repair and DNA damage checkpoint genes have previously been identified in genetically amenable model organisms. These screens have however not been exhaustive and various genes have been, and remain to be, identified by other means. We therefore screened a genome-wide Schizosaccharomyces pombe deletion library for mutants sensitive against various DNA damaging agents. Screening the library on different concentrations of these genotoxins allowed us to assign a semi-quantitative score to each mutant expressing the degree of sensitivity. We isolated a total of 229 mutants which show sensitivity to one or more of the DNA damaging agents used. This set of mutants was significantly enriched for processes involved in DNA replication, DNA repair, DNA damage checkpoint, response to UV, mating type switching, telomere length maintenance and meiosis, and also for processes involved in the establishment and maintenance of chromatin architecture (notably members of the SAGA complex), transcription (members of the CCR4-Not complex) and microtubule related processes (members of the DASH complex). We also identified 23 sensitive mutants which had previously been classified as "sequence orphan" or as "conserved hypothetical". Among these, we identified genes showing extensive homology to CtIP, Stra13, Ybp1/Ybp2, Human Fragile X mental retardation interacting protein NUFIP1, and Aprataxin. The identification of these homologues will provide a basis for the further characterisation of the role of these conserved proteins in the genetically amenable model organism S. pombe.
Collapse
Affiliation(s)
- Gaurang P Deshpande
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | | | | | | | | | | |
Collapse
|
25
|
Farina A, Shin JH, Kim DH, Bermudez VP, Kelman Z, Seo YS, Hurwitz J. Studies with the human cohesin establishment factor, ChlR1. Association of ChlR1 with Ctf18-RFC and Fen1. J Biol Chem 2008; 283:20925-36. [PMID: 18499658 PMCID: PMC2475708 DOI: 10.1074/jbc.m802696200] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 05/21/2008] [Indexed: 01/17/2023] Open
Abstract
Human ChlR1 (hChlR1), a member of the DEAD/DEAH subfamily of helicases, was shown to interact with components of the cohesin complex and play a role in sister chromatid cohesion. In order to study the biochemical and biological properties of hChlR1, we purified the protein from 293 cells and demonstrated that hChlR1 possesses DNA-dependent ATPase and helicase activities. This helicase translocates on single-stranded DNA in the 5' to 3' direction in the presence of ATP and, to a lesser extent, dATP. Its unwinding activity requires a 5'-singlestranded region for helicase loading, since flush-ended duplex structures do not support unwinding. The helicase activity of hChlR1 is capable of displacing duplex regions up to 100 bp, which can be extended to 500 bp by RPA or the cohesion establishment factor, the Ctf18-RFC (replication factor C) complex. We show that hChlR1 interacts with the hCtf18-RFC complex, human proliferating cell nuclear antigen, and hFen1. The interactions between Fen1 and hChlR1 stimulate the flap endonuclease activity of Fen1. Selective depletion of either hChlR1 or Fen1 by targeted small interfering RNA treatment results in the precocious separation of sister chromatids. These findings are consistent with a role of hChlR1 in the establishment of sister chromatid cohesion and suggest that its action may contribute to lagging strand processing events important in cohesion.
Collapse
Affiliation(s)
- Andrea Farina
- Program of Molecular Biology, Memorial
Sloan Kettering Cancer Center, New York, New York 10065, the
University of Maryland Biotechnology Institute,
Rockville, Maryland 20850, and the Department of
Biological Sciences, Korea Advanced Institute of Science and Technology,
Daejeon, 305-701, Korea
| | - Jae-Ho Shin
- Program of Molecular Biology, Memorial
Sloan Kettering Cancer Center, New York, New York 10065, the
University of Maryland Biotechnology Institute,
Rockville, Maryland 20850, and the Department of
Biological Sciences, Korea Advanced Institute of Science and Technology,
Daejeon, 305-701, Korea
| | - Do-Hyung Kim
- Program of Molecular Biology, Memorial
Sloan Kettering Cancer Center, New York, New York 10065, the
University of Maryland Biotechnology Institute,
Rockville, Maryland 20850, and the Department of
Biological Sciences, Korea Advanced Institute of Science and Technology,
Daejeon, 305-701, Korea
| | - Vladimir P. Bermudez
- Program of Molecular Biology, Memorial
Sloan Kettering Cancer Center, New York, New York 10065, the
University of Maryland Biotechnology Institute,
Rockville, Maryland 20850, and the Department of
Biological Sciences, Korea Advanced Institute of Science and Technology,
Daejeon, 305-701, Korea
| | - Zvi Kelman
- Program of Molecular Biology, Memorial
Sloan Kettering Cancer Center, New York, New York 10065, the
University of Maryland Biotechnology Institute,
Rockville, Maryland 20850, and the Department of
Biological Sciences, Korea Advanced Institute of Science and Technology,
Daejeon, 305-701, Korea
| | - Yeon-Soo Seo
- Program of Molecular Biology, Memorial
Sloan Kettering Cancer Center, New York, New York 10065, the
University of Maryland Biotechnology Institute,
Rockville, Maryland 20850, and the Department of
Biological Sciences, Korea Advanced Institute of Science and Technology,
Daejeon, 305-701, Korea
| | - Jerard Hurwitz
- Program of Molecular Biology, Memorial
Sloan Kettering Cancer Center, New York, New York 10065, the
University of Maryland Biotechnology Institute,
Rockville, Maryland 20850, and the Department of
Biological Sciences, Korea Advanced Institute of Science and Technology,
Daejeon, 305-701, Korea
| |
Collapse
|
26
|
A DNA polymerase alpha accessory protein, Mcl1, is required for propagation of centromere structures in fission yeast. PLoS One 2008; 3:e2221. [PMID: 18493607 PMCID: PMC2376062 DOI: 10.1371/journal.pone.0002221] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 04/02/2008] [Indexed: 11/19/2022] Open
Abstract
Specialized chromatin exists at centromeres and must be precisely transmitted during DNA replication. The mechanisms involved in the propagation of these structures remain elusive. Fission yeast centromeres are composed of two chromatin domains: the central CENP-ACnp1 kinetochore domain and flanking heterochromatin domains. Here we show that fission yeast Mcl1, a DNA polymerase α (Polα) accessory protein, is critical for maintenance of centromeric chromatin. In a screen for mutants that alleviate both central domain and outer repeat silencing, we isolated several cos mutants, of which cos1 is allelic to mcl1. The mcl1-101 mutation causes reduced CENP-ACnp1 in the central domain and an aberrant increase in histone acetylation in both domains. These phenotypes are also observed in a mutant of swi7+, which encodes a catalytic subunit of Polα. Mcl1 forms S-phase-specific nuclear foci, which colocalize with those of PCNA and Polα. These results suggest that Mcl1 and Polα are required for propagation of centromere chromatin structures during DNA replication.
Collapse
|
27
|
Molecular characterization of the role of the Schizosaccharomyces pombe nip1+/ctp1+ gene in DNA double-strand break repair in association with the Mre11-Rad50-Nbs1 complex. Mol Cell Biol 2008; 28:3639-51. [PMID: 18378696 DOI: 10.1128/mcb.01828-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Schizosaccharomyces pombe nip1(+)/ctp1(+) gene was previously identified as an slr (synthetically lethal with rad2) mutant. Epistasis analysis indicated that Nip1/Ctp1 functions in Rhp51-dependent recombinational repair, together with the Rad32 (spMre11)-Rad50-Nbs1 complex, which plays important roles in the early steps of DNA double-strand break repair. Nip1/Ctp1 was phosphorylated in asynchronous, exponentially growing cells and further phosphorylated in response to bleomycin treatment. Overproduction of Nip1/Ctp1 suppressed the DNA repair defect of an nbs1-s10 mutant, which carries a mutation in the FHA phosphopeptide-binding domain of Nbs1, but not of an nbs1 null mutant. Meiotic DNA double-strand breaks accumulated in the nip1/ctp1 mutant. The DNA repair phenotypes and epistasis relationships of nip1/ctp1 are very similar to those of the Saccharomyces cerevisiae sae2/com1 mutant, suggesting that Nip1/Ctp1 is a functional homologue of Sae2/Com1, although the sequence similarity between the proteins is limited to the C-terminal region containing the RHR motif. We found that the RxxL and CxxC motifs are conserved in Schizosaccharomyces species and in vertebrate CtIP, originally identified as a cofactor of the transcriptional corepressor CtBP. However, these two motifs are not found in other fungi, including Saccharomyces and Aspergillus species. We propose that Nip1/Ctp1 is a functional counterpart of Sae2/Com1 and CtIP.
Collapse
|
28
|
Zhu W, Ukomadu C, Jha S, Senga T, Dhar SK, Wohlschlegel JA, Nutt LK, Kornbluth S, Dutta A. Mcm10 and And-1/CTF4 recruit DNA polymerase alpha to chromatin for initiation of DNA replication. Genes Dev 2007; 21:2288-99. [PMID: 17761813 PMCID: PMC1973143 DOI: 10.1101/gad.1585607] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 07/24/2007] [Indexed: 01/03/2023]
Abstract
The MCM2-7 helicase complex is loaded on DNA replication origins during the G1 phase of the cell cycle to license the origins for replication in S phase. How the initiator primase-polymerase complex, DNA polymerase alpha (pol alpha), is brought to the origins is still unclear. We show that And-1/Ctf4 (Chromosome transmission fidelity 4) interacts with Mcm10, which associates with MCM2-7, and with the p180 subunit of DNA pol alpha. And-1 is essential for DNA synthesis and the stability of p180 in mammalian cells. In Xenopus egg extracts And-1 is loaded on the chromatin after Mcm10, concurrently with DNA pol alpha, and is required for efficient DNA synthesis. Mcm10 is required for chromatin loading of And-1 and an antibody that disrupts the Mcm10-And-1 interaction interferes with the loading of And-1 and of pol alpha, inhibiting DNA synthesis. And-1/Ctf4 is therefore a new replication initiation factor that brings together the MCM2-7 helicase and the DNA pol alpha-primase complex, analogous to the linker between helicase and primase or helicase and polymerase that is seen in the bacterial replication machinery. The discovery also adds to the connection between replication initiation and sister chromatid cohesion.
Collapse
Affiliation(s)
- Wenge Zhu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Chinweike Ukomadu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Sudhakar Jha
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Takeshi Senga
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Suman K. Dhar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - James A. Wohlschlegel
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Leta K. Nutt
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Sally Kornbluth
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
29
|
Mamnun YM, Katayama S, Toda T. Fission yeast Mcl1 interacts with SCF(Pof3) and is required for centromere formation. Biochem Biophys Res Commun 2006; 350:125-30. [PMID: 16997270 DOI: 10.1016/j.bbrc.2006.09.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 09/01/2006] [Indexed: 11/20/2022]
Abstract
The fission yeast S-phase regulator Mcl1, an orthologue of budding yeast Ctf4, is an interacting protein of DNA polymerase alpha and an important factor to ensure DNA replication and sister chromatid cohesion. Deletion of this protein results in severe cohesion defects, however, the function and cellular role of this protein remains elusive. In this study we isolate Mcl1 as an interaction partner of the F-box protein Pof3, which is a component of the ubiquitin ligase complex SCF(Pof3). Comparing the phenotypes of cells lacking pof3+ or mcl1+ we find a broad overlap including the accumulation of DNA damage and activation of the DNA damage pathway. Importantly, we identity a novel, specific role for Mcl1 in the transcriptional silencing and the localisation of CENP-A at the centromeres.
Collapse
Affiliation(s)
- Yasmine M Mamnun
- Laboratory of Cell Regulation, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | |
Collapse
|
30
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|