1
|
Bunn RA, Simpson DT, Bullington LS, Lekberg Y, Janos DP. Revisiting the 'direct mineral cycling' hypothesis: arbuscular mycorrhizal fungi colonize leaf litter, but why? THE ISME JOURNAL 2019; 13:1891-1898. [PMID: 30911130 PMCID: PMC6775977 DOI: 10.1038/s41396-019-0403-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/08/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Rebecca A Bunn
- Department of Environmental Sciences, Western Washington University, 516 High St., MS-9181, Bellingham, WA, 98225, USA.
| | - Dylan T Simpson
- Department of Environmental Sciences, Western Washington University, 516 High St., MS-9181, Bellingham, WA, 98225, USA
| | | | - Ylva Lekberg
- MPG Ranch, Missoula, MT, USA
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, USA
| | - David P Janos
- Department of Biology, University of Miami, Miami, FL, USA
| |
Collapse
|
2
|
Sun Z, Song J, Xin X, Xie X, Zhao B. Arbuscular Mycorrhizal Fungal 14-3-3 Proteins Are Involved in Arbuscule Formation and Responses to Abiotic Stresses During AM Symbiosis. Front Microbiol 2018; 9:91. [PMID: 29556216 PMCID: PMC5844941 DOI: 10.3389/fmicb.2018.00091] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are soil-borne fungi belonging to the ancient phylum Glomeromycota and are important symbionts of the arbuscular mycorrhiza, enhancing plant nutrient acquisition and resistance to various abiotic stresses. In contrast to their significant physiological implications, the molecular basis involved is poorly understood, largely due to their obligate biotrophism and complicated genetics. Here, we identify and characterize three genes termed Fm201, Ri14-3-3 and RiBMH2 that encode 14-3-3-like proteins in the AM fungi Funneliformis mosseae and Rhizophagus irregularis, respectively. The transcriptional levels of Fm201, Ri14-3-3 and RiBMH2 are strongly induced in the pre-symbiotic and symbiotic phases, including germinating spores, intraradical hyphae- and arbuscules-enriched roots. To functionally characterize the Fm201, Ri14-3-3 and RiBMH2 genes, we took advantage of a yeast heterologous system owing to the lack of AM fungal transformation systems. Our data suggest that all three genes can restore the lethal Saccharomyces cerevisiae bmh1 bmh2 double mutant on galactose-containing media. Importantly, yeast one-hybrid analysis suggests that the transcription factor RiMsn2 is able to recognize the STRE (CCCCT/AGGGG) element present in the promoter region of Fm201 gene. More importantly, Host-Induced Gene Silencing of both Ri14-3-3 and RiBMH2 in Rhizophagus irregularis impairs the arbuscule formation in AM symbiosis and inhibits the expression of symbiotic PT4 and MST2 genes from plant and fungal partners, respectively. We further subjected the AM fungus-Medicago truncatula association system to drought or salinity stress. Accordingly, the expression profiles in both mycorrhizal roots and extraradical hyphae reveal that these three 14-3-3-like genes are involved in response to drought or salinity stress. Collectively, our results provide new insights into molecular functions of the AM fungal 14-3-3 proteins in abiotic stress responses and arbuscule formation during AM symbiosis.
Collapse
Affiliation(s)
- Zhongfeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiabin Song
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xi'an Xin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianan Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Pepe A, Sbrana C, Ferrol N, Giovannetti M. An in vivo whole-plant experimental system for the analysis of gene expression in extraradical mycorrhizal mycelium. MYCORRHIZA 2017; 27:659-668. [PMID: 28573458 DOI: 10.1007/s00572-017-0779-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/16/2017] [Indexed: 05/09/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish beneficial mutualistic symbioses with land plants, receiving carbon in exchange for mineral nutrients absorbed by the extraradical mycelium (ERM). With the aim of obtaining in vivo produced ERM for gene expression analyses, a whole-plant bi-dimensional experimental system was devised and tested with three host plants and three fungal symbionts. In such a system, Funneliformis mosseae in symbiosis with Cichorium intybus var. foliosum, Lactuca sativa, and Medicago sativa produced ERM whose lengths ranged from 9.8 ± 0.8 to 20.8 ± 1.2 m per plant. Since ERM produced in symbiosis with C. intybus showed the highest values for the different structural parameters assessed, this host was used to test the whole-plant system with F. mosseae, Rhizoglomus irregulare, and Funneliformis coronatus. The whole-plant system yielded 1-7 mg of ERM fresh biomass per plant per harvest, and continued producing new ERM for 6 months. Variable amounts of high-quality and intact total RNA, ranging from 15 to 65 μg RNA/mg ERM fresh weight, were extracted from the ERM of the three AMF isolates. Ammonium transporter gene expression was successfully determined in the cDNAs obtained from ERM of the three fungal symbionts by RT-qPCR using gene-specific primers designed on available (R. irregulare) and new (F. mosseae and F. coronatus) ammonium transporter gene sequences. The whole-plant experimental system represents a useful research tool for large production and easy collection of ERM for morphological, physiological, and biochemical analyses, suitable for a wide variety of AMF species, for a virtually limitless range of host plants and for studies involving diverse symbiotic interactions.
Collapse
Affiliation(s)
- Alessandra Pepe
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Cristiana Sbrana
- CNR, Institute of Agricultural Biology and Biotechnology, UOS Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Nuria Ferrol
- Departamento de Microbiologia del Suelo y Sistemas Simbioticos, Estacion Experimental del Zaidin, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
4
|
Fiorilli V, Belmondo S, Khouja HR, Abbà S, Faccio A, Daghino S, Lanfranco L. RiPEIP1, a gene from the arbuscular mycorrhizal fungus Rhizophagus irregularis, is preferentially expressed in planta and may be involved in root colonization. MYCORRHIZA 2016; 26:609-621. [PMID: 27075897 DOI: 10.1007/s00572-016-0697-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Transcriptomics and genomics data recently obtained from the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis have offered new opportunities to decipher the contribution of the fungal partner to the establishment of the symbiotic association. The large number of genes which do not show similarity to known proteins witnesses the uniqueness of this group of plant-associated fungi. In this work, we characterize a gene that was called RiPEIP1 (Preferentially Expressed In Planta). Its expression is strongly induced in the intraradical phase, including arbuscules, and follows the expression profile of the Medicago truncatula phosphate transporter MtPT4, a molecular marker of a functional symbiosis. Indeed, mtpt4 mutant plants, which exhibit low mycorrhizal colonization and an accelerated arbuscule turnover, also show a reduced RiPEIP1 mRNA abundance. To further characterize RiPEIP1, in the absence of genetic transformation protocols for AM fungi, we took advantage of two different fungal heterologous systems. When expressed as a GFP fusion in yeast cells, RiPEIP1 localizes in the endomembrane system, in particular to the endoplasmic reticulum, which is consistent with the in silico prediction of four transmembrane domains. We then generated RiPEIP1-expressing strains of the fungus Oidiodendron maius, ericoid endomycorrhizal fungus for which transformation protocols are available. Roots of Vaccinium myrtillus colonized by RiPEIP1-expressing transgenic strains showed a higher mycorrhization level compared to roots colonized by the O. maius wild-type strain, suggesting that RiPEIP1 may regulate the root colonization process.
Collapse
Affiliation(s)
- Valentina Fiorilli
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy.
| | - Simone Belmondo
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Hassine Radhouane Khouja
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Simona Abbà
- Institute for Sustainable Plant Protection (IPSP), CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - Antonella Faccio
- Institute for Sustainable Plant Protection (IPSP), CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - Stefania Daghino
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Luisa Lanfranco
- Department of Life Science and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| |
Collapse
|
5
|
Hodge A. Interactions between arbuscular mycorrhizal fungi and organic material substrates. ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:47-99. [PMID: 25131400 DOI: 10.1016/b978-0-12-800259-9.00002-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arbuscular mycorrhizal (AM) associations are widespread and form between ca. two-thirds of all land plants and fungi in the phylum Glomeromycota. The association is a mutualistic symbiosis with the fungi enhancing nutrient capture for the plant while obtaining carbon in return. Although arbuscular mycorrhizal fungi (AMF) lack any substantial saprophytic capability they do preferentially associate with various organic substrates and respond by hyphal proliferation, indicating the fungus derives a benefit from the organic substrate. AMF may also enhance decomposition of the organic material. The benefit to the host plant of this hyphal proliferation is not always apparent, particularly regarding nitrogen (N) transfer, and there may be circumstances under which both symbionts compete for the N released given both have a large demand for N. The results of various studies examining AMF responses to organic substrates and the interactions with other members of the soil community will be discussed.
Collapse
Affiliation(s)
- Angela Hodge
- Department of Biology, University of York, York, United Kingdom.
| |
Collapse
|
6
|
|
7
|
Hodge A, Fitter AH. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci U S A 2010; 107:13754-9. [PMID: 20631302 PMCID: PMC2922220 DOI: 10.1073/pnas.1005874107] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are obligate biotrophs that acquire carbon (C) solely from host plants. AM fungi can proliferate hyphae in, and acquire nitrogen (N) from, organic matter. Although they can transfer some of that N to plants, we tested the hypothesis that organic matter is an important N source for the AM fungi themselves. We grew pairs of plants with and without the AM fungus Glomus hoi in microcosms that allowed only the fungus access to a 15N/13C-labeled organic patch; in some cases, one plant was shaded to reduce C supply to the fungus. The fungal hyphae proliferated vigorously in the patch, irrespective of shading, and increased plant growth and N content; approximately 3% of plant N came from the patch. The extraradical mycelium of the fungus was N-rich (3-5% N) and up to 31% of fungal N came from the patch, confirming the hypothesis. The fungus acquired N as decomposition products, because hyphae were not 13C-enriched. In a second experiment, hyphae of both G. hoi and Glomus mosseae that exploited an organic material patch were also better able to colonize a new host plant, demonstrating a fungal growth response. These findings show that AM fungi can obtain substantial amounts of N from decomposing organic materials and can enhance their fitness as a result. The large biomass and high N demand of AM fungi means that they represent a global N pool equivalent in magnitude to fine roots and play a substantial and hitherto overlooked role in the nitrogen cycle.
Collapse
Affiliation(s)
- Angela Hodge
- Department of Biology, University of York, York YO10 5YW, United Kingdom.
| | | |
Collapse
|
8
|
Délano-Frier JP, Tejeda-Sartorius M. Unraveling the network: Novel developments in the understanding of signaling and nutrient exchange mechanisms in the arbuscular mycorrhizal symbiosis. PLANT SIGNALING & BEHAVIOR 2008; 3:936-44. [PMID: 19513196 PMCID: PMC2633739 DOI: 10.4161/psb.6789] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 08/15/2008] [Indexed: 05/20/2023]
Abstract
The arbuscular mycorrhhiza (AM) symbiosis involves an intricate network of signaling and biochemical pathways designed to ensure that a beneficial relationship is established between the plant and fungal partners as a result of a mutual nutrient exchange. Emerging data has been recently published to explain why the relationship is not always fair, as observed in prevalent parasitic AM relationships in which the plant host receives no phosphorus (P) in exchange for carbon (C) delivered to the fungus. The theory behind this unorthodox view of the AM relationship, together with the description of other recent developments in nutrient mobilization as well as in key aspects of the bi-directional signaling that culminates in the symbiotic association, is the subject of this review.
Collapse
Affiliation(s)
- John Paul Délano-Frier
- Unidad de Biotecnología e Ingeniería Genética de Plantas; Cinvestav-Campus Guanajuato; Irapuato, Guanajuato México
| | | |
Collapse
|