1
|
Hosseini B, Käfer LS, Link TI. Mating-Type Analysis in Diaporthe Isolates from Soybean in Central Europe. J Fungi (Basel) 2025; 11:251. [PMID: 40278072 PMCID: PMC12028000 DOI: 10.3390/jof11040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Species of the genus Diaporthe have a mating-type system with the two mating types MAT1-1 and MAT1-2, like other ascomycetes. They can either be heterothallic, which means that any isolate only possesses one of the two mating types and needs a mating partner for sexual reproduction, or homothallic, which means that they possess both mating types and are self-fertile. For several Diaporthe species, no sexual reproduction has been observed so far. Using PCR with primers specific to the defining genes MAT1-1-1 and MAT1-2-1, we determined the mating types of 33 isolates of Diaporthe caulivora, D. eres, D. longicolla, and D. novem from central Europe. In addition, we partially sequenced the mating-type genes of 25 isolates. We found that different D. longicolla isolates either possess MAT1-1-1 or MAT1-2-1, making the species heterothallic, which is in contrast to previous studies and the general assumption that D. longicolla only reproduces asexually. D. eres and D. novem were also found to be heterothallic. Using genomic sequence information and re-sequencing of DNA and RNA, we identified the MAT1-1-1 gene in D. caulivora and present here the full sequence of the mating-type locus of this homothallic species. Finally, we used sequence information from MAT1-1-1 and MAT1-2-1, respectively, for improved phylogenetic resolution of our isolates.
Collapse
Affiliation(s)
- Behnoush Hosseini
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany;
| | | | - Tobias Immanuel Link
- Department of Phytopathology, Institute of Phytomedicine, Faculty of Agricultural Sciences, University of Hohenheim, Otto-Sander-Str. 5, 70599 Stuttgart, Germany;
| |
Collapse
|
2
|
Sun W, Liu W, Cai Y, Shi X, Wu L, Zhang J, Er L, Huang Q, Yin Q, Zhao Z, He P, Yu F. Structure of the Mating-Type Genes and Mating Systems of Verpa bohemica and Verpa conica (Ascomycota, Pezizomycotina). J Fungi (Basel) 2023; 9:1202. [PMID: 38132802 PMCID: PMC10745113 DOI: 10.3390/jof9121202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Verpa spp. are potentially important economic fungi within Morchellaceae. However, fundamental research on their mating systems, the key aspects of their life cycle, remains scarce. Fungal sexual reproduction is chiefly governed by mating-type genes, where the configuration of these genes plays a pivotal role in facilitating the reproductive process. For this study, de novo assembly methodologies based on genomic data from Verpa spp. were employed to extract precise information on the mating-type genes, which were then precisely identified in silico and by amplifying their single-ascospore populations using MAT-specific primers. The results suggest that the MAT loci of the three tested strains of V. bohemica encompassed both the MAT1-1-1 and MAT1-2-1 genes, implying homothallism. On the other hand, amongst the three V. conica isolates, only the MAT1-1-1 or MAT1-2-1 genes were present in their MAT loci, suggesting that V. conica is heterothallic. Moreover, bioinformatic analysis reveals that the three tested V. bohemica strains and one V. conica No. 21110 strain include a MAT1-1-10 gene in their MAT loci, while the other two V. conica strains contained MAT1-1-11, exhibiting high amino acid identities with those from corresponding Morchella species. In addition, MEME analysis shows that a total of 17 conserved protein motifs are present among the MAT1-1-10 encoded protein, while the MAT1-1-11 protein contained 10. Finally, the mating type genes were successfully amplified in corresponding single-ascospore populations of V. bohemica and V. conica, further confirming their life-cycle type. This is the first report on the mating-type genes and mating systems of Verpa spp., and the presented results are expected to benefit further exploitation of these potentially important economic fungi.
Collapse
Affiliation(s)
- Wenhua Sun
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (W.S.); (Q.Y.)
| | - Wei Liu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.); (L.W.); (J.Z.); (L.E.); (Q.H.)
| | - Yingli Cai
- Institute of Agro-Products Processing, Yunnan Academy of Agricultural Sciences, Kunming 650221, China;
| | - Xiaofei Shi
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.); (L.W.); (J.Z.); (L.E.); (Q.H.)
| | - Liyuan Wu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.); (L.W.); (J.Z.); (L.E.); (Q.H.)
| | - Jin Zhang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.); (L.W.); (J.Z.); (L.E.); (Q.H.)
- College of Resource and Environment, Yunnan Agricultural University, Kunming 650100, China
| | - Lingfang Er
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.); (L.W.); (J.Z.); (L.E.); (Q.H.)
- College of Resource and Environment, Yunnan Agricultural University, Kunming 650100, China
| | - Qiuchen Huang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.); (L.W.); (J.Z.); (L.E.); (Q.H.)
- School of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Qi Yin
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (W.S.); (Q.Y.)
| | - Zhiqiang Zhao
- Agricultural Technology Promotion Station in Zhuoni County, Gannan 747600, China;
| | - Peixin He
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China; (W.S.); (Q.Y.)
| | - Fuqiang Yu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (W.L.); (X.S.); (L.W.); (J.Z.); (L.E.); (Q.H.)
| |
Collapse
|
3
|
van der Merwe NA, Phakalatsane T, Wilken PM. The Unique Homothallic Mating-Type Loci of the Fungal Tree Pathogens Chrysoporthe syzygiicola and Chrysoporthe zambiensis from Africa. Genes (Basel) 2023; 14:1158. [PMID: 37372338 DOI: 10.3390/genes14061158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Chrysoporthe syzygiicola and C. zambiensis are ascomycete tree pathogens first described from Zambia, causing stem canker on Syzygium guineense and Eucalyptus grandis, respectively. The taxonomic descriptions of these two species were based on their anamorphic states, as no sexual states are known. The main purpose of this work was to use whole genome sequences to identify and define the mating-type (MAT1) loci of these two species. The unique MAT1 loci for C. zambiensis and C. syzygiicola consist of the MAT1-1-1, MAT1-1-2, and MAT1-2-1 genes, but the MAT1-1-3 gene is absent. Genes canonically associated with opposite mating types were present at the single mating-type locus, suggesting that C. zambiensis and C. syzygiicola have homothallic mating systems.
Collapse
Affiliation(s)
- Nicolaas A van der Merwe
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Tshiamo Phakalatsane
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
4
|
Liu KX, Jia JQ, Chen N, Fu DD, Sun JY, Zhao JM, Li JY, Xiao SQ, Xue CS. Mating-Type Genes Control Sexual Reproduction, Conidial Germination, and Virulence in Cochliobolus lunatus. PHYTOPATHOLOGY 2022; 112:1055-1062. [PMID: 34738831 DOI: 10.1094/phyto-02-21-0063-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cochliobolus lunatus (anamorph: Curvularia lunata) is a major pathogenic fungus that causes the Curvularia leaf spot of maize. ClMAT1-1-1 and ClMAT1-2-1, the C. lunatus orthologs of C. heterostrophus ChMAT1-1-1 and ChMAT1-2-1, were investigated in the present study to uncover their functions in C. lunatus. Southern blot analysis showed that these mating-type MAT genes exist in the C. lunatus genome as a single copy. ClMAT1-1-1 and ClMAT1-2-1 were knocked out and complemented to generate ΔClmat1-1-1 and ΔClmat1-2-1 and ΔClmat1-1-1-C and ΔClmat1-2-1-C, respectively. The mutant strains had defective sexual development and failed to produce pseudothecia. There were no significant differences in growth rate or conidia production between the mutant and wild-type strains. However, the aerial mycelia and mycelial dry weight of ΔClmat1-1-1 and ΔClmat1-2-1 were lower than those of wild type, suggesting that MAT genes affect asexual development. ClMAT genes were involved in the responses to cell wall integrity and osmotic adaptation. ΔClmat1-2-1 had a lower conidial germination rate than the wild-type strain CX-3. The virulence of ΔClmat1-2-1 and ΔClmat1-1-1 was also reduced compared with the wild-type. Complementary strains could restore all the phenotypes.
Collapse
Affiliation(s)
- K X Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - J Q Jia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - N Chen
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - D D Fu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - J Y Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - J M Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - J Y Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - S Q Xiao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - C S Xue
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, P.R. China
| |
Collapse
|
5
|
Wilson AM, Wilken PM, Wingfield MJ, Wingfield BD. Genetic Networks That Govern Sexual Reproduction in the Pezizomycotina. Microbiol Mol Biol Rev 2021; 85:e0002021. [PMID: 34585983 PMCID: PMC8485983 DOI: 10.1128/mmbr.00020-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Sexual development in filamentous fungi is a complex process that relies on the precise control of and interaction between a variety of genetic networks and pathways. The mating-type (MAT) genes are the master regulators of this process and typically act as transcription factors, which control the expression of genes involved at all stages of the sexual cycle. In many fungi, the sexual cycle typically begins when the mating pheromones of one mating type are recognized by a compatible partner, followed by physical interaction and fertilization. Subsequently, highly specialized sexual structures are formed, within which the sexual spores develop after rounds of meiosis and mitosis. These spores are then released and germinate, forming new individuals that initiate new cycles of growth. This review provides an overview of the known genetic networks and pathways that are involved in each major stage of the sexual cycle in filamentous ascomycete fungi.
Collapse
Affiliation(s)
- Andi M. Wilson
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - P. Markus Wilken
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Michael J. Wingfield
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Brenda D. Wingfield
- Forestry and Agricultural Biotechnology Institute, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Pretoria, Gauteng, South Africa
| |
Collapse
|
6
|
Abundant Genetic Diversity and Extensive Differentiation among Geographic Populations of the Citrus Pathogen Diaporthe citri in Southern China. J Fungi (Basel) 2021; 7:jof7090749. [PMID: 34575787 PMCID: PMC8468327 DOI: 10.3390/jof7090749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 11/29/2022] Open
Abstract
The fungal pathogen Diaporthe citri is a major cause of diseases in citrus. One common disease is melanose, responsible for large economic losses to the citrus fruit industry. However, very little is known about the epidemiology and genetic structure of D. citri. In this study, we analyzed 339 isolates from leaves and fruits with melanose symptoms from five provinces in southern China at 14 polymorphic simple sequence repeat (SSR) loci and the mating type idiomorphs. The genetic variations were analyzed at three levels with separate samples: among provinces, among orchards within one county, and among trees within one orchard. The five provincial populations from Fujian, Zhejiang, Jiangxi, Hunan, and Guizhou were significantly differentiated, while limited differences were found among orchards from the same county or among trees from the same orchard. STRUCTURE analysis detected two genetic clusters in the total sample, with different provincial subpopulations showing different frequencies of isolates in these two clusters. Mantel analysis showed significant positive correlation between genetic and geographic distances, consistent with geographic separation as a significant barrier to gene flow in D. citri in China. High levels of genetic diversity were found within individual subpopulations at all three spatial scales of analyses. Interestingly, most subpopulations at all three spatial scales had the two mating types in similar frequencies and with alleles at the 14 SSR loci not significantly different from linkage equilibrium. Indeed, strains with different mating types and different multilocus genotypes were frequently isolated from the same leaves and fruits. The results indicate that sexual reproduction plays an important role in natural populations of D. citri in southern China and that its ascospores likely represent an important contributor to citrus disease.
Collapse
|
7
|
Krämer D, Lane FA, Steenkamp ET, Wingfield BD, Wilken PM. Unidirectional mating-type switching confers self-fertility to Thielaviopsis cerberus, the only homothallic species in the genus. Fungal Biol 2021; 125:427-434. [PMID: 34024590 DOI: 10.1016/j.funbio.2020.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 11/29/2022]
Abstract
Sexual reproduction is ubiquitous in nature, and nowhere is this more so than in the fungi. Heterothallic behaviour is observed when there is a strict requirement of contact between two individuals of opposite mating type for sexual reproduction to occur. In contrast, a homothallic species can complete the entire sexual cycle in isolation, although several genetic mechanisms underpin this self-fertility. These can be inferred by characterising the structure and gene-content of the mating-type locus, which contains genes that are involved in the regulation of sexual reproduction. In this study, the genetic basis of homothallism in Thielaviopsis cerberus was investigated, the only known self-fertile species within this genus. Using genome sequencing and conventional molecular techniques, two versions of the mating-type locus were identified in this species. This is typical of species that have a unidirectional mating-type switching reproductive strategy. The first version was a self-fertile locus that contained four known mating-type genes, while the second was a self-sterile version with a single mating-type gene. The conversion from a self-fertile to a self-sterile locus is likely mediated by a homologous recombination event at two direct repeats present in the self-fertile locus, resulting in the deletion of three mating-type genes and one of the repeats. Both locus versions were present in isolates that were self-fertile, while self-sterility was caused by the presence of only a switched locus. This study provides a clear example of the architectural fluidity in the mating-type loci that is common among even closely related fungal species.
Collapse
Affiliation(s)
- Daniella Krämer
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Frances A Lane
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology; Forestry and Agricultural Biotechnology Institute, University of Pretoria, Private Bag X20, Hatfield, Pretoria, 0028, South Africa. http://
| |
Collapse
|
8
|
The mating system of the Eucalyptus canker pathogen Chrysoporthe austroafricana and closely related species. Fungal Genet Biol 2019; 123:41-52. [DOI: 10.1016/j.fgb.2018.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 11/18/2022]
|
9
|
Simpson MC, Coetzee MPA, van der Nest MA, Wingfield MJ, Wingfield BD. Ceratocystidaceae exhibit high levels of recombination at the mating-type (MAT) locus. Fungal Biol 2018; 122:1184-1191. [PMID: 30449356 DOI: 10.1016/j.funbio.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/11/2018] [Accepted: 09/12/2018] [Indexed: 12/29/2022]
Abstract
Mating is central to many fungal life cycles and is controlled by genes at the mating-type (MAT) locus. These genes determine whether the fungus will be self-sterile (heterothallic) or self-fertile (homothallic). Species in the ascomycete family Ceratocystidaceae have different mating strategies, making them interesting to consider with regards to their MAT loci. The aim of this study was to compare the composition of the MAT locus flanking regions in 11 species of Ceratocystidaceae representing four genera. Genome assemblies for each species were examined to identify the MAT locus and determine the structure of the flanking regions. Large contigs containing the MAT locus were then functionally annotated and analysed for the presence of transposable elements. Genes typically flanking the MAT locus in sordariomycetes were found to be highly conserved in the Ceratocystidaceae. The different genera in the Ceratocystidaceae displayed little synteny outside of the immediate MAT locus flanking genes. Even though species ofCeratocystis did not show much synteny outside of the immediate MAT locus flanking genes, species of Huntiella and Endoconidiophora were comparatively syntenic. Due to the high number of transposable elements present in Ceratocystis MAT flanking regions, we hypothesise that Ceratocystis species may have undergone recombination in this region.
Collapse
Affiliation(s)
- Melissa C Simpson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Martin P A Coetzee
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
10
|
Wilken PM, Steenkamp ET, van der Nest MA, Wingfield MJ, de Beer ZW, Wingfield BD. Unexpected placement of the MAT1-1-2 gene in the MAT1-2 idiomorph of Thielaviopsis. Fungal Genet Biol 2018; 113:32-41. [PMID: 29409964 DOI: 10.1016/j.fgb.2018.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/20/2018] [Accepted: 01/29/2018] [Indexed: 01/24/2023]
Abstract
Sexual reproduction in the Ascomycota is controlled by genes encoded at the mating-type or MAT1 locus. The two allelic versions of this locus in heterothallic species, referred to as idiomorphs, are defined by the MAT1-1-1 (for the MAT1-1 idiomorph) and MAT1-2-1 (for the MAT1-2 idiomorph) genes. Both idiomorphs can contain additional genes, although the contents of each is typically specific to and conserved within particular Pezizomycotina lineages. Using full genome sequences, complemented with conventional PCR and Sanger sequencing, we compared the mating-type idiomorphs in heterothallic species of Thielaviopsis (Ceratocystidaceae). The analyses showed that the MAT1-1 idiomorph of T. punctulata, T. paradoxa, T. euricoi, T. ethacetica and T. musarum harboured only the expected MAT1-1-1 gene. In contrast, the MAT1-2 idiomorph of T. punctulata, T. paradoxa and T. euricoi encoded the MAT1-2-1, MAT1-2-7 and MAT1-1-2 genes. Of these, MAT1-2-1 and MAT1-2-7 are genes previously reported in this idiomorph, while MAT1-1-2 is known only in the MAT1-1 idiomorph. Phylogenetic analysis showed that the Thielaviopsis MAT1-1-2 groups with the known homologues of this gene in other Microascales, thus confirming its annotation. Previous work suggests that MAT1-1-2 is involved in fruiting body development, a role that would be unaffected by its idiomorphic position. This notion is supported by our findings for the MAT1 locus structure in Thielaviopsis species. This also serves as the first example of a MAT1-1-specific gene restricted to only the MAT1-2 idiomorph.
Collapse
Affiliation(s)
- P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa.
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Z Wilhelm de Beer
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag X20, Pretoria 0028, South Africa
| |
Collapse
|
11
|
Wilken PM, Steenkamp ET, Wingfield MJ, de Beer ZW, Wingfield BD. Which MAT gene? Pezizomycotina (Ascomycota) mating-type gene nomenclature reconsidered. FUNGAL BIOL REV 2017. [DOI: 10.1016/j.fbr.2017.05.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Zaccaron AZ, Woloshuk CP, Bluhm BH. Comparative genomics of maize ear rot pathogens reveals expansion of carbohydrate-active enzymes and secondary metabolism backbone genes in Stenocarpella maydis. Fungal Biol 2017; 121:966-983. [PMID: 29029703 DOI: 10.1016/j.funbio.2017.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 12/11/2022]
Abstract
Stenocarpella maydis is a plant pathogenic fungus that causes Diplodia ear rot, one of the most destructive diseases of maize. To date, little information is available regarding the molecular basis of pathogenesis in this organism, in part due to limited genomic resources. In this study, a 54.8 Mb draft genome assembly of S. maydis was obtained with Illumina and PacBio sequencing technologies, and analyzed. Comparative genomic analyses with the predominant maize ear rot pathogens Aspergillus flavus, Fusarium verticillioides, and Fusarium graminearum revealed an expanded set of carbohydrate-active enzymes for cellulose and hemicellulose degradation in S. maydis. Analyses of predicted genes involved in starch degradation revealed six putative α-amylases, four extracellular and two intracellular, and two putative γ-amylases, one of which appears to have been acquired from bacteria via horizontal transfer. Additionally, 87 backbone genes involved in secondary metabolism were identified, which represents one of the largest known assemblages among Pezizomycotina species. Numerous secondary metabolite gene clusters were identified, including two clusters likely involved in the biosynthesis of diplodiatoxin and chaetoglobosins. The draft genome of S. maydis presented here will serve as a useful resource for molecular genetics, functional genomics, and analyses of population diversity in this organism.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of Arkansas, Division of Agriculture, Fayetteville, AR 72701, USA
| | - Charles P Woloshuk
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Burton H Bluhm
- Department of Plant Pathology, University of Arkansas, Division of Agriculture, Fayetteville, AR 72701, USA.
| |
Collapse
|
13
|
Unconventional Recombination in the Mating Type Locus of Heterothallic Apple Canker Pathogen Valsa mali. G3-GENES GENOMES GENETICS 2017; 7:1259-1265. [PMID: 28228472 PMCID: PMC5386874 DOI: 10.1534/g3.116.037853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sexual reproduction in filamentous ascomycetes is controlled by the mating type (MAT) locus, including two idiomorphs MAT1-1 and MAT1-2 Understanding the MAT locus can provide clues for unveiling the sexual development and virulence factors for fungal pathogens. The genus Valsa (Sordariomycetes, Diaporthales) contains many tree pathogens responsible for destructive canker diseases. The sexual stage of these ascomycetes is occasionally observed in nature, and no MAT locus has been reported to date. Here, we identified the MAT locus of the apple canker pathogen Valsa mali, which causes extensive damage, and even death, to trees. V. mali is heterothallic in that each isolate carries either the MAT1-1 or MAT1-2 idiomorph. However, the MAT structure is distinct from that of many other heterothallic fungi in the Sordariomycetes. Two flanking genes, COX13 and APN2, were coopted into the MAT locus, possibly by intrachromosomal rearrangement. After the acquisition of foreign genes, unequal recombination occurred between MAT1-1/2 idiomorphs, resulting in a reverse insertion in the MAT1-2 idiomorph. Evolutionary analysis showed that the three complete MAT1-1-2, COX13, and APN2 genes in this region diverged independently due to different selection pressure. Null hypothesis tests of a 1:1 MAT ratio of 86 V. mali isolates from four different provinces showed a relatively balanced distribution of the two idiomorphs in the fields. These results provide insights into the evolution of the mating systems in Sordariomycetes.
Collapse
|
14
|
Santos L, Alves A, Alves R. Evaluating multi-locus phylogenies for species boundaries determination in the genus Diaporthe. PeerJ 2017; 5:e3120. [PMID: 28367371 PMCID: PMC5372842 DOI: 10.7717/peerj.3120] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/24/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Species identification is essential for controlling disease, understanding epidemiology, and to guide the implementation of phytosanitary measures against fungi from the genus Diaporthe. Accurate Diaporthe species separation requires using multi-loci phylogenies. However, defining the optimal set of loci that can be used for species identification is still an open problem. METHODS Here we addressed that problem by identifying five loci that have been sequenced in 142 Diaporthe isolates representing 96 species: TEF1, TUB, CAL, HIS and ITS. We then used every possible combination of those loci to build, analyse, and compare phylogenetic trees. RESULTS As expected, species separation is better when all five loci are simultaneously used to build the phylogeny of the isolates. However, removing the ITS locus has little effect on reconstructed phylogenies, identifying the TEF1-TUB-CAL-HIS 4-loci tree as almost equivalent to the 5-loci tree. We further identify the best 3-loci, 2-loci, and 1-locus trees that should be used for species separation in the genus. DISCUSSION Our results question the current use of the ITS locus for DNA barcoding in the genus Diaporthe and suggest that TEF1 might be a better choice if one locus barcoding needs to be done.
Collapse
Affiliation(s)
- Liliana Santos
- Departamento de Biologia, CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Artur Alves
- Departamento de Biologia, CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Rui Alves
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida and IRBLleida, Lleida, Spain
| |
Collapse
|
15
|
Pearce TL, Scott JB, Hay FS, Pethybridge SJ. Mating-Type Gene Structure and Spatial Distribution of Didymella tanaceti in Pyrethrum Fields. PHYTOPATHOLOGY 2016; 106:1521-1529. [PMID: 27398744 DOI: 10.1094/phyto-01-16-0038-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tan spot of pyrethrum (Tanacetum cinerariifolium) is caused by the ascomycete Didymella tanaceti. To assess the evolutionary role of ascospores in the assumed asexual species, the structure and arrangement of mating-type (MAT) genes were examined. A single MAT1-1 or MAT1-2 idiomorph was identified in all isolates examined, indicating that the species is heterothallic. The idiomorphs were flanked upstream and downstream by regions encoding pyridoxamine phosphate oxidase-like and DNA lyase-like proteins, respectively. A multiplex MAT-specific polymerase chain reaction assay was developed and used to genotype 325 isolates collected within two transects in each of four fields in Tasmania, Australia. The ratio of isolates of each mating-type in each transect was consistent with a 1:1 ratio. The spatial distribution of the isolates of the two mating-types within each transect was random for all except one transect for MAT1-1 isolates, indicating that clonal patterns of each mating-type were absent. However, evidence of a reduced selection pressure on MAT1-1 isolates was observed, with a second haplotype of the MAT1-1-1 gene identified in 4.4% of MAT1-1 isolates. In vitro crosses between isolates with opposite mating-types failed to produce ascospores. Although the sexual morph could not be induced, the occurrence of both mating-types in equal frequencies suggested that a cryptic sexual mode of reproduction may occur within field populations.
Collapse
Affiliation(s)
- Tamieka L Pearce
- First and second authors: Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Burnie, Tasmania 7320, Australia; and third and fourth authors: Cornell University, School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Jason B Scott
- First and second authors: Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Burnie, Tasmania 7320, Australia; and third and fourth authors: Cornell University, School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Frank S Hay
- First and second authors: Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Burnie, Tasmania 7320, Australia; and third and fourth authors: Cornell University, School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Sarah J Pethybridge
- First and second authors: Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Burnie, Tasmania 7320, Australia; and third and fourth authors: Cornell University, School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| |
Collapse
|
16
|
Aylward J, Steenkamp ET, Dreyer LL, Roets F, Wingfield MJ, Wingfield BD. Genetic basis for high population diversity in Protea-associated Knoxdaviesia. Fungal Genet Biol 2016; 96:47-57. [DOI: 10.1016/j.fgb.2016.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/12/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022]
|
17
|
Lawrence DP, Travadon R, Baumgartner K. Diversity of Diaporthe species associated with wood cankers of fruit and nut crops in northern California. Mycologia 2015; 107:926-40. [PMID: 26240309 DOI: 10.3852/14-353] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 06/23/2015] [Indexed: 11/10/2022]
Abstract
Diaporthe ampelina, causal agent of Phomopsis cane and leaf spot of grapevine (Vitis vinifera L.) is isolated frequently from grapevine wood cankers, causing Phomopsis dieback. The latter disease is associated with four other Diaporthe species, three of which also are reported from hosts other than grape. To better understand the role of this Diaporthe community in Phomopsis dieback of grapevine and the potential for infection routes among alternate hosts, 76 Diaporthe isolates were recovered from wood cankers of cultivated grape, pear, apricot, almond and the wild host willow in four California counties. Isolates were characterized morphologically and assigned to species based on multigene sequence analyses. This study identified eight Diaporthe species from grapevine and one novel taxon from willow, D. benedicti. We report the first findings of D. australafricana and D. novem in North America. Our findings also expand the host ranges of D. ambigua to apricot and willow, D. australafricana to almond and willow, D. chamaeropis to grapevine and willow, D. foeniculina to willow and D. novem to almond. The generalists D. ambigua and D. eres were the most genetically diverse species, based on high nucleotide and haplotypic diversity, followed by the grapevine specialist D. ampelina. Analyses based on multilocus linkage disequilibrium could not reject the hypothesis of random mating for D. ambigua, which is further supported by relatively high haplotypic diversity, reports of both mating types and reports of successful matings in vitro. Pathogenicity assays revealed that D. ampelina was the most pathogenic species to grapevine wood.
Collapse
Affiliation(s)
- Daniel P Lawrence
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, California 95616
| | - Kendra Baumgartner
- United States Department of Agriculture, Agricultural Research Service, Crops Pathology and Genetics Research Unit, Davis, California 95616
| |
Collapse
|
18
|
Yu JJ, Sun WX, Yu MN, Yin XL, Meng XK, Zhao J, Huang L, Huang L, Liu YF. Characterization of mating-type loci in rice false smut fungus Villosiclava virens. FEMS Microbiol Lett 2015; 362:fnv014. [DOI: 10.1093/femsle/fnv014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2015] [Indexed: 11/12/2022] Open
|
19
|
Udayanga D, Castlebury LA, Rossman AY, Chukeatirote E, Hyde KD. Insights into the genus Diaporthe: phylogenetic species delimitation in the D. eres species complex. FUNGAL DIVERS 2014. [DOI: 10.1007/s13225-014-0297-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Wilken PM, Steenkamp ET, Wingfield MJ, de Beer ZW, Wingfield BD. DNA loss at the Ceratocystis fimbriata mating locus results in self-sterility. PLoS One 2014; 9:e92180. [PMID: 24651494 PMCID: PMC3961304 DOI: 10.1371/journal.pone.0092180] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/20/2014] [Indexed: 12/15/2022] Open
Abstract
Fungi have evolved a remarkable diversity of reproductive strategies. Some of these, most notably those of the model fungi, have been well studied but others are poorly understood. The latter is also true for uni-directional mating type switching, which has been reported in only five fungal genera, including Ceratocystis. Mating type switching allows a self-fertile fungal isolate to produce both self-fertile and self-sterile offspring. This study considered the molecular nature of uni-directional mating type switching in the type species of Ceratocystis, C. fimbriata. To do this, the genome of C. fimbriata was first examined for the presence of mating type genes. Three mating genes (MAT1-1-1, MAT1-2-1 and MAT1-1-2) were found in an atypical organisation of the mating type locus. To study the effect that uni-directional switching has on this locus, several self-sterile offspring were analysed. Using a combination of next generation and conventional Sanger sequencing, it was shown that a 3581 base pair (bp) region had been completely deleted from the MAT locus. This deletion, which includes the entire MAT1-2-1 gene, results in the permanent loss of self-fertility, rendering these isolates exclusively self-sterile. Our data also suggest that the deletion mechanism is tightly controlled and that it always occurs at the same genomic position. Two 260 bp direct repeats flanking the deleted region are strongly implicated in the process, although the exact mechanism behind the switching remains unclear.
Collapse
Affiliation(s)
- P. Markus Wilken
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Emma T. Steenkamp
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Michael J. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Z. Wilhelm de Beer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Brenda D. Wingfield
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
21
|
Bolton MD, de Jonge R, Inderbitzin P, Liu Z, Birla K, Van de Peer Y, Subbarao KV, Thomma BPHJ, Secor GA. The heterothallic sugarbeet pathogen Cercospora beticola contains exon fragments of both MAT genes that are homogenized by concerted evolution. Fungal Genet Biol 2013; 62:43-54. [PMID: 24216224 DOI: 10.1016/j.fgb.2013.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/24/2013] [Accepted: 10/28/2013] [Indexed: 12/23/2022]
Abstract
Dothideomycetes is one of the most ecologically diverse and economically important classes of fungi. Sexual reproduction in this group is governed by mating type (MAT) genes at the MAT1 locus. Self-sterile (heterothallic) species contain one of two genes at MAT1 (MAT1-1-1 or MAT1-2-1) and only isolates of opposite mating type are sexually compatible. In contrast, self-fertile (homothallic) species contain both MAT genes at MAT1. Knowledge of the reproductive capacities of plant pathogens are of particular interest because recombining populations tend to be more difficult to manage in agricultural settings. In this study, we sequenced MAT1 in the heterothallic Dothideomycete fungus Cercospora beticola to gain insight into the reproductive capabilities of this important plant pathogen. In addition to the expected MAT gene at MAT1, each isolate contained fragments of both MAT1-1-1 and MAT1-2-1 at ostensibly random loci across the genome. When MAT fragments from each locus were manually assembled, they reconstituted MAT1-1-1 and MAT1-2-1 exons with high identity, suggesting a retroposition event occurred in a homothallic ancestor in which both MAT genes were fused. The genome sequences of related taxa revealed that MAT gene fragment pattern of Cercospora zeae-maydis was analogous to C. beticola. In contrast, the genome of more distantly related Mycosphaerella graminicola did not contain MAT fragments. Although fragments occurred in syntenic regions of the C. beticola and C. zeae-maydis genomes, each MAT fragment was more closely related to the intact MAT gene of the same species. Taken together, these data suggest MAT genes fragmented after divergence of M. graminicola from the remaining taxa, and concerted evolution functioned to homogenize MAT fragments and MAT genes in each species.
Collapse
Affiliation(s)
- Melvin D Bolton
- Northern Crop Science Laboratory, United States Department of Agriculture, Agricultural Research Service, Fargo, ND, United States.
| | - Ronnie de Jonge
- Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Patrik Inderbitzin
- Department of Plant Pathology, University of California, Davis, CA, United States
| | - Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Keshav Birla
- Northern Crop Science Laboratory, United States Department of Agriculture, Agricultural Research Service, Fargo, ND, United States; Department of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, CA, United States
| | - Bart P H J Thomma
- Department of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | - Gary A Secor
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
22
|
Bushley KE, Li Y, Wang WJ, Wang XL, Jiao L, Spatafora JW, Yao YJ. Isolation of the MAT1-1 mating type idiomorph and evidence for selfing in the Chinese medicinal fungus Ophiocordyceps sinensis. Fungal Biol 2013; 117:599-610. [DOI: 10.1016/j.funbio.2013.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 01/08/2023]
|
23
|
Duong TA, de Beer ZW, Wingfield BD, Wingfield MJ. Characterization of the mating-type genes in Leptographium procerum and Leptographium profanum. Fungal Biol 2013; 117:411-21. [PMID: 23809651 DOI: 10.1016/j.funbio.2013.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 04/11/2013] [Accepted: 04/12/2013] [Indexed: 11/20/2022]
Abstract
Leptographium procerum and the closely related species Leptographium profanum, are ascomycetes associated with root-infesting beetles on pines and hardwood trees, respectively. Both species occur in North America where they are apparently native. L. procerum has also been found in Europe, China New Zealand, and South Africa where it has most probably been introduced. As is true for many other Leptographium species, sexual states have never been observed in L. procerum or L. profanum. The objectives of this study were to clone and characterize the mating type loci of these fungi, and to develop markers to determine the mating types of individual isolates. To achieve this, a partial sequence of MAT1-2-1 was amplified using degenerate primers targeting the high mobility group (HMG) sequence. A complete MAT1-2 idiomorph of L. profanum was subsequently obtained by screening a genomic library using the HMG sequence as a probe. Long range PCR was used to amplify the complete MAT1-1 idiomorph of L. profanum and both the MAT1-1 and MAT1-2 idiomorphs of L. procerum. Characterization of the MAT idiomorphs suggests that the MAT genes are fully functional and that individuals of both these species are self-sterile in nature with a heterothallic mating system. Mating type markers were developed and tested on a population of L. procerum isolates from the USA, the assumed center of origin for this species. The results suggest that cryptic sexual reproduction is occurring or has recently taken place within this population.
Collapse
Affiliation(s)
- Tuan A Duong
- Department of Genetics, Forestry and Agricultural Biotechnology Institute-FABI, University of Pretoria, Pretoria 0002, South Africa.
| | | | | | | |
Collapse
|
24
|
Tsui CKM, DiGuistini S, Wang Y, Feau N, Dhillon B, Bohlmann J, Hamelin RC. Unequal recombination and evolution of the mating-type (MAT) loci in the pathogenic fungus Grosmannia clavigera and relatives. G3 (BETHESDA, MD.) 2013; 3:465-80. [PMID: 23450093 PMCID: PMC3583454 DOI: 10.1534/g3.112.004986] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/02/2012] [Indexed: 12/31/2022]
Abstract
Sexual reproduction in fungi is regulated by the mating-type (MAT) locus where recombination is suppressed. We investigated the evolution of MAT loci in eight fungal species belonging to Grosmannia and Ophiostoma (Sordariomycetes, Ascomycota) that include conifer pathogens and beetle symbionts. The MAT1-2 idiomorph/allele was identified from the assembled and annotated Grosmannia clavigera genome, and the MAT locus is flanked by genes coding for cytoskeleton protein (SLA) and DNA lyase. The synteny of these genes is conserved and consistent with other members in Ascomycota. Using sequences from SLA and flanking regions, we characterized the MAT1-1 idiomorph from other isolates of G. clavigera and performed dotplot analysis between the two idiomorphs. Unexpectedly, the MAT1-2 idiomorph contains a truncated MAT1-1-1 gene upstream of the MAT1-2-1 gene that bears the high-mobility-group domain. The nucleotide and amino acid sequence of the truncated MAT1-1-1 gene is similar to its homologous copy in the MAT1-1 idiomorph in the opposite mating-type isolate, except that positive selection is acting on the truncated gene and the alpha(α)-box that encodes the transcription factor has been deleted. The MAT idiomorphs sharing identical gene organization were present in seven additional species in the Ophiostomatales, suggesting that the presence of truncated MAT1-1-1 gene is a general pattern in this order. We propose that an ancient unequal recombination event resulted in the ancestral MAT1-1-1 gene integrated into the MAT1-2 idiomorph and surviving as the truncated MAT1-1-1 genes. The α-box domain of MAT1-1-1 gene, located at the same MAT locus adjacent to the MAT1-2-1 gene, could have been removed by deletion after recombination due to mating signal interference. Our data confirmed a 1:1 MAT/sex ratio in two pathogen populations, and showed that all members of the Ophiostomatales studied here including those that were previously deemed asexual have the potential to reproduce sexually. This ability can potentially increase genetic variability and can enhance fitness in new, ecological niches.
Collapse
Affiliation(s)
- Clement K-M Tsui
- Department of Forest and Conservation Sciences, The University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | | | | | | | | | | | | |
Collapse
|
25
|
Udayanga D, Liu X, Crous PW, McKenzie EHC, Chukeatirote E, Hyde KD. A multi-locus phylogenetic evaluation of Diaporthe (Phomopsis). FUNGAL DIVERS 2012. [DOI: 10.1007/s13225-012-0190-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
26
|
Sex-specific gene expression during asexual development of Neurospora crassa. Fungal Genet Biol 2012; 49:533-43. [PMID: 22626843 DOI: 10.1016/j.fgb.2012.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 05/08/2012] [Accepted: 05/09/2012] [Indexed: 12/18/2022]
Abstract
The impact of loci that determine sexual identity upon the asexual, dominant stage of fungal life history has been well studied. To investigate their impact, expression differences between strains of different mating type during asexual development were assayed, with RNA sampled from otherwise largely isogenic mat A and mat a strains of Neurospora crassa at early, middle, and late clonal stages of development. We observed significant differences in overall gene expression between mating types across clonal development, especially at late development stages. The expression levels of mating-type genes and pheromone genes were assayed by reverse transcription and quantitative PCR, revealing expression of pheromone and receptor genes in strains of both mating types in all development stages, and revealing that mating type (mat) genes were increasingly expressed over the course of asexual development. Interestingly, among differentially expressed genes, the mat A genotype more frequently exhibited a higher expression level than mat a, and demonstrated greater transcriptional regulatory dynamism. Significant up-regulation of expression was observed for many late light-responsive genes at late asexual development stages. Further investigation of the impact of light and the roles of light response genes in asexual development of both mating types are warranted.
Collapse
|
27
|
Wilken PM, Steenkamp ET, Hall TA, de Beer ZW, Wingfield MJ, Wingfield BD. Both mating types in the heterothallic fungus Ophiostoma quercus contain MAT1-1 and MAT1-2 genes. Fungal Biol 2012; 116:427-37. [DOI: 10.1016/j.funbio.2012.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 01/02/2012] [Accepted: 01/05/2012] [Indexed: 10/14/2022]
|
28
|
Santos J, Vrandečić K, Ćosić J, Duvnjak T, Phillips A. Resolving the Diaporthe species occurring on soybean in Croatia. PERSOONIA 2011; 27:9-19. [PMID: 22403474 PMCID: PMC3251324 DOI: 10.3767/003158511x603719] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 08/01/2011] [Indexed: 11/25/2022]
Abstract
Diaporthe (anamorph = Phomopsis) species are plant pathogens and endophytes on a wide range of hosts including economically important crops. At least four Diaporthe taxa occur on soybean and they are responsible for serious diseases and significant yield losses. Although several studies have extensively described the culture and morphological characters of these pathogens, their taxonomy has not been fully resolved. Diaporthe and Phomopsis isolates were obtained from soybean and other plant hosts throughout Croatia. Phylogenetic relationships were determined through analyses of partial translation elongation factor 1-alpha (EF1-α) gene and ITS nrDNA sequence data. By combining morphological and molecular data, four species could be distinguished on soybeans in Croatia. Diaporthe phaseolorum is described in this study and its synonyms are discussed. Diaporthe phaseolorum var. caulivora is raised to species status and the name Diaporthe caulivora is introduced to accommodate it. A species previously known as Phomopsis sp. 9 from earlier studies on sunflower, grapevine, rooibos and hydrangea is reported for the first time on soybean, and is formally described as Diaporthe novem. The well-known soybean pathogen Phomopsis longicolla was also collected in the present study and was transferred to Diaporthe longicolla comb. nov. The presence of these species on herbaceous hosts raises once more the relevance of weeds as reservoirs for pathogens of economically important plants.
Collapse
Affiliation(s)
- J.M. Santos
- Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; corresponding author e-mail:
- These authors contributed equally to this work
- Present address: Instituto de Medicina Molecular, Unidade de Parasitologia Molecular, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - K. Vrandečić
- Department of Plant Protection, Faculty of Agriculture in Osijek, J.J. University of Osijek, Trg sv. Trojstva 3, 31000 Osijek, Croatia
- These authors contributed equally to this work
| | - J. Ćosić
- Department of Plant Protection, Faculty of Agriculture in Osijek, J.J. University of Osijek, Trg sv. Trojstva 3, 31000 Osijek, Croatia
| | - T. Duvnjak
- Agriculture Institute Osijek, Juzno predgradje 17, 31000 Osijek, Croatia
| | - A.J.L. Phillips
- Centro de Recursos Microbiológicos, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; corresponding author e-mail:
| |
Collapse
|
29
|
The genus Phomopsis: biology, applications, species concepts and names of common phytopathogens. FUNGAL DIVERS 2011. [DOI: 10.1007/s13225-011-0126-9] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Bidard F, Aït Benkhali J, Coppin E, Imbeaud S, Grognet P, Delacroix H, Debuchy R. Genome-wide gene expression profiling of fertilization competent mycelium in opposite mating types in the heterothallic fungus Podospora anserina. PLoS One 2011; 6:e21476. [PMID: 21738678 PMCID: PMC3125171 DOI: 10.1371/journal.pone.0021476] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/29/2011] [Indexed: 12/15/2022] Open
Abstract
Background Mating-type loci in yeasts and ascomycotan filamentous fungi (Pezizomycotina) encode master transcriptional factors that play a critical role in sexual development. Genome-wide analyses of mating-type-specification circuits and mating-type target genes are available in Saccharomyces cerevisiae and Schizosaccharomyces pombe; however, no such analyses have been performed in heterothallic (self-incompatible) Pezizomycotina. The heterothallic fungus Podospora anserina serves as a model for understanding the basic features of mating-type control. Its mat+ and mat− mating types are determined by dissimilar allelic sequences. The mat− sequence contains three genes, designated FMR1, SMR1 and SMR2, while the mat+ sequence contains one gene, FPR1. FMR1 and FPR1 are the major regulators of fertilization, and this study presents a genome-wide view of their target genes and analyzes their target gene regulation. Methodology/Principal Findings The transcriptomic profiles of the mat+ and mat− strains revealed 157 differentially transcribed genes, and transcriptomic analysis of fmr1− and fpr1− mutant strains was used to determine the regulatory actions exerted by FMR1 and FPR1 on these differentially transcribed genes. All possible combinations of transcription repression and/or activation by FMR1 and/or FPR1 were observed. Furthermore, 10 additional mating-type target genes were identified that were up- or down-regulated to the same level in mat+ and mat− strains. Of the 167 genes identified, 32 genes were selected for deletion, which resulted in the identification of two genes essential for the sexual cycle. Interspecies comparisons of mating-type target genes revealed significant numbers of orthologous pairs, although transcriptional profiles were not conserved between species. Conclusions/Significance This study represents the first comprehensive genome-wide analysis of mating-type direct and indirect target genes in a heterothallic filamentous fungus. Mating-type transcription factors have many more target genes than are found in yeasts and exert a much greater diversity of regulatory actions on target genes, most of which are not directly related to mating.
Collapse
Affiliation(s)
- Frédérique Bidard
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
| | - Jinane Aït Benkhali
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
| | - Evelyne Coppin
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
| | - Sandrine Imbeaud
- CNRS, Centre de Génétique Moléculaire FRE3144, GODMAP, Gif sur Yvette, France
| | - Pierre Grognet
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- UFR des Sciences du Vivant, Université Paris 7-Denis Diderot, Paris, France
| | - Hervé Delacroix
- CNRS, Centre de Génétique Moléculaire FRE3144, GODMAP, Gif sur Yvette, France
- Univ Paris-Sud, Orsay, France
| | - Robert Debuchy
- Univ Paris-Sud, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- CNRS, Institut de Génétique et Microbiologie UMR8621, Orsay, France
- * E-mail:
| |
Collapse
|
31
|
Rubini A, Belfiori B, Riccioni C, Tisserant E, Arcioni S, Martin F, Paolocci F. Isolation and characterization of MAT genes in the symbiotic ascomycete Tuber melanosporum. THE NEW PHYTOLOGIST 2011; 189:710-722. [PMID: 20961294 DOI: 10.1111/j.1469-8137.2010.03492.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
• The genome of Tuber melanosporum has recently been sequenced. Here, we used this information to identify genes involved in the reproductive processes of this edible fungus. The sequenced strain (Mel28) possesses only one of the two master genes required for mating, that is, the gene that codes for the high mobility group (HMG) transcription factor (MAT1-2-1), whereas it lacks the gene that codes for the protein containing the α-box- domain (MAT1-1-1), suggesting that this fungus is heterothallic. • A PCR-based approach was initially employed to screen truffles for the presence of the MAT1-2-1 gene and amplify the conserved regions flanking the mating type (MAT) locus. The MAT1-1-1 gene was finally identified using primers designed from the conserved regions of strains that lack the MAT1-2-1 gene. • Mating type-specific primer pairs were developed to screen asci and gleba from truffles of different origins and to genotype single ascospores within the asci. These analyses provided definitive evidence that T. melanosporum is a heterothallic species with a MAT locus that is organized similarly to those of ancient fungal lineages. • A greater understanding of the reproductive mechanisms that exist in Tuber spp. allows for optimization of truffle plantation management strategies.
Collapse
Affiliation(s)
- Andrea Rubini
- National Research Council, Plant Genetics Institute - Perugia Division, Via della Madonna Alta 130, I-06128 Perugia, Italy
| | - Beatrice Belfiori
- National Research Council, Plant Genetics Institute - Perugia Division, Via della Madonna Alta 130, I-06128 Perugia, Italy
| | - Claudia Riccioni
- National Research Council, Plant Genetics Institute - Perugia Division, Via della Madonna Alta 130, I-06128 Perugia, Italy
| | - Emilie Tisserant
- UMR 1136, Interactions Arbres/Microorganismes, INRA-Nancy, F-54280 Champenoux, France
| | - Sergio Arcioni
- National Research Council, Plant Genetics Institute - Perugia Division, Via della Madonna Alta 130, I-06128 Perugia, Italy
| | - Francis Martin
- UMR 1136, Interactions Arbres/Microorganismes, INRA-Nancy, F-54280 Champenoux, France
| | - Francesco Paolocci
- National Research Council, Plant Genetics Institute - Perugia Division, Via della Madonna Alta 130, I-06128 Perugia, Italy
| |
Collapse
|
32
|
Martin T, Lu SW, van Tilbeurgh H, Ripoll DR, Dixelius C, Turgeon BG, Debuchy R. Tracing the origin of the fungal α1 domain places its ancestor in the HMG-box superfamily: implication for fungal mating-type evolution. PLoS One 2010; 5:e15199. [PMID: 21170349 PMCID: PMC2999568 DOI: 10.1371/journal.pone.0015199] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 10/29/2010] [Indexed: 11/19/2022] Open
Abstract
Background Fungal mating types in self-incompatible Pezizomycotina are specified by one of two alternate sequences occupying the same locus on corresponding chromosomes. One sequence is characterized by a gene encoding an HMG protein, while the hallmark of the other is a gene encoding a protein with an α1 domain showing similarity to the Matα1p protein of Saccharomyces cerevisiae. DNA-binding HMG proteins are ubiquitous and well characterized. In contrast, α1 domain proteins have limited distribution and their evolutionary origin is obscure, precluding a complete understanding of mating-type evolution in Ascomycota. Although much work has focused on the role of the S. cerevisiae Matα1p protein as a transcription factor, it has not yet been placed in any of the large families of sequence-specific DNA-binding proteins. Methodology/Principal Findings We present sequence comparisons, phylogenetic analyses, and in silico predictions of secondary and tertiary structures, which support our hypothesis that the α1 domain is related to the HMG domain. We have also characterized a new conserved motif in α1 proteins of Pezizomycotina. This motif is immediately adjacent to and downstream of the α1 domain and consists of a core sequence Y-[LMIF]-x(3)-G-[WL] embedded in a larger conserved motif. Conclusions/Significance Our data suggest that extant α1-box genes originated from an ancestral HMG gene, which confirms the current model of mating-type evolution within the fungal kingdom. We propose to incorporate α1 proteins in a new subclass of HMG proteins termed MATα_HMG.
Collapse
Affiliation(s)
- Tom Martin
- Department of Plant Biology and Forest Genetics, Uppsala Biocenter, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - Shun-Wen Lu
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Herman van Tilbeurgh
- Univ Paris-Sud, Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR8619 Univ Paris-Sud CNRS, Orsay, France
| | - Daniel R. Ripoll
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Christina Dixelius
- Department of Plant Biology and Forest Genetics, Uppsala Biocenter, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden
| | - B. Gillian Turgeon
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, United States of America
| | - Robert Debuchy
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR8621 Univ Paris-Sud CNRS, Orsay, France
- CNRS, Institut de Génétique et Microbiologie, UMR8621 Univ Paris-Sud CNRS, Orsay, France
- * E-mail:
| |
Collapse
|
33
|
Functional characterization of MAT1-1-specific mating-type genes in the homothallic ascomycete Sordaria macrospora provides new insights into essential and nonessential sexual regulators. EUKARYOTIC CELL 2010; 9:894-905. [PMID: 20435701 DOI: 10.1128/ec.00019-10] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mating-type genes in fungi encode regulators of mating and sexual development. Heterothallic ascomycete species require different sets of mating-type genes to control nonself-recognition and mating of compatible partners of different mating types. Homothallic (self-fertile) species also carry mating-type genes in their genome that are essential for sexual development. To analyze the molecular basis of homothallism and the role of mating-type genes during fruiting-body development, we deleted each of the three genes, SmtA-1 (MAT1-1-1), SmtA-2 (MAT1-1-2), and SmtA-3 (MAT1-1-3), contained in the MAT1-1 part of the mating-type locus of the homothallic ascomycete species Sordaria macrospora. Phenotypic analysis of deletion mutants revealed that the PPF domain protein-encoding gene SmtA-2 is essential for sexual reproduction, whereas the alpha domain protein-encoding genes SmtA-1 and SmtA-3 play no role in fruiting-body development. By means of cross-species microarray analysis using Neurospora crassa oligonucleotide microarrays hybridized with S. macrospora targets and quantitative real-time PCR, we identified genes expressed under the control of SmtA-1 and SmtA-2. Both genes are involved in the regulation of gene expression, including that of pheromone genes.
Collapse
|
34
|
Primers for mating-type diagnosis in Diaporthe and Phomopsis: their use in teleomorph induction in vitro and biological species definition. Fungal Biol 2010; 114:255-70. [PMID: 20943136 DOI: 10.1016/j.funbio.2010.01.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 01/07/2010] [Accepted: 01/23/2010] [Indexed: 11/20/2022]
Abstract
Sexual reproduction in ascomycete fungi is governed by the mating-type (MAT) locus. The MAT loci of Diaporthe and its Phomopsis anamorphs differ in only one gene: MAT1-1-1 in mating-type MAT1-1 and MAT1-2-1 in mating-type MAT1-2. In order to diagnose mating-types in Diaporthe and Phomopsis and evaluate their usefulness in teleomorph induction in vitro and biological species delimitation, we designed primers that amplify part of the MAT1-1-1 and MAT1-2-1 genes. MAT phylogenies were generated and compared with ITS and EF1-α phylograms. Species recognised in the EF1-α phylogeny corresponded directly with those determined in the MAT phylogenies. ITS was shown to be highly variable resulting in a large number of phylogenetic species that were discordant with MAT and EF1-α species. Mating experiments were conducted to evaluate the existence of reproductive barriers between some isolates, and their anamorphic morphologies were compared. The primers proved to be useful in the mating-type diagnosis of isolates, selection of compatible mating pairs, and in the assessment of biological species boundaries.
Collapse
|