1
|
Kwon EJ, Kim HJ, Woo BH, Joo JY, Kim YH, Park HR. Profiling of plasma-derived exosomal RNA expression in patients with periodontitis: a pilot study. Oral Dis 2022; 29:1726-1737. [PMID: 35119164 DOI: 10.1111/odi.14145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study aimed to profile differentially expressed (DE) exosomal RNAs in healthy subjects and periodontitis patients and compare their levels before and after treatment. MATERIALS AND METHODS Plasma samples from healthy subjects and patients with periodontitis (pre-/post-periodontal treatment) were collected for this case-control study. After isolation of exosomes from the plasma, the RNA was extracted and small RNA sequencing was performed (3 healthy samples, 4 pre-treatment samples, and 5 post-treatment samples). Two-way analyses were conducted according to the treatment status in the periodontitis group, unpaired analysis (grouping as pre-/post-treatment) and paired analysis (matching pre- and post-treatment in the same subject). The DE exosomal RNAs were screened by sequencing and visualized using the R software. Gene Ontology analysis was performed, and target genes were identified. RESULTS In both paired and unpaired analyses, two DE microRNAs (DEmiRs; miR-1304-3p and miR-200c-3p) and two DE small nucleolar RNAs (DEsnoRs; SNORD57 and SNODB1771) were common, and they were found to be downregulated during periodontitis and recovered to healthy levels after treatment. The top three target genes (NR3C1, GPR158, and CNN3) commonly regulated by DEmiRs were identified. CONCLUSIONS Plasma-derived exosomal miRs (miR-1304-3p and miR-200c-3p) and snoRs (SNORD57 and SNODB1771) could be valuable biomarkers for periodontitis.
Collapse
Affiliation(s)
- Eun Jung Kwon
- Interdisciplinary Program of Genomic Science, Pusan National University, Yangsan, Republic of Korea
| | - Hyun-Joo Kim
- Department of Periodontology, Dental and Life Science Institute, Pusan National University, School of Dentistry, Yangsan, Republic of Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Republic of Korea
| | - Bok Hee Woo
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.,Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| | - Ji-Young Joo
- Department of Periodontology, Dental and Life Science Institute, Pusan National University, School of Dentistry, Yangsan, Republic of Korea.,Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, Republic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Republic of Korea.,Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Hae Ryoun Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.,Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
2
|
Baldini L, Charpentier B, Labialle S. Emerging Data on the Diversity of Molecular Mechanisms Involving C/D snoRNAs. Noncoding RNA 2021; 7:ncrna7020030. [PMID: 34066559 PMCID: PMC8162545 DOI: 10.3390/ncrna7020030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Box C/D small nucleolar RNAs (C/D snoRNAs) represent an ancient family of small non-coding RNAs that are classically viewed as housekeeping guides for the 2′-O-methylation of ribosomal RNA in Archaea and Eukaryotes. However, an extensive set of studies now argues that they are involved in mechanisms that go well beyond this function. Here, we present these pieces of evidence in light of the current comprehension of the molecular mechanisms that control C/D snoRNA expression and function. From this inventory emerges that an accurate description of these activities at a molecular level is required to let the snoRNA field enter in a second age of maturity.
Collapse
Affiliation(s)
| | - Bruno Charpentier
- Correspondence: (B.C.); (S.L.); Tel.: +33-3-72-74-66-27 (B.C.); +33-3-72-74-66-51 (S.L.)
| | - Stéphane Labialle
- Correspondence: (B.C.); (S.L.); Tel.: +33-3-72-74-66-27 (B.C.); +33-3-72-74-66-51 (S.L.)
| |
Collapse
|
3
|
Shuman S. Transcriptional interference at tandem lncRNA and protein-coding genes: an emerging theme in regulation of cellular nutrient homeostasis. Nucleic Acids Res 2020; 48:8243-8254. [PMID: 32720681 PMCID: PMC7470944 DOI: 10.1093/nar/gkaa630] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 12/29/2022] Open
Abstract
Tandem transcription interference occurs when the act of transcription from an upstream promoter suppresses utilization of a co-oriented downstream promoter. Because eukaryal genomes are liberally interspersed with transcription units specifying long non-coding (lnc) RNAs, there are many opportunities for lncRNA synthesis to negatively affect a neighboring protein-coding gene. Here, I review two eukaryal systems in which lncRNA interference with mRNA expression underlies a regulated biological response to nutrient availability. Budding yeast SER3 is repressed under serine-replete conditions by transcription of an upstream SRG1 lncRNA that traverses the SER3 promoter and elicits occlusive nucleosome rearrangements. SER3 is de-repressed by serine withdrawal, which leads to shut-off of SRG1 synthesis. The fission yeast phosphate homeostasis (PHO) regulon comprises three phosphate acquisition genes – pho1, pho84, and tgp1 – that are repressed under phosphate-replete conditions by 5′ flanking lncRNAs prt, prt2, and nc-tgp1, respectively. lncRNA transcription across the PHO mRNA promoters displaces activating transcription factor Pho7. PHO mRNAs are transcribed during phosphate starvation when lncRNA synthesis abates. The PHO regulon is de-repressed in phosphate-replete cells by genetic manipulations that favor ‘precocious’ lncRNA 3′-processing/termination upstream of the mRNA promoters. PHO lncRNA termination is governed by the Pol2 CTD code and is subject to metabolite control by inositol pyrophosphates.
Collapse
Affiliation(s)
- Stewart Shuman
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
4
|
Sanchez AM, Shuman S, Schwer B. Poly(A) site choice and Pol2 CTD Serine-5 status govern lncRNA control of phosphate-responsive tgp1 gene expression in fission yeast. RNA (NEW YORK, N.Y.) 2018; 24:237-250. [PMID: 29122971 PMCID: PMC5769750 DOI: 10.1261/rna.063966.117] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/09/2017] [Indexed: 05/24/2023]
Abstract
Expression of fission yeast glycerophosphate transporter Tgp1 is repressed in phosphate-rich medium and induced during phosphate starvation. Repression is enforced by transcription of the nc-tgp1 locus upstream of tgp1 to produce a long noncoding (lnc) RNA. Here we identify two essential elements of the nc-tgp1 promoter: a TATA box -30TATATATA-23 and a HomolD box -64CAGTCACA-57, mutations of which inactivate the nc-tgp1 promoter and de-repress the downstream tgp1 promoter under phosphate-replete conditions. The nc-tgp1 lncRNA poly(A) site maps to nucleotide +1636 of the transcription unit, which coincides with the binding site for Pho7 (1632TCGGACATTCAA1643), the transcription factor that drives tgp1 expression. Overlap between the lncRNA template and the tgp1 promoter points to transcriptional interference as the simplest basis for lncRNA repression. We identify a shorter RNA derived from the nc-tgp1 locus, polyadenylated at position +508, well upstream of the tgp1 promoter. Mutating the nc-tgp1-short RNA polyadenylation signal abolishes de-repression of the downstream tgp1 promoter elicited by Pol2 CTD Ser5Ala phospho-site mutation. Ser5 mutation favors utilization of the short RNA poly(A) site, thereby diminishing transcription of the lncRNA that interferes with the tgp1 promoter. Mutating the nc-tgp1-short RNA polyadenylation signal attenuates induction of the tgp1 promoter during phosphate starvation. Polyadenylation site choice governed by CTD Ser5 status adds a new level of lncRNA control of gene expression and reveals a new feature of the fission yeast CTD code.
Collapse
Affiliation(s)
- Ana M Sanchez
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| |
Collapse
|
5
|
Canzler S, Stadler PF, Hertel J. Evolution of Fungal U3 snoRNAs: Structural Variation and Introns. Noncoding RNA 2017; 3:ncrna3010003. [PMID: 29657275 PMCID: PMC5832005 DOI: 10.3390/ncrna3010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 11/25/2022] Open
Abstract
The U3 small nucleolar RNA (snoRNA) is an essential player in the initial steps of ribosomal RNA biogenesis which is ubiquitously present in Eukarya. It is exceptional among the small nucleolar RNAs in its size, the presence of multiple conserved sequence boxes, a highly conserved secondary structure core, its biogenesis as an independent gene transcribed by polymerase III, and its involvement in pre-rRNA cleavage rather than chemical modification. Fungal U3 snoRNAs share many features with their sisters from other eukaryotic kingdoms but differ from them in particular in their 5’ regions, which in fungi has a distinctive consensus structure and often harbours introns. Here we report on a comprehensive homology search and detailed analysis of the evolution of sequence and secondary structure features covering the entire kingdom Fungi.
Collapse
Affiliation(s)
- Sebastian Canzler
- Bioinformatics Group, Department Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.
| | - Peter F Stadler
- Bioinformatics Group, Department Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig, Härtelstrasse 16-18, D-04107 Leipzig, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, University Leipzig, D-04107 Leipzig, Germany.
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany.
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstrasse 1, D-04103 Leipzig, Germany.
- Department of Theoretical Chemistry of the University of Vienna, Währingerstrasse 17, A-1090 Vienna, Austria.
- Center for RNA in Technology and Health, University of Copenhagen, Grønnegårdsvej 3, 1870 Frederiksberg C, Denmark.
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA.
| | - Jana Hertel
- Helmholtz Centre for Environmental Research-UFZ, Young Investigators Group Bioinformatics and Transcriptomics Permoserstraße 15, D-04318 Leipzig, Germany.
| |
Collapse
|
6
|
Liu J, Huang L, Wang Y, Huang Y. Characterization of cis-elements in the promoter of trz2 encoding Schizosaccharomyces pombe mitochondrial tRNA 3′-end processing enzyme. Microbiology (Reading) 2017; 163:75-85. [DOI: 10.1099/mic.0.000398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Jinyu Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Linting Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Yirong Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Ying Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, School of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| |
Collapse
|
7
|
Diao LT, Xiao ZD, Leng XM, Li B, Li JH, Luo YP, Li SG, Yu CH, Zhou H, Qu LH. Conservation and divergence of transcriptional coregulations between box C/D snoRNA and ribosomal protein genes in Ascomycota. RNA (NEW YORK, N.Y.) 2014; 20:1376-1385. [PMID: 25002674 PMCID: PMC4138321 DOI: 10.1261/rna.042309.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 05/05/2014] [Indexed: 06/03/2023]
Abstract
Coordinated assembly of the ribosome is essential for proper translational activity in eukaryotic cells. It is therefore critical to coordinate the expression of components of ribosomal programs with the cell's nutritional status. However, coordinating expression of these components is poorly understood. Here, by combining experimental and computational approaches, we systematically identified box C/D snoRNAs in four fission yeasts and found that the expression of box C/D snoRNA and ribosomal protein (RP) genes were orchestrated by a common Homol-D box, thereby ensuring a constant balance of these two genetic components. Interestingly, such transcriptional coregulations could be observed in most Ascomycota species and were mediated by different cis-regulatory elements. Via the reservation of cis elements, changes in spatial configuration, the substitution of cis elements, and gain or loss of cis elements, the regulatory networks of box C/D snoRNAs evolved to correspond with those of the RP genes, maintaining transcriptional coregulation between box C/D snoRNAs and RP genes. Our results indicate that coregulation via common cis elements is an important mechanism to coordinate expression of the RP and snoRNA genes, which ensures a constant balance of these two components.
Collapse
Affiliation(s)
- Li-Ting Diao
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zhen-Dong Xiao
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xiao-Min Leng
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Bin Li
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jun-Hao Li
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Yu-Ping Luo
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Si-Guang Li
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Chuan-He Yu
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Hui Zhou
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Liang-Hu Qu
- State Key Laboratory of Biocontrol and Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
8
|
Dorweiler JE, Ni T, Zhu J, Munroe SH, Anderson JT. Certain adenylated non-coding RNAs, including 5' leader sequences of primary microRNA transcripts, accumulate in mouse cells following depletion of the RNA helicase MTR4. PLoS One 2014; 9:e99430. [PMID: 24926684 PMCID: PMC4057207 DOI: 10.1371/journal.pone.0099430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 05/14/2014] [Indexed: 12/30/2022] Open
Abstract
RNA surveillance plays an important role in posttranscriptional regulation. Seminal work in this field has largely focused on yeast as a model system, whereas exploration of RNA surveillance in mammals is only recently begun. The increased transcriptional complexity of mammalian systems provides a wider array of targets for RNA surveillance, and, while many questions remain unanswered, emerging data suggest the nuclear RNA surveillance machinery exhibits increased complexity as well. We have used a small interfering RNA in mouse N2A cells to target the homolog of a yeast protein that functions in RNA surveillance (Mtr4p). We used high-throughput sequencing of polyadenylated RNAs (PA-seq) to quantify the effects of the mMtr4 knockdown (KD) on RNA surveillance. We demonstrate that overall abundance of polyadenylated protein coding mRNAs is not affected, but several targets of RNA surveillance predicted from work in yeast accumulate as adenylated RNAs in the mMtr4KD. microRNAs are an added layer of transcriptional complexity not found in yeast. After Drosha cleavage separates the pre-miRNA from the microRNA's primary transcript, the byproducts of that transcript are generally thought to be degraded. We have identified the 5′ leading segments of pri-miRNAs as novel targets of mMtr4 dependent RNA surveillance.
Collapse
Affiliation(s)
- Jane E. Dorweiler
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Ting Ni
- DNA Sequencing and Genomics Core, Genetics and Development Biology Center, National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Jun Zhu
- DNA Sequencing and Genomics Core, Genetics and Development Biology Center, National Institutes of Health, National Heart Lung and Blood Institute, Bethesda, Maryland, United States of America
| | - Stephen H. Munroe
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
- * E-mail: (JTA); (SHM)
| | - James T. Anderson
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, United States of America
- * E-mail: (JTA); (SHM)
| |
Collapse
|
9
|
The ribosomal protein rpl26 promoter is required for its 3' sense terminus ncRNA transcription in Schizosaccharomyces pombe, implicating a new transcriptional mechanism for ncRNAs. Biochem Biophys Res Commun 2014; 444:86-91. [PMID: 24434141 DOI: 10.1016/j.bbrc.2014.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 01/09/2014] [Indexed: 11/20/2022]
Abstract
Transcriptome studies have revealed that many non-coding RNAs (ncRNAs) are located near the 3' sense terminus of protein-coding genes. However, the transcription and function of these RNAs remain elusive. Here, we identify a 3' sense termini-associated sRNA (TASR) downstream of rpl26 in Schizosaccharomyces pombe (S. pombe). Structure and function assays indicate that the TASR is an H/ACA box snoRNA required for 18S rRNA pseudouridylation at U121 and U305 sites and is therefore a cognate of snR49 from the budding yeast. Transcriptional studies show that pre-snR49 overlaps most of the coding sequence (CDS) of rpl26. Using scanning deletion analysis within promoter region, we show that the rpl26 promoter is required for the 3' TASR transcription. Interestingly, chromosomal synteny of rpl26-snR49 is found in the Schizosaccharomyces groups. Taken together, we have revealed a new transcriptional mechanism for 3' sense TASRs, which are transcribed by the same promoter as their upstream protein genes. These results further suggest that the origin and function of 3' sense ncRNAs are associated with upstream genes in higher eukaryotes.
Collapse
|
10
|
Goyal RK, Kumar V, Shukla V, Mattoo R, Liu Y, Chung SH, Giovannoni JJ, Mattoo AK. Features of a unique intronless cluster of class I small heat shock protein genes in tandem with box C/D snoRNA genes on chromosome 6 in tomato (Solanum lycopersicum). PLANTA 2012; 235:453-71. [PMID: 21947620 DOI: 10.1007/s00425-011-1518-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 09/05/2011] [Indexed: 05/03/2023]
Abstract
Physical clustering of genes has been shown in plants; however, little is known about gene clusters that have different functions, particularly those expressed in the tomato fruit. A class I 17.6 small heat shock protein (Sl17.6 shsp) gene was cloned and used as a probe to screen a tomato (Solanum lycopersicum) genomic library. An 8.3-kb genomic fragment was isolated and its DNA sequence determined. Analysis of the genomic fragment identified intronless open reading frames of three class I shsp genes (Sl17.6, Sl20.0, and Sl20.1), the Sl17.6 gene flanked by Sl20.1 and Sl20.0, with complete 5' and 3' UTRs. Upstream of the Sl20.0 shsp, and within the shsp gene cluster, resides a box C/D snoRNA cluster made of SlsnoR12.1 and SlU24a. Characteristic C and D, and C' and D', boxes are conserved in SlsnoR12.1 and SlU24a while the upstream flanking region of SlsnoR12.1 carries TATA box 1, homol-E and homol-D box-like cis sequences, TM6 promoter, and an uncharacterized tomato EST. Molecular phylogenetic analysis revealed that this particular arrangement of shsps is conserved in tomato genome but is distinct from other species. The intronless genomic sequence is decorated with cis elements previously shown to be responsive to cues from plant hormones, dehydration, cold, heat, and MYC/MYB and WRKY71 transcription factors. Chromosomal mapping localized the tomato genomic sequence on the short arm of chromosome 6 in the introgression line (IL) 6-3. Quantitative polymerase chain reaction analysis of gene cluster members revealed differential expression during ripening of tomato fruit, and relatively different abundances in other plant parts.
Collapse
Affiliation(s)
- Ravinder K Goyal
- US Department of Agriculture, The Henry A. Wallace Beltsville Agricultural Research Center, Agriculture Research Service, Beltsville, MD 20705-2350, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Rojas DA, Moreira-Ramos S, Zock-Emmenthal S, Urbina F, Contreras-Levicoy J, Käufer NF, Maldonado E. Rrn7 protein, an RNA polymerase I transcription factor, is required for RNA polymerase II-dependent transcription directed by core promoters with a HomolD box sequence. J Biol Chem 2011; 286:26480-6. [PMID: 21673110 DOI: 10.1074/jbc.m111.224337] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The region in promoters that specifies the transcription machinery is called the core promoter, displaying core promoter elements (CPE) necessary for establishment of a preinitiation complex and the initiation of transcription. A classical CPE is the TATA box. In fission yeast, Schizosaccharomyces pombe, a new CPE, called HomolD box, was discovered. Collectively, 141 ribosomal protein genes encoding the full set of 79 different ribosomal proteins and more than 60 other housekeeping genes display a HomolD box in the core promoter. Here, we show that transcription directed by the HomolD box requires the RNA polymerase II machinery, including the general transcription factors. Most intriguingly, however, we identify, by DNA affinity purification, Rrn7 as the protein binding to the HomolD box. Rrn7 is an evolutionary conserved member of the RNA polymerase I machinery involved in transcription initiation of core ribosomal DNA promoters. ChIP shows that Rrn7 cross-links to a ribosomal protein gene promoter containing the HomolD box but not to a promoter containing a TATA box. Taken together, our results suggest that Rrn7 is an excellent candidate to be involved in the coordination of ribosomal DNA and ribosomal gene transcription during ribosome synthesis and, therefore, offer a new perspective to study conservation and evolvability of regulatory networks in eukaryotes.
Collapse
Affiliation(s)
- Diego A Rojas
- Universidad de Chile, Facultad de Medicina, Instituto de Ciencias Biomédicas, Programa Biología Celular y Molecular, Independencia 1027, Santiago 7, Chile
| | | | | | | | | | | | | |
Collapse
|
12
|
Identification and Characterization of Human snoRNA Core Promoters. Genomics 2010; 96:50-6. [DOI: 10.1016/j.ygeno.2010.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Revised: 03/17/2010] [Accepted: 03/23/2010] [Indexed: 11/19/2022]
|
13
|
Dieci G, Preti M, Montanini B. Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics 2009; 94:83-8. [PMID: 19446021 DOI: 10.1016/j.ygeno.2009.05.002] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/30/2009] [Accepted: 05/07/2009] [Indexed: 11/26/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are one of the most ancient and numerous families of non-protein-coding RNAs (ncRNAs). The main function of snoRNAs - to guide site-specific rRNA modification - is the same in Archaea and all eukaryotic lineages. In contrast, as revealed by recent genomic and RNomic studies, their genomic organization and expression strategies are the most varied. Seemingly snoRNA coding units have adopted, in the course of evolution, all the possible ways of being transcribed, thus providing a unique paradigm of gene expression flexibility. By focusing on representative fungal, plant and animal genomes, we review here all the documented types of snoRNA gene organization and expression, and we provide a comprehensive account of snoRNA expressional freedom by precisely estimating the frequency, in each genome, of each type of genomic organization. We finally discuss the relevance of snoRNA genomic studies for our general understanding of ncRNA family evolution and expression in eukaryotes.
Collapse
Affiliation(s)
- Giorgio Dieci
- Dipartimento di Biochimica e Biologia Molecolare, Università degli Studi di Parma, Parma, Italy.
| | | | | |
Collapse
|