1
|
Collier JL, Rest JS, Gallot-Lavallée L, Lavington E, Kuo A, Jenkins J, Plott C, Pangilinan J, Daum C, Grigoriev IV, Filloramo GV, Novák Vanclová AMG, Archibald JM. The protist Aurantiochytrium has universal subtelomeric rDNAs and is a host for mirusviruses. Curr Biol 2023; 33:5199-5207.e4. [PMID: 37913769 DOI: 10.1016/j.cub.2023.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Viruses are the most abundant biological entities in the world's oceans, where they play important ecological and biogeochemical roles. Metagenomics is revealing new groups of eukaryotic viruses, although disconnected from known hosts. Among these are the recently described mirusviruses, which share some similarities with herpesviruses.1 50 years ago, "herpes-type" viral particles2 were found in a thraustochytrid member of the labyrinthulomycetes, a diverse group of abundant and ecologically important marine eukaryotes,3,4 but could not be further characterized by methods then available. Long-read sequencing has allowed us to connect the biology of mirusviruses and thraustochytrids. We sequenced the genome of the genetically tractable model thraustochytrid Aurantiochytrium limacinum ATCC MYA-1381 and found that its 26 linear chromosomes have an extraordinary configuration. Subtelomeric ribosomal DNAs (rDNAs) found at all chromosome ends are interspersed with long repeated sequence elements denoted as long repeated-telomere and rDNA spacers (LORE-TEARS). We identified two genomic elements that are related to mirusvirus genomes. The first is a ∼300-kbp episome (circular element 1 [CE1]) present at a high copy number. Strikingly, the second, distinct, mirusvirus-like element is integrated between two sets of rDNAs and LORE-TEARS at the left end of chromosome 15 (LE-Chr15). Similar to metagenomically derived mirusviruses, these putative A. limacinum mirusviruses have a virion module related to that of herpesviruses along with an informational module related to nucleocytoplasmic large DNA viruses (NCLDVs). CE1 and LE-Chr15 bear striking similarities to episomal and endogenous latent forms of herpesviruses, respectively, and open new avenues of research into marine virus-host interactions.
Collapse
Affiliation(s)
- Jackie L Collier
- School of Marine and Atmospheric Sciences, Stony Brook University, Nicolls Road, Stony Brook, NY 11794, USA.
| | - Joshua S Rest
- Department of Ecology and Evolution, Stony Brook University, Nicolls Road, Stony Brook, NY 11794, USA.
| | - Lucie Gallot-Lavallée
- Department of Biochemistry & Molecular Biology, Dalhousie University, College Street, Halifax, NS B3H 4R2, Canada
| | - Erik Lavington
- Department of Ecology and Evolution, Stony Brook University, Nicolls Road, Stony Brook, NY 11794, USA
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, CA 94720, USA
| | - Jerry Jenkins
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, CA 94720, USA; HudsonAlpha Institute for Biotechnology, Genome Way Northwest, Huntsville, AL 35806, USA
| | - Chris Plott
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, CA 94720, USA; HudsonAlpha Institute for Biotechnology, Genome Way Northwest, Huntsville, AL 35806, USA
| | - Jasmyn Pangilinan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, CA 94720, USA
| | - Chris Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, CA 94720, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California Berkeley, University Avenue, Berkeley, CA 94720, USA
| | - Gina V Filloramo
- Department of Biochemistry & Molecular Biology, Dalhousie University, College Street, Halifax, NS B3H 4R2, Canada
| | | | - John M Archibald
- Department of Biochemistry & Molecular Biology, Dalhousie University, College Street, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
2
|
Shibata K, Kuroda M, Yamaha E, Arai K, Fujimoto T. Nucleotide Sequence and Chromosome Mapping of 5S Ribosomal DNA from the Dojo Loach, Misgurnus anguillicaudatus. Cytogenet Genome Res 2023; 162:570-578. [PMID: 36682354 DOI: 10.1159/000529150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
There are 2 genetically divergent groups in the dojo loach Misgurnus anguillicaudatus: A and B. Although most wild-type diploids reproduce sexually, clonal diploids (clonal loach) reproduce gynogenetically in certain areas. Clonal loaches produce unreduced isogenic eggs by premeiotic endomitosis, and such diploid eggs develop gynogenetically following activation by the sperm of sympatric wild-type diploids. These clonal loaches have presumably arisen from past hybridization events between 2 different ancestors. The genomic differences between these 2 groups have not been completely elucidated. Thus, new genetic and cytogenetic markers are required to distinguish between these 2 groups. Here, we compared the 5S rDNA region to develop markers for the identification of different dojo loach groups. The nontranscribed sequence (NTS) of the 5S rDNA was highly polymorphic and group-specific. NTSs were found in clades of 2 different groups in clonal loaches. In contrast, we did not find any group-specific sequences in the coding region of the 5S rRNA gene. Sequences were located near the centromere of the short arm of the largest submetacentric chromosomes in groups A and B and clonal loaches. Thus, the 5S rDNA of the dojo loach is conserved at the chromosomal location. Whereas, the sequences of the NTS regions evolved group-specifically in the dojo loach, with the sequences of both groups being conserved in clonal loaches.
Collapse
Affiliation(s)
- Kiko Shibata
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Masamichi Kuroda
- Department of Ocean and Fisheries Sciences, Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Japan
| | - Etsuro Yamaha
- Nanae Freshwater Station, Field Science Center for Northern Biosphere, Hokkaido University, Nanae, Japan
| | - Katsutoshi Arai
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | | |
Collapse
|
3
|
Lin GM, Lai YH, Audira G, Hsiao CD. A Simple Method to Decode the Complete 18-5.8-28S rRNA Repeated Units of Green Algae by Genome Skimming. Int J Mol Sci 2017; 18:ijms18112341. [PMID: 29113146 PMCID: PMC5713310 DOI: 10.3390/ijms18112341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 11/16/2022] Open
Abstract
Green algae, Chlorella ellipsoidea, Haematococcus pluvialis and Aegagropila linnaei (Phylum Chlorophyta) were simultaneously decoded by a genomic skimming approach within 18-5.8-28S rRNA region. Whole genomic DNAs were isolated from green algae and directly subjected to low coverage genome skimming sequencing. After de novo assembly and mapping, the size of complete 18-5.8-28S rRNA repeated units for three green algae were ranged from 5785 to 6028 bp, which showed high nucleotide diversity (π is around 0.5–0.6) within ITS1 and ITS2 (Internal Transcribed Spacer) regions. Previously, the evolutional diversity of algae has been difficult to decode due to the inability design universal primers that amplify specific marker genes across diverse algal species. In this study, our method provided a rapid and universal approach to decode the 18-5.8-28S rRNA repeat unit in three green algal species. In addition, the completely sequenced 18-5.8-28S rRNA repeated units provided a solid nuclear marker for phylogenetic and evolutionary analysis for green algae for the first time.
Collapse
Affiliation(s)
- Geng-Ming Lin
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei 11114, Taiwan.
| | - Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center for Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
4
|
Pereira-Neves A, Gonzaga L, Menna-Barreto RFS, Benchimol M. Characterisation of 20S Proteasome in Tritrichomonas foetus and Its Role during the Cell Cycle and Transformation into Endoflagellar Form. PLoS One 2015; 10:e0129165. [PMID: 26047503 PMCID: PMC4457923 DOI: 10.1371/journal.pone.0129165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/05/2015] [Indexed: 11/30/2022] Open
Abstract
Proteasomes are intracellular complexes that control selective protein degradation in organisms ranging from Archaea to higher eukaryotes. These structures have multiple proteolytic activities that are required for cell differentiation, replication and maintaining cellular homeostasis. Here, we document the presence of the 20S proteasome in the protist parasite Tritrichomonas foetus. Complementary techniques, such as a combination of whole genome sequencing technologies, bioinformatics algorithms, cell fractionation and biochemistry and microscopy approaches were used to characterise the 20S proteasome of T. foetus. The 14 homologues of the typical eukaryotic proteasome subunits were identified in the T. foetus genome. Alignment analyses showed that the main regulatory and catalytic domains of the proteasome were conserved in the predicted amino acid sequences from T. foetus-proteasome subunits. Immunofluorescence assays using an anti-proteasome antibody revealed a labelling distributed throughout the cytosol as punctate cytoplasmic structures and in the perinuclear region. Electron microscopy of a T. foetus-proteasome-enriched fraction confirmed the presence of particles that resembled the typical eukaryotic 20S proteasome. Fluorogenic assays using specific peptidyl substrates detected presence of the three typical peptidase activities of eukaryotic proteasomes in T. foetus. As expected, these peptidase activities were inhibited by lactacystin, a well-known specific proteasome inhibitor, and were not affected by inhibitors of serine or cysteine proteases. During the transformation of T. foetus to endoflagellar form (EFF), also known as pseudocyst, we observed correlations between the EFF formation rates, increases in the proteasome activities and reduced levels of ubiquitin-protein conjugates. The growth, cell cycle and EFF transformation of T. foetus were inhibited after treatment with lactacystin in a dose-dependent manner. Lactacystin treatment also resulted in an accumulation of ubiquitinated proteins and caused increase in the amount of endoplasmic reticulum membranes in the parasite. Taken together, our results suggest that the ubiquitin-proteasome pathway is required for cell cycle and EFF transformation in T. foetus.
Collapse
MESH Headings
- Acetylcysteine/analogs & derivatives
- Acetylcysteine/pharmacology
- Amino Acid Sequence
- Blotting, Western
- Cell Cycle
- Cysteine Proteinase Inhibitors/pharmacology
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum/metabolism
- Endoplasmic Reticulum/ultrastructure
- Flagella/metabolism
- Flagella/ultrastructure
- Life Cycle Stages/drug effects
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Molecular Sequence Data
- Phylogeny
- Proteasome Endopeptidase Complex/classification
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/metabolism
- Protein Subunits/antagonists & inhibitors
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- Protozoan Proteins/ultrastructure
- Sequence Homology, Amino Acid
- Spores, Protozoan/drug effects
- Spores, Protozoan/metabolism
- Spores, Protozoan/ultrastructure
- Tritrichomonas foetus/genetics
- Tritrichomonas foetus/growth & development
- Tritrichomonas foetus/metabolism
Collapse
Affiliation(s)
- Antonio Pereira-Neves
- Programa de Pós-graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Fiocruz, Centro de Pesquisa Aggeu Magalhães, Departamento de Microbiologia, Laboratório de Microbiologia e Biologia Celular, Recife, PE, Brazil
| | - Luiz Gonzaga
- Laboratório Nacional de Computação Cientifica (LNCC/MCT), Petrópolis, RJ, Brazil
| | | | - Marlene Benchimol
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- UNIGRANRIO- Universidade do Grande Rio, Duque de Caxias, RJ, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
5
|
Rebordinos L, Cross I, Merlo A. High evolutionary dynamism in 5S rDNA of fish: state of the art. Cytogenet Genome Res 2013; 141:103-13. [PMID: 24080995 DOI: 10.1159/000354871] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The 5S ribosomal DNA (rDNA) consists of one transcriptional unit of about 120 base pairs, which is separated from the next unit by a non-transcribed spacer (NTS). The coding sequence and the NTS together form a repeat unit which can be found in hundreds to thousands of copies tandemly repeated in the genomes. The NTS regions seem to be subject to rapid evolution. The first general model of evolution of these multigene families was referred to as divergent evolution, based on studies using hemoglobin and myoglobin as model systems. Later studies showed that nucleotide sequences of different multigene family members are more closely related within species than between species. This observation led to a new model of multigene family evolution, termed concerted evolution. Another model of evolution, named the birth-and-death model, has been found to be more suitable to explain the long-term evolution of these multigene families. According to this model, new genes originate by successive duplications, and these new genes are either maintained for a long time or are lost, or else degenerate into pseudogenes. In this review we describe different sources of variability in the 5S rDNA genes observed in several distinct fish species. This variability is mainly referred to NTSs and includes the presence of other multigene families (mainly LINEs, SINEs, non-LTR retrotransposons, and U snRNA families). Different types of microsatellites have also been found to contribute to the increase of variability in this region. Our recent results suggest that horizontal transfer contributes to the increase of diversity in the NTSs of some species. Variability in the 5S rDNA coding region affecting the stability of the structure, but without effects on the function of the 5S rRNA, is also described. Retrotransposons seem to be responsible for the high dynamism of 5S rDNA, while microsatellites acting as recombination hot spots could stabilize a wide variety of unusual DNA structures, affecting DNA replication and enhancing or decreasing promoter activity in gene expression. The relationship between the high variability found at molecular level and the low variability found at chromosomal level is also discussed.
Collapse
Affiliation(s)
- L Rebordinos
- Area de Genética, Facultad de Ciencias del Mar y Ambientales, CEI-Mar, Universidad de Cádiz, Puerto Real, Spain
| | | | | |
Collapse
|
6
|
Abstract
The parabasalid protist Trichomonas vaginalis is a widespread parasite that affects humans, frequently causing vaginitis in infected women. Trichomonad mitosis is marked by the persistence of the nuclear membrane and the presence of an asymmetric extranuclear spindle with no obvious direct connection to the chromosomes. No centromeric markers have been described in T. vaginalis, which has prevented a detailed analysis of mitotic events in this organism. In other eukaryotes, nucleosomes of centromeric chromatin contain the histone H3 variant CenH3. The principal aim of this work was to identify a CenH3 homolog in T. vaginalis. We performed a screen of the T. vaginalis genome to retrieve sequences of canonical and variant H3 histones. Three variant histone H3 proteins were identified, and the subcellular localization of their epitope-tagged variants was determined. The localization of the variant TVAG_185390 could not be distinguished from that of the canonical H3 histone. The sequence of the variant TVAG_087830 closely resembled that of histone H3. The tagged protein colocalized with sites of active transcription, indicating that the variant TVAG_087830 represented H3.3 in T. vaginalis. The third H3 variant (TVAG_224460) was localized to 6 or 12 distinct spots at the periphery of the nucleus, corresponding to the number of chromosomes in G(1) phase and G(2) phase, respectively. We propose that this variant represents the centromeric marker CenH3 and thus can be employed as a tool to study mitosis in T. vaginalis. Furthermore, we suggest that the peripheral distribution of CenH3 within the nucleus results from the association of centromeres with the nuclear envelope throughout the cell cycle.
Collapse
|
7
|
Lollis L, Gerhold R, McDougald L, Beckstead R. Molecular characterization of Histomonas meleagridis and other parabasalids in the United States using the 5.8S, ITS-1, and ITS-2 rRNA regions. J Parasitol 2011; 97:610-5. [PMID: 21506848 DOI: 10.1645/ge-2648.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Extracted DNA from 28 Histomonas meleagridis -infected avian tissue samples from multiple hosts and geographic locations was analyzed for variation in the 5.8S rRNA and the flanking internal transcribed spacer regions (ITS 1 and ITS 2). Samples were amplified by polymerase chain reaction, sequenced, and compared with known sequences from GenBank accessions of H. meleagridis and other related protozoa. The analyses revealed significant genetic variation within H. meleagridis sequences and suggested the possibility of multiple genotypes within the samples or a possible misdiagnosis. Related protozoa found in some samples were mostly identified as Tetratrichomonas spp. However, 1 sample had a 93% identity to Simplicimonas similis , a newly described organism, suggesting the possibility of a new pathogen in poultry. A phylogenetic tree analyzing the 5.8S and flanking ITS regions was inconclusive and we were unable to resolve all H. meleagridis into a single grouping. In contrast, a tree constructed only on the 5.8S rRNA grouped all but 1 H. meleagridis sample into 1 clade, including GenBank accessions submitted from Europe. This suggests that the 5.8S region alone is more reliable in identifying H. meleagridis than are the combined 5.8S and flanking ITS regions. There was no correlation between genotypes and host species or geographic location, suggesting that H. meleagridis moves freely between multiple avian species in the sampled regions.
Collapse
Affiliation(s)
- Lori Lollis
- Department of Poultry Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
8
|
Zubáčová Z, Krylov V, Tachezy J. Fluorescence in situ hybridization (FISH) mapping of single copy genes on Trichomonas vaginalis chromosomes. Mol Biochem Parasitol 2010; 176:135-7. [PMID: 21195113 DOI: 10.1016/j.molbiopara.2010.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 12/23/2022]
Abstract
The highly repetitive nature of the Trichomonas vaginalis genome and massive expansion of various gene families has caused difficulties in genome assembly and has hampered genome mapping. Here, we adapted fluorescence in situ hybridization (FISH) for T. vaginalis, which is sensitive enough to detect single copy genes on metaphase chromosomes. Sensitivity of conventional FISH, which did not allow single copy gene detection in T. vaginalis, was increased by means of tyramide signal amplification. Two selected single copy genes, coding for serine palmitoyltransferase and tryptophanase, were mapped to chromosome I and II, respectively, and thus could be used as chromosome markers. This established protocol provides an amenable tool for the physical mapping of the T. vaginalis genome and other essential applications, such as development of genetic markers for T. vaginalis genotyping.
Collapse
Affiliation(s)
- Zuzana Zubáčová
- Charles University in Prague, Faculty of Science, Department of Parasitology, Vinicna 7, 12844 Prague, Czech Republic
| | | | | |
Collapse
|
9
|
Torres-Machorro AL, Hernández R, Cevallos AM, López-Villaseñor I. Ribosomal RNA genes in eukaryotic microorganisms: witnesses of phylogeny? FEMS Microbiol Rev 2010; 34:59-86. [DOI: 10.1111/j.1574-6976.2009.00196.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
10
|
Responsiveness of Trichomonas vaginalis to iron concentrations: Evidence for a post-transcriptional iron regulation by an IRE/IRP-like system. INFECTION GENETICS AND EVOLUTION 2009; 9:1065-74. [DOI: 10.1016/j.meegid.2009.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 05/28/2009] [Accepted: 06/08/2009] [Indexed: 01/06/2023]
|