1
|
García-Martín J, Zamora J, Lado C. Multigene phylogeny of the order Physarales ( Myxomycetes, Amoebozoa): shedding light on the dark-spored clade. PERSOONIA 2023; 51:89-124. [PMID: 38665983 PMCID: PMC11041899 DOI: 10.3767/persoonia.2023.51.02] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/04/2022] [Indexed: 04/28/2024]
Abstract
The class Myxomycetes consists of free-living protists characterised by their complex life cycle, which includes both microscopic (amoebae, flagellates and cists) and macroscopic stages (spore-bearing fruiting bodies, sclerotia, and plasmodia). Within it, the order Physarales, with more than 450 recognised species, constitutes the largest group. Although previous studies have shown the polyphyly of some of the traditionally accepted genera, its internal phylogenetic relationships have remained uncertain so far, and together with the lack of data for some key species, it prevented any taxonomic and nomenclatural revisions. We have compiled a substantially expanded dataset in terms of both taxon sampling and molecular data, including most of the genera described to date and four unlinked DNA regions, for which we provide partial sequences: nSSU, EF-1α, α-Tub, and mtSSU, analysed through maximum likelihood and Bayesian methods. Our results confirm that the family Didymiaceae is paraphyletic to the rest of Physarales. Within Didymiaceae s.lat., the recent reinstatement of the genus Polyschismium for most species traditionally ascribed to Lepidoderma, except for the type (Ronikier et al. 2022), is further supported here, as well as the definite inclusion of the genus Mucilago in Didymium and Lepidoderma s.str. (L. tigrinum) in Diderma (Prikhodko et al. 2023). Additionally, the genus Diachea is redefined to include some species previously treated in Physaraceae (Craterium spp. with true columella). Within the monophyletic family Physaraceae, most genera are recovered as polyphyletic, suggesting that they should be no longer accepted as currently defined. However, the lack of resolution of some relationships within Physaraceae prevents us from resuscitating or creating several new genera to mitigate polyphyly. Among the well-defined groups with clear molecular signatures, we propose two taxonomic and nomenclatural changes at generic level: 1) a new genus, Nannengaella, is proposed for a major clade containing Physarum globuliferum and other species with heavily calcified sporophores and, often, a true calcareous columella; 2) Lignydium is resurrected for the clade containing Fuligo muscorum. Additionally, Trichamphora is suggested as the correct name for the clade containing Physarum pezizoideum. The taxonomy and nomenclature of some provisional genera, currently synonymous with Fuligo and Physarum, are disentangled, and we provide a comprehensive and updated nomenclatural conspectus that can be used when better resolved phylogenies are obtained. In total, 22 new combinations are proposed in different genera. A provisional key to the genera of the order is also provided. Citation: García-Martín JM, Zamora JC, Lado C. 2023. Multigene phylogeny of the order Physarales (Myxomycetes, Amoebozoa): shedding light on the dark-spored clade. Persoonia 51: 89-124. doi: 10.3767/persoonia.2023.51.02.
Collapse
Affiliation(s)
- J.M. García-Martín
- Department of Mycology, Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - J.C. Zamora
- Museum of Evolution, Uppsala University, Norbyvägen 16, 752 36 Uppsala, Sweden
- Conservatoire et Jardin botaniques de la Ville de Genève, Chem. de l’Impératrice 1, 1292 Pregny-Chambésy, Switzerland
| | - C. Lado
- Department of Mycology, Real Jardín Botánico, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| |
Collapse
|
2
|
De novo assembly and annotation of Didymium iridis transcriptome and identification of stage-specfic genes. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0037-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Oliverio AM, Lahr DJG, Grant J, Katz LA. Are microbes fundamentally different than macroorganisms? Convergence and a possible case for neutral phenotypic evolution in testate amoeba (Amoebozoa: Arcellinida). ROYAL SOCIETY OPEN SCIENCE 2015; 2:150414. [PMID: 27019725 PMCID: PMC4807447 DOI: 10.1098/rsos.150414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
This study reveals extensive phenotypic convergence based on the non-monophyly of genera and morphospecies of testate (shelled) amoebae. Using two independent markers, small subunit ribosomal DNA (ssu-rDNA) and mitochondrial cytochrome oxidase I (COI), we demonstrate discordance between morphology and molecules for 'core Nebela' species (Arcellinida; Amoebozoa). Prior work using just a single locus, ssu-rDNA, also supported the non-monophyly of the genera Hyalosphenia and Nebela as well as for several morphospecies within these genera. Here, we obtained COI gene sequences of 59 specimens from seven morphospecies and ssu-rDNA gene sequences of 50 specimens from six morphospecies of hyalosphenids. Our analyses corroborate the prior ssu-rDNA findings of morphological convergence in test (shell) morphologies, as COI and ssu-rDNA phylogenies are concordant. Further, the monophyly of morphospecies is rejected using approximately unbiased tests. Given that testate amoebae are used as bioindicators in both palaeoecological and contemporary studies of threatened ecosystems such as bogs and fens, understanding the discordance between morphology and genetics in the hyalosphenids is essential for interpretation of indicator species. Further, while convergence is normally considered the result of natural selection, it is possible that neutrality underlies phenotypic evolution in these microorganisms.
Collapse
Affiliation(s)
- Angela M. Oliverio
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Daniel J. G. Lahr
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Jessica Grant
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
| | - Laura A. Katz
- Department of Biological Sciences, Smith College, Northampton, MA 01063, USA
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
4
|
Kolesnikov AA, Gerasimov ES. Diversity of mitochondrial genome organization. BIOCHEMISTRY (MOSCOW) 2013; 77:1424-35. [PMID: 23379519 DOI: 10.1134/s0006297912130020] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this review, we discuss types of mitochondrial genome structural organization (architecture), which includes the following characteristic features: size and the shape of DNA molecule, number of encoded genes, presence of cryptogenes, and editing of primary transcripts.
Collapse
Affiliation(s)
- A A Kolesnikov
- Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | | |
Collapse
|
5
|
Chen C, Frankhouser D, Bundschuh R. Comparison of insertional RNA editing in Myxomycetes. PLoS Comput Biol 2012; 8:e1002400. [PMID: 22383871 PMCID: PMC3285571 DOI: 10.1371/journal.pcbi.1002400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 01/11/2012] [Indexed: 11/23/2022] Open
Abstract
RNA editing describes the process in which individual or short stretches of nucleotides in a messenger or structural RNA are inserted, deleted, or substituted. A high level of RNA editing has been observed in the mitochondrial genome of Physarum polycephalum. The most frequent editing type in Physarum is the insertion of individual Cs. RNA editing is extremely accurate in Physarum; however, little is known about its mechanism. Here, we demonstrate how analyzing two organisms from the Myxomycetes, namely Physarum polycephalum and Didymium iridis, allows us to test hypotheses about the editing mechanism that can not be tested from a single organism alone. First, we show that using the recently determined full transcriptome information of Physarum dramatically improves the accuracy of computational editing site prediction in Didymium. We use this approach to predict genes in the mitochondrial genome of Didymium and identify six new edited genes as well as one new gene that appears unedited. Next we investigate sequence conservation in the vicinity of editing sites between the two organisms in order to identify sites that harbor the information for the location of editing sites based on increased conservation. Our results imply that the information contained within only nine or ten nucleotides on either side of the editing site (a distance previously suggested through experiments) is not enough to locate the editing sites. Finally, we show that the codon position bias in C insertional RNA editing of these two organisms is correlated with the selection pressure on the respective genes thereby directly testing an evolutionary theory on the origin of this codon bias. Beyond revealing interesting properties of insertional RNA editing in Myxomycetes, our work suggests possible approaches to be used when finding sequence motifs for any biological process fails. RNA is an important biomolecule that is deeply involved in all aspects of molecular biology, such as protein production, gene regulation, and viral replication. However, many significant aspects such as the mechanism of RNA editing are not well understood. RNA editing is the process in which an organism's RNA is modified through the insertion, deletion, or substitution of single or short stretches of nucleotides. The slime mold Physarum polycephalum is a model organism for the study of RNA editing; however, hardly anything is known about its editing machinery. We show that the combination of two organisms (Physarum polycephalum and Didymium iridis) can provide a better understanding of insertional RNA editing than one organism alone. We predict several new edited genes in Didymium. By comparing the sequences of the two organisms in the vicinity of the editing sites we establish minimal requirements for the location of the information by which these editing sites are recognized. Lastly, we directly verify a theory for one of the most striking features of the editing sites, namely their codon bias.
Collapse
Affiliation(s)
- Cai Chen
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
| | - David Frankhouser
- Department of Physics, The Ohio State University, Columbus, Ohio, United States of America
| | - Ralf Bundschuh
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio, United States of America
- Department of Physics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
6
|
Bundschuh R, Altmüller J, Becker C, Nürnberg P, Gott JM. Complete characterization of the edited transcriptome of the mitochondrion of Physarum polycephalum using deep sequencing of RNA. Nucleic Acids Res 2011; 39:6044-55. [PMID: 21478163 PMCID: PMC3152335 DOI: 10.1093/nar/gkr180] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
RNAs transcribed from the mitochondrial genome of Physarum polycephalum are heavily edited. The most prevalent editing event is the insertion of single Cs, with Us and dinucleotides also added at specific sites. The existence of insertional editing makes gene identification difficult and localization of editing sites has relied upon characterization of individual cDNAs. We have now determined the complete mitochondrial transcriptome of Physarum using Illumina deep sequencing of purified mitochondrial RNA. We report the first instances of A and G insertions and sites of partial and extragenic editing in Physarum mitochondrial RNAs, as well as an additional 772 C, U and dinucleotide insertions. The notable lack of antisense RNAs in our non-size selected, directional library argues strongly against an RNA-guided editing mechanism. Also of interest are our findings that sites of C to U changes are unedited at a significantly higher frequency than insertional editing sites and that substitutional editing of neighboring sites appears to be coupled. Finally, in addition to the characterization of RNAs from 17 predicted genes, our data identified nine new mitochondrial genes, four of which encode proteins that do not resemble other proteins in the database. Curiously, one of the latter mRNAs contains no editing sites.
Collapse
Affiliation(s)
- R Bundschuh
- Department of Physics, Department of Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
7
|
Knoop V. When you can't trust the DNA: RNA editing changes transcript sequences. Cell Mol Life Sci 2011; 68:567-86. [PMID: 20938709 PMCID: PMC11114842 DOI: 10.1007/s00018-010-0538-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/13/2010] [Accepted: 09/23/2010] [Indexed: 12/25/2022]
Abstract
RNA editing describes targeted sequence alterations in RNAs so that the transcript sequences differ from their DNA template. Since the original discovery of RNA editing in trypanosomes nearly 25 years ago more than a dozen such processes of nucleotide insertions, deletions, and exchanges have been identified in evolutionarily widely separated groups of the living world including plants, animals, fungi, protists, bacteria, and viruses. In many cases gene expression in mitochondria is affected, but RNA editing also takes place in chloroplasts and in nucleocytosolic genetic environments. While some RNA editing systems largely seem to repair defect genes (cryptogenes), others have obvious functions in modulating gene activities. The present review aims for an overview on the current states of research in the different systems of RNA editing by following a historic timeline along the respective original discoveries.
Collapse
Affiliation(s)
- Volker Knoop
- Abteilung Molekulare Evolution, Institut für Zelluläre und Molekulare Botanik (IZMB), Bonn, Germany.
| |
Collapse
|
8
|
Bullerwell CE, Burger G, Gott JM, Kourennaia O, Schnare MN, Gray MW. Abundant 5S rRNA-like transcripts encoded by the mitochondrial genome in amoebozoa. EUKARYOTIC CELL 2010; 9:762-73. [PMID: 20304999 PMCID: PMC2863963 DOI: 10.1128/ec.00013-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 03/14/2010] [Indexed: 11/20/2022]
Abstract
5S rRNAs are ubiquitous components of prokaryotic, chloroplast, and eukaryotic cytosolic ribosomes but are apparently absent from mitochondrial ribosomes (mitoribosomes) of many eukaryotic groups including animals and fungi. Nevertheless, a clearly identifiable, mitochondrion-encoded 5S rRNA is present in Acanthamoeba castellanii, a member of Amoebozoa. During a search for additional mitochondrial 5S rRNAs, we detected small abundant RNAs in other members of Amoebozoa, namely, in the lobose amoeba Hartmannella vermiformis and in the myxomycete slime mold Physarum polycephalum. These RNAs are encoded by mitochondrial DNA (mtDNA), cosediment with mitoribosomes in glycerol gradients, and can be folded into a secondary structure similar to that of bona fide 5S rRNAs. Further, in the mtDNA of another slime mold, Didymium nigripes, we identified a region that in sequence, potential secondary structure, and genomic location is similar to the corresponding region encoding the Physarum small RNA. A mtDNA-encoded small RNA previously identified in Dictyostelium discoideum is here shown to share several characteristics with known 5S rRNAs. Again, we detected genes encoding potential homologs of this RNA in the mtDNA of three other species of the genus Dictyostelium as well as in a related genus, Polysphondylium. Taken together, our results indicate a widespread occurrence of small, abundant, mtDNA-encoded RNAs with 5S rRNA-like structures that are associated with the mitoribosome in various amoebozoan taxa. Our working hypothesis is that these novel small abundant RNAs represent radically divergent mitochondrial 5S rRNA homologs. We posit that currently unrecognized 5S-like RNAs may exist in other mitochondrial systems in which a conventional 5S rRNA cannot be identified.
Collapse
MESH Headings
- Amoebozoa/cytology
- Amoebozoa/genetics
- Animals
- Base Sequence
- Cell Fractionation
- Computational Biology
- Conserved Sequence
- DNA, Mitochondrial/genetics
- Dictyostelium/genetics
- Genome, Mitochondrial/genetics
- Hartmannella/genetics
- Mitochondria/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- Physarum polycephalum/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 5S/chemistry
- RNA, Ribosomal, 5S/genetics
- Ribosome Subunits, Large, Eukaryotic/genetics
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Charles E. Bullerwell
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Gertraud Burger
- Robert Cedergren Center for Bioinformatics and Genomics, Département de Biochimie, Université de Montréal, Montréal, Quebec H3T 1J4, Canada; and
| | - Jonatha M. Gott
- Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Olga Kourennaia
- Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Murray N. Schnare
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | - Michael W. Gray
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| |
Collapse
|
9
|
Hendrickson PG, Silliker ME. RNA editing is absent in a single mitochondrial gene of Didymium iridis. Mycologia 2010; 102:1288-94. [PMID: 20943545 DOI: 10.3852/10-019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An open reading frame (ORF) was found in the mitochondrial genome of the Pan2-16 strain of Didymium iridis that showed high similarity to the NADH dehydrogenase subunit 3 (nad3) gene in other organisms. So far all other typical mitochondrial genes identified in this organism require RNA editing to generate ORFs capable of directing protein synthesis. The D. iridis sequence was compared to the putative nad3 gene in the related myxomycete Physarum polycephalum, which would require editing. Based on this comparison, editing sites could be predicted for the P. polycelphalum gene that would result in the synthesis of a highly conserved ND3 protein between the two organisms. To determine the editing status of the nad3 gene in other D. iridis strains, PCR was used to amplify this region from eight other independent isolates of the A1 Central American interbreeding series. In each case a 378 base pair ORF was detected by PCR amplification and sequencing. Three patterns of sequence variation were observed; however all base substitutions were in the third codon position and silent with respect to the amino acids encoded. The distribution of the sequence variants was mapped geographically. The requirement for RNA editing in all other typical mitochondrial genes of D. iridis and P. polycephalum and the presence of RNA editing in the nad3 gene of P. polycephalum suggest that the D. iridis nad3 gene might have been edited at one time. We propose that the D. iridis nad3 gene may have lost the requirement for RNA editing by reverse transcription of an edited transcript that subsequently was inserted into the genome.
Collapse
Affiliation(s)
- Peter G Hendrickson
- Children's Memorial Research Center, Immunology Department, 2300 Children's Plaza, Mailstop 212, Chicago, Illinois 60614, USA
| | | |
Collapse
|