1
|
Navasca A, Singh J, Rivera-Varas V, Gill U, Secor G, Baldwin T. Dispensable genome and segmental duplications drive the genome plasticity in Fusarium solani. FRONTIERS IN FUNGAL BIOLOGY 2025; 6:1432339. [PMID: 39974207 PMCID: PMC11835900 DOI: 10.3389/ffunb.2025.1432339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025]
Abstract
Fusarium solani is a species complex encompassing a large phylogenetic clade with diverse members occupying varied habitats. We recently reported a unique opportunistic F. solani associated with unusual dark galls in sugarbeet. We assembled the chromosome-level genome of the F. solani sugarbeet isolate strain SB1 using Oxford Nanopore and Hi-C sequencing. The average size of F. solani genomes is 54 Mb, whereas SB1 has a larger genome of 59.38 Mb, organized into 15 chromosomes. The genome expansion of strain SB1 is due to the high repeats and segmental duplications within its three potentially accessory chromosomes. These chromosomes are absent in the closest reference genome with chromosome-level assembly, F. vanettenii 77-13-4. Segmental duplications were found in three chromosomes but are most extensive between two specific SB1 chromosomes, suggesting that this isolate may have doubled its accessory genes. Further comparison of the F. solani strain SB1 genome demonstrates inversions and syntenic regions to an accessory chromosome of F. vanettenii 77-13-4. The pan-genome of 12 publicly available F. solani isolates nearly reached gene saturation, with few new genes discovered after the addition of the last genome. Based on orthogroups and average nucleotide identity, F. solani is not grouped by lifestyle or origin. The pan-genome analysis further revealed the enrichment of several enzymes-coding genes within the dispensable (accessory + unique genes) genome, such as hydrolases, transferases, oxidoreductases, lyases, ligases, isomerase, and dehydrogenase. The evidence presented here suggests that genome plasticity, genetic diversity, and adaptive traits in Fusarium solani are driven by the dispensable genome with significant contributions from segmental duplications.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
2
|
Liu C, Kogel K, Ladera‐Carmona M. Harnessing RNA interference for the control of Fusarium species: A critical review. MOLECULAR PLANT PATHOLOGY 2024; 25:e70011. [PMID: 39363756 PMCID: PMC11450251 DOI: 10.1111/mpp.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Fusarium fungi are a pervasive threat to global agricultural productivity. They cause a spectrum of plant diseases that result in significant yield losses and threaten food safety by producing mycotoxins that are harmful to human and animal health. In recent years, the exploitation of the RNA interference (RNAi) mechanism has emerged as a promising avenue for the control of Fusarium-induced diseases, providing both a mechanistic understanding of Fusarium gene function and a potential strategy for environmentally sustainable disease management. However, despite significant progress in elucidating the presence and function of the RNAi pathway in different Fusarium species, a comprehensive understanding of its individual protein components and underlying silencing mechanisms remains elusive. Accordingly, while a considerable number of RNAi-based approaches to Fusarium control have been developed and many reports of RNAi applications in Fusarium control under laboratory conditions have been published, the applicability of this knowledge in agronomic settings remains an open question, and few convincing data on RNAi-based disease control under field conditions have been published. This review aims to consolidate the current knowledge on the role of RNAi in Fusarium disease control by evaluating current research and highlighting important avenues for future investigation.
Collapse
Affiliation(s)
- Caihong Liu
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
| | - Karl‐Heinz Kogel
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
- Institut de Biologie Moléculaire des Plantes, CNRSUniversité de StrasbourgStrasbourgFrance
| | - Maria Ladera‐Carmona
- Institute of Phytopathology, Research Centre for BioSystems, Land Use and NutritionJustus Liebig University GiessenGiessenGermany
| |
Collapse
|
3
|
RNA Interference Strategies for Future Management of Plant Pathogenic Fungi: Prospects and Challenges. PLANTS 2021; 10:plants10040650. [PMID: 33805521 PMCID: PMC8067263 DOI: 10.3390/plants10040650] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Plant pathogenic fungi are the largest group of disease-causing agents on crop plants and represent a persistent and significant threat to agriculture worldwide. Conventional approaches based on the use of pesticides raise social concern for the impact on the environment and human health and alternative control methods are urgently needed. The rapid improvement and extensive implementation of RNA interference (RNAi) technology for various model and non-model organisms has provided the initial framework to adapt this post-transcriptional gene silencing technology for the management of fungal pathogens. Recent studies showed that the exogenous application of double-stranded RNA (dsRNA) molecules on plants targeting fungal growth and virulence-related genes provided disease attenuation of pathogens like Botrytis cinerea, Sclerotinia sclerotiorum and Fusarium graminearum in different hosts. Such results highlight that the exogenous RNAi holds great potential for RNAi-mediated plant pathogenic fungal disease control. Production of dsRNA can be possible by using either in-vitro or in-vivo synthesis. In this review, we describe exogenous RNAi involved in plant pathogenic fungi and discuss dsRNA production, formulation, and RNAi delivery methods. Potential challenges that are faced while developing a RNAi strategy for fungal pathogens, such as off-target and epigenetic effects, with their possible solutions are also discussed.
Collapse
|
4
|
Chen D, Li G, Liu J, Wisniewski M, Droby S, Levin E, Huang S, Liu Y. Multiple transcriptomic analyses and characterization of pathogen-related core effectors and LysM family members reveal their differential roles in fungal growth and pathogenicity in Penicillium expansum. Mol Genet Genomics 2020; 295:1415-1429. [PMID: 32656702 DOI: 10.1007/s00438-020-01710-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Penicillium expansum is a destructive phytopathogen causing postharvest decay on many stored fruits. To develop effective and safe management strategies, it is important to investigate its pathogenicity-related mechanisms. In this study, a bioinformatic pipeline was constructed and 50 core effector genes were identified in P. expansum using multiple RNA-seq data sets and their putative functions were implicated by comparatively homologous analyses using pathogen-host interaction database. To functionally characterize P. expansum LysM domain proteins during infection, null mutants for the 15 uncharacterized putative LysM effectors were constructed and the fungal growth rate on either PDA or Cazpek medium or lesion expansion rate on the infected apple fruits was evaluated. The results showed the growth rate of knockout mutants from PeLysM5, PeLysM12 and PeLysM15 was retarded on PDA medium. No significant difference in growth rate was observed between wild type and all mutants on solid Cazpek medium. Nevertheless, the hypha of wild type displayed deeper yellow on the back of Cazpek medium than those of knockout mutants. On the infecting apples fruits, the knockout mutants from PeLysM5, PeLysM7, PeLysM8, PeLysM9, PeLysM10, PeLysM11, PeLysM14, PeLysM15, PeLysM16, PeLysM18 and PeLysM19 showed enhanced fungal virulence, with faster decaying on infected fruits than those from wild type. By contrast, the knockout mutation at PeLysM12 locus led to reduced lesion expansion rate on the infected apple fruits. In addition, P. expansum-apple interaction RNA-seq experiment was performed using apple fruit tissues infected by the wild type and knockout mutant ΔPeLysM15, respectively. Transcriptome analyses indicated that deletion of PeLysM15 could activate expression of several core effector genes, such as PEX2_055830, PEX2_036960 and PEX2_108150, and a chitin-binding protein, PEX2_064520. These results suggest PeLysM15 may play pivotal roles in fungal growth and development and involve pathogen-host interaction by modulating other effector genes' expression. Our results could provide solid data reference and good candidates for further pathogen-related studies in P. expansum.
Collapse
Affiliation(s)
- Danyang Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Guangwei Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jia Liu
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Centre of Special Plant Industry in Chongqing, College of Forestry and Life Science, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Michael Wisniewski
- United States Department of Agriculture-Agricultural Research Service, Kearneysville, WV, USA
| | - Samir Droby
- Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| | - Elena Levin
- Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| | - Shengxiong Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Yongsheng Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
5
|
Yang J, Yin ZQ, Kang ZT, Liu CJ, Yang JK, Yao JH, Luo YY. Transcriptomic profiling of Alternaria longipes invasion in tobacco reveals pathogenesis regulated by AlHK1, a group III histidine kinase. Sci Rep 2017; 7:16083. [PMID: 29167535 PMCID: PMC5700128 DOI: 10.1038/s41598-017-16401-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/12/2017] [Indexed: 11/08/2022] Open
Abstract
Tobacco brown spot, caused by Alternaria species, is a devastating tobacco disease. To explore the role of a group III histidine kinase (AlHK1) on A. longipes pathogenesis, the invasion progress of A. longipes was monitored. We found that the wild-type strain C-00 invaded faster than the AlHK1-disrupted strain HK∆4 in the early and middle infection stages and the reverse trend occurred in the late infection stage. Then, eight invasion transcriptomes were performed using RNA-Seq and 205 shared, 505 C-00 and 222 HK∆4 specific differentially expressed genes (DEGs) were identified. The annotation results showed seven antioxidant activity genes were specifically identified in the HKΔ4 DEGs. A subsequent experiment confirmed that HKΔ4 was more resistant to low concentrations oxidative stress than C-00. In addition, the results from 1) statistics for the number of DEGs, GO enriched terms, DEGs in clusters with rising trends, and 2) analyses of the expression patterns of some DEGs relevant for osmoadaptation and virulence showed that changes in C-00 infection existed mainly in the early and middle stages, while HKΔ4 infection arose mainly in the late stage. Our results reveal firstly the pathogenesis of A. longipes regulated by AlHK1 and provide useful insights into the fungal-plant interactions.
Collapse
Affiliation(s)
- Juan Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zhi-Qun Yin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zi-Teng Kang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Chen-Jian Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | - Jin-Kui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, China
| | - Jian-Hua Yao
- Yunnan Academy of Tobacco Science, Kunming, 650106, China
| | - Yi-Yong Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
6
|
Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nat Ecol Evol 2017; 1:1931-1941. [DOI: 10.1038/s41559-017-0347-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022]
|
7
|
Geoghegan IA, Gurr SJ. Investigating chitin deacetylation and chitosan hydrolysis during vegetative growth in Magnaporthe oryzae. Cell Microbiol 2017; 19. [PMID: 28371146 PMCID: PMC5573952 DOI: 10.1111/cmi.12743] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 11/29/2022]
Abstract
Chitin deacetylation results in the formation of chitosan, a polymer of β1,4-linked glucosamine. Chitosan is known to have important functions in the cell walls of a number of fungal species, but its role during hyphal growth has not yet been investigated. In this study, we have characterized the role of chitin deacetylation during vegetative hyphal growth in the filamentous phytopathogen Magnaporthe oryzae. We found that chitosan localizes to the septa and lateral cell walls of vegetative hyphae and identified 2 chitin deacetylases expressed during vegetative growth-CDA1 and CDA4. Deletion strains and fluorescent protein fusions demonstrated that CDA1 is necessary for chitin deacetylation in the septa and lateral cell walls of mature hyphae in colony interiors, whereas CDA4 deacetylates chitin in the hyphae at colony margins. However, although the Δcda1 strain was more resistant to cell wall hydrolysis, growth and pathogenic development were otherwise unaffected in the deletion strains. The role of chitosan hydrolysis was also investigated. A single gene encoding a putative chitosanase (CSN) was discovered in M. oryzae and found to be expressed during vegetative growth. However, chitosan localization, vegetative growth, and pathogenic development were unaffected in a CSN deletion strain, rendering the role of this enzyme unclear.
Collapse
Affiliation(s)
| | - Sarah J Gurr
- Department of Plant Sciences, University of Oxford, Oxford, UK.,Geoffrey Pope Building, Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
8
|
Shanmugam V, Sharma V, Bharti P, Jyoti P, Yadav SK, Aggarwal R, Jain S. RNAi induced silencing of pathogenicity genes of Fusarium spp. for vascular wilt management in tomato. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1265-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Yorinaga Y, Kumasaka T, Yamamoto M, Hamada K, Kawamukai M. Crystal structure of a family 80 chitosanase fromMitsuaria chitosanitabida. FEBS Lett 2017; 591:540-547. [DOI: 10.1002/1873-3468.12557] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Yutaka Yorinaga
- Department of Life Science and Biotechnology; Faculty of Life and Environmental Science; Shimane University; Matsue Japan
| | - Takashi Kumasaka
- Japan Synchrotron Radiation Research Institute (JASRI); Sayo Hyogo Japan
| | | | - Kensaku Hamada
- X-ray Research Laboratory; Rigaku Co.; Akishima Tokyo Japan
| | - Makoto Kawamukai
- Department of Life Science and Biotechnology; Faculty of Life and Environmental Science; Shimane University; Matsue Japan
| |
Collapse
|
10
|
Aranda-Martinez A, Lenfant N, Escudero N, Zavala-Gonzalez EA, Henrissat B, Lopez-Llorca LV. CAZyme content of Pochonia chlamydosporia reflects that chitin and chitosan modification are involved in nematode parasitism. Environ Microbiol 2016; 18:4200-4215. [PMID: 27668983 DOI: 10.1111/1462-2920.13544] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/20/2016] [Indexed: 11/29/2022]
Abstract
Pochonia chlamydosporia is a soil fungus with a multitrophic lifestyle combining endophytic and saprophytic behaviors, in addition to a nematophagous activity directed against eggs of root-knot and other plant parasitic nematodes. The carbohydrate-active enzymes encoded by the genome of P. chlamydosporia suggest that the endophytic and saprophytic lifestyles make use of a plant cell wall polysaccharide degradation machinery that can target cellulose, xylan and, to a lesser extent, pectin. This enzymatic machinery is completed by a chitin breakdown system that involves not only chitinases, but also chitin deacetylases and a large number of chitosanases. P. chlamydosporia can degrade and grow on chitin and is particularly efficient on chitosan. The relevance of chitosan breakdown during nematode egg infection is supported by the immunolocalization of chitosan in Meloidogyne javanica eggs infected by P. chlamydosporia and by the fact that the fungus expresses chitosanase and chitin deacetylase genes during egg infection. This suggests that these enzymes are important for the nematophagous activity of the fungus and they are targets for improving the capabilities of P. chlamydosporia as a biocontrol agent in agriculture.
Collapse
Affiliation(s)
- Almudena Aranda-Martinez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| | - Nicolas Lenfant
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Nuria Escudero
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| | - Ernesto A Zavala-Gonzalez
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France.,INRA, USC 1408 AFMB, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Luis V Lopez-Llorca
- Laboratory of Plant Pathology, Department of Marine Sciences and Applied Biology, Multidisciplinary Institute for Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| |
Collapse
|
11
|
|
12
|
Behr M, Serchi T, Cocco E, Guignard C, Sergeant K, Renaut J, Evers D. Description of the mechanisms underlying geosmin production in Penicillium expansum using proteomics. J Proteomics 2013; 96:13-28. [PMID: 24189443 DOI: 10.1016/j.jprot.2013.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 09/30/2013] [Accepted: 10/24/2013] [Indexed: 11/25/2022]
Abstract
UNLABELLED A 2D-DIGE proteomics experiment was performed to describe the mechanism underlying the production of geosmin, an earthy-smelling sesquiterpene which spoils wine, produced by Penicillium expansum. The strains were identified by sequencing of the ITS and beta-tubulin regions. This study was based on a selection of four strains showing different levels of geosmin production, assessed by GC-MS/MS. The proteomics study revealed the differential abundance of 107 spots between the different strains; these were picked and submitted to MALDI-TOF-TOF MS analysis for identification. They belonged to the functional categories of protein metabolism, redox homeostasis, metabolic processes (glycolysis, ATP production), cell cycle and cell signalling pathways. From these data, an implication of oxidative stress in geosmin production may be hypothesized. Moreover, the differential abundance of some glycolytic enzymes may explain the different patterns of geosmin biosynthesis. This study provides data for the characterisation of the mechanism and the regulation of the production of this off-flavour, which are so far not described in filamentous fungi. BIOLOGICAL SIGNIFICANCE Green mould on grapes, caused by P. expansum may be at the origin of off-flavours in wine. These are characterized by earthy-mouldy smells and are due to the presence of the compound geosmin. This work aims at describing how geosmin is produced by P. expansum. This knowledge is of use for the research community on grapes for understanding why these off-flavours occasionally occur in vintages.
Collapse
Affiliation(s)
- Marc Behr
- Centre de Recherche Public-Gabriel Lippmann, Département Environnement et Agro-biotechnologies, Belvaux, Luxembourg.
| | - Tommaso Serchi
- Centre de Recherche Public-Gabriel Lippmann, Département Environnement et Agro-biotechnologies, Belvaux, Luxembourg.
| | - Emmanuelle Cocco
- Centre de Recherche Public-Gabriel Lippmann, Département Environnement et Agro-biotechnologies, Belvaux, Luxembourg.
| | - Cédric Guignard
- Centre de Recherche Public-Gabriel Lippmann, Département Environnement et Agro-biotechnologies, Belvaux, Luxembourg.
| | - Kjell Sergeant
- Centre de Recherche Public-Gabriel Lippmann, Département Environnement et Agro-biotechnologies, Belvaux, Luxembourg.
| | - Jenny Renaut
- Centre de Recherche Public-Gabriel Lippmann, Département Environnement et Agro-biotechnologies, Belvaux, Luxembourg.
| | - Danièle Evers
- Centre de Recherche Public-Gabriel Lippmann, Département Environnement et Agro-biotechnologies, Belvaux, Luxembourg.
| |
Collapse
|
13
|
Nunes CC, Dean RA. Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. MOLECULAR PLANT PATHOLOGY 2012; 13:519-29. [PMID: 22111693 PMCID: PMC6638818 DOI: 10.1111/j.1364-3703.2011.00766.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Recent discoveries regarding small RNAs and the mechanisms of gene silencing are providing new opportunities to explore fungal pathogen-host interactions and potential strategies for novel disease control. Plant pathogenic fungi are a constant and major threat to global food security; they represent the largest group of disease-causing agents on crop plants on the planet. An initial understanding of RNA silencing mechanisms and small RNAs was derived from model fungi. Now, new knowledge with practical implications for RNA silencing is beginning to emerge from the study of plant-fungus interactions. Recent studies have shown that the expression of silencing constructs in plants designed on fungal genes can specifically silence their targets in invading pathogenic fungi, such as Fusarium verticillioides, Blumeria graminis and Puccinia striiformis f.sp. tritici. Here, we highlight the important general aspects of RNA silencing mechanisms and emphasize recent findings from plant pathogenic fungi. Strategies to employ RNA silencing to investigate the basis of fungal pathogenesis are discussed. Finally, we address important aspects for the development of fungal-derived resistance through the expression of silencing constructs in host plants as a powerful strategy to control fungal disease.
Collapse
Affiliation(s)
- Cristiano C Nunes
- Department of Plant Pathology, Fungal Genomics Laboratory, Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC 27606, USA
| | | |
Collapse
|
14
|
Salame TM, Ziv C, Hadar Y, Yarden O. RNAi as a potential tool for biotechnological applications in fungi. Appl Microbiol Biotechnol 2010; 89:501-12. [DOI: 10.1007/s00253-010-2928-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 09/29/2010] [Accepted: 09/29/2010] [Indexed: 12/28/2022]
|