1
|
Chen J, Qu R, Chen Q, Zhang Z, Wu S, Bao M, Wang X, Liu L, Lyu S, Tian J, Lyu L, Yu C, Yuan S, Liu Z. Characterization of linoleate dioxygenases in basidiomycetes and the functional role of CcLdo1 in regulating fruiting body development in Coprinopsis cinerea. Fungal Genet Biol 2024; 173:103911. [PMID: 38960372 DOI: 10.1016/j.fgb.2024.103911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Coprinopsis cinerea, a model fungus, is utilized for investigating the developmental mechanisms of basidiomycetes. The development of basidiomycetes is a highly organized process that requires coordination among genetic, environmental, and physiological factors. Oxylipins, a class of widely distributed signaling molecules, play crucial roles in fungal biology. Among oxylipins, the sexual pheromone-inducing factors (psi factors) have been identified as key regulators of the balance between asexual and sexual spore development in Ascomycetes. Linoleate dioxygenases are enzymes involved in the biosynthesis of psi factors, yet their specific physiological functions in basidiomycete development remain unclear. In this study, linoleate dioxygenases in basidiomycetes were identified and characterized. Phylogenetic analysis revealed that linoleate dioxygenases from Basidiomycota formed a distinct clade, with linoleate dioxygenases from Agaricomycetes segregating into three groups and those from Ustilaginomycetes forming a separate group. Both basidiomycete and ascomycete linoleate dioxygenases shared two characteristic domains: the N-terminal of linoleate dioxygenase domain and the C-terminal of cytochrome P450 domain. While the linoleate dioxygenase domains exhibited similarity between basidiomycetes and ascomycetes, the cytochrome P450 domains displayed high diversity in key sites. Furthermore, the gene encoding the linoleate dioxygenase Ccldo1 in C. cinerea was knocked out, resulting in a significant increase in fruiting body formation without affecting asexual conidia production. This observation suggests that secondary metabolites synthesized by CcLdo1 negatively regulate the sexual reproduction process in C. cinerea while not influencing the asexual reproductive process. This study represents the first identification of a gene involved in secondary metabolite synthesis that regulates basidiocarp development in a basidiomycete.
Collapse
Affiliation(s)
- Jing Chen
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Rong Qu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Qiurong Chen
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Ziyu Zhang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Siting Wu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Mengyu Bao
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Xinyue Wang
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Lei Liu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Siqi Lyu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Jialu Tian
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Linna Lyu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Cigang Yu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Sheng Yuan
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Pathogens and Ecosystems, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
2
|
Vogt E, Sonderegger L, Chen YY, Segessemann T, Künzler M. Structural and Functional Analysis of Peptides Derived from KEX2-Processed Repeat Proteins in Agaricomycetes Using Reverse Genetics and Peptidomics. Microbiol Spectr 2022; 10:e0202122. [PMID: 36314921 PMCID: PMC9769878 DOI: 10.1128/spectrum.02021-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
Bioactivities of fungal peptides are of interest for basic research and therapeutic drug development. Some of these peptides are derived from "KEX2-processed repeat proteins" (KEPs), a recently defined class of precursor proteins that contain multiple peptide cores flanked by KEX2 protease cleavage sites. Genome mining has revealed that KEPs are widespread in the fungal kingdom. Their functions are largely unknown. Here, we present the first in-depth structural and functional analysis of KEPs in a basidiomycete. We bioinformatically identified KEP-encoding genes in the genome of the model agaricomycete Coprinopsis cinerea and established a detection protocol for the derived peptides by overexpressing the C. cinerea KEPs in the yeast Pichia pastoris. Using this protocol, which includes peptide extraction and mass spectrometry with data analysis using the search engine Mascot, we confirmed the presence of several KEP-derived peptides in C. cinerea, as well as in the edible mushrooms Lentinula edodes, Pleurotus ostreatus, and Pleurotus eryngii. While CRISPR-mediated knockout of C. cinerea kep genes did not result in any detectable phenotype, knockout of kex genes caused defects in mycelial growth and fruiting body formation. These results suggest that KEP-derived peptides may play a role in the interaction of C. cinerea with the biotic environment and that the KEP-processing KEX proteases target a variety of substrates in agaricomycetes, including some important for mycelial growth and differentiation. IMPORTANCE Two recent bioinformatics studies have demonstrated that KEX2-processed repeat proteins are widespread in the fungal kingdom. However, despite the prevalence of KEPs in fungal genomes, only few KEP-derived peptides have been detected and studied so far. Here, we present a protocol for the extraction and structural characterization of KEP-derived peptides from fungal culture supernatants and tissues. The protocol was successfully used to detect several linear and minimally modified KEP-derived peptides in the agaricomycetes C. cinerea, L. edodes, P. ostreatus, and P. eryngii. Our study establishes a new protocol for the targeted search of KEP-derived peptides in fungi, which will hopefully lead to the discovery of more of these interesting fungal peptides and allow a further characterization of KEPs.
Collapse
Affiliation(s)
- Eva Vogt
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Lukas Sonderegger
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Ying-Yu Chen
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Tina Segessemann
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| | - Markus Künzler
- ETH Zürich, Department of Biology, Institute of Microbiology, Zürich, Switzerland
| |
Collapse
|
3
|
Teshima T, Funai R, Nakazawa T, Ito J, Utsumi T, Kakumyan P, Mukai H, Yoshiga T, Murakami R, Nakagawa K, Honda Y, Matsui K. Coprinopsis cinerea dioxygenase is an oxygenase forming 10(S)-hydroperoxide of linoleic acid, essential for mushroom alcohol, 1-octen-3-ol synthesis. J Biol Chem 2022; 298:102507. [PMID: 36122804 PMCID: PMC9579011 DOI: 10.1016/j.jbc.2022.102507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022] Open
Abstract
1-Octen-3-ol is a volatile oxylipin found ubiquitously in Basidiomycota and Ascomycota. The biosynthetic pathway forming 1-octen-3-ol from linoleic acid via the linoleic acid 10(S)-hydroperoxide was characterized 40 years ago in mushrooms, yet the enzymes involved are not identified. The dioxygenase 1 and 2 genes (Ccdox1 and Ccdox2) in the mushroom Coprinopsis cinerea contain an N-terminal cyclooxygenase-like heme peroxidase domain and a C-terminal cytochrome P450-related domain. Herein, we show that recombinant CcDOX1 is responsible for dioxygenation of linoleic acid to form the 10(S)-hydroperoxide, the first step in 1-octen-3-ol synthesis, whereas CcDOX2 conceivably forms linoleate 8-hydroperoxide. We demonstrate that knockout of the Ccdox1 gene suppressed 1-octen-3-ol synthesis, although added linoleic acid 10(S)-hydroperoxide was still efficiently converted. The P450-related domain of CcDOX1 lacks the characteristic Cys heme ligand and the evidence indicates that a second uncharacterized enzyme converts the 10(S)-hydroperoxide to 1-octen-3-ol. Additionally, we determined the gene knockout strain (ΔCcdox1) was less attractive to fruit fly larvae, while the feeding behavior of fungus gnats on ΔCcdox1 mycelia showed little difference from that on the mycelia of the wild-type strain. The proliferation of fungivorous nematodes on ΔCcdox1 mycelia was similar to or slightly worse than that on wild-type mycelia. Thus, 1-octen-3-ol seems to be an attractive compound involved in emitter-receiver ecological communication in mushrooms.
Collapse
Affiliation(s)
- Takuya Teshima
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Risa Funai
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Junya Ito
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Toshihiko Utsumi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Pattana Kakumyan
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Hiromi Mukai
- Department of Forest Entomology, Forestry and Forest Products Research Institute, Tsukuba, 305-8687, Japan
| | - Toyoshi Yoshiga
- Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, Saga, 840-8502, Japan
| | - Ryutaro Murakami
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, 980-8572, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
4
|
Yamasaki F, Nakazawa T, Oh M, Bao D, Kawauchi M, Sakamoto M, Honda Y. Gene targeting of dikaryotic Pleurotus ostreatus nuclei using the CRISPR/Cas9 system. FEMS Microbiol Lett 2022; 369:6674758. [PMID: 36001999 DOI: 10.1093/femsle/fnac083] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-assisted gene targeting is a promising method used in molecular breeding. We recently reported the successful introduction of this method in the monokaryotic Pleurotus ostreatus (oyster mushroom), PC9. However, considering their application in mushroom breeding, dikaryotic strains (with targeted gene mutations in both nuclei) need to be generated. This is laborious and time-consuming because a classical crossing technique is used. Herein, we report a technique that targets both nuclei of dikaryotic P. ostreatus, PC9×#64 in a transformation experiment using plasmid-based CRISPR/Cas9, with the aim of developing a method for efficient and rapid molecular breeding. As an example, we targeted strains with low basidiospore production ability through the meiosis-related genes mer3 or msh4. Four different plasmids containing expression cassettes for Cas9 and two different gRNAs targeting mer3 or msh4 were constructed and separately introduced into PC9×#64. Eight of the 38 dikaryotic transformants analyzed produced no basidiospores. Genomic PCR suggested that msh4 or mer3 mutations were introduced into both nuclei of seven out of eight strains. Thus, in this study, we demonstrated simultaneous gene targeting using our CRISPR/Cas9 system, which may be useful for the molecular breeding of cultivated agaricomycetes.
Collapse
Affiliation(s)
- Fuga Yamasaki
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Minji Oh
- Mushroom division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Bisan-ro, Eumseong-gun, Chungcheongbuk-do, 22709, Republic of Korea
| | - Dapeng Bao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Evolutionary Morphogenesis of Sexual Fruiting Bodies in Basidiomycota: Toward a New Evo-Devo Synthesis. Microbiol Mol Biol Rev 2021; 86:e0001921. [PMID: 34817241 DOI: 10.1128/mmbr.00019-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The development of sexual fruiting bodies is one of the most complex morphogenetic processes in fungi. Mycologists have long been fascinated by the morphological and developmental diversity of fruiting bodies; however, evolutionary developmental biology of fungi still lags significantly behind that of animals or plants. Here, we summarize the current state of knowledge on fruiting bodies of mushroom-forming Basidiomycota, focusing on phylogenetic and developmental biology. Phylogenetic approaches have revealed a complex history of morphological transformations and convergence in fruiting body morphologies. Frequent transformations and convergence is characteristic of fruiting bodies in contrast to animals or plants, where main body plans are highly conserved. At the same time, insights into the genetic bases of fruiting body development have been achieved using forward and reverse genetic approaches in selected model systems. Phylogenetic and developmental studies of fruiting bodies have each yielded major advances, but they have produced largely disjunct bodies of knowledge. An integrative approach, combining phylogenetic, developmental, and functional biology, is needed to achieve a true fungal evolutionary developmental biology (evo-devo) synthesis for fungal fruiting bodies.
Collapse
|
6
|
Molecular Mechanism by Which the GATA Transcription Factor CcNsdD2 Regulates the Developmental Fate of Coprinopsis cinerea under Dark or Light Conditions. mBio 2021; 13:e0362621. [PMID: 35100879 PMCID: PMC8805025 DOI: 10.1128/mbio.03626-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coprinopsis cinerea has seven homologs of the Aspergillus nidulans transcription factor NsdD. Of these, CcNsdD1 and CcNsdD2 from C. cinerea show the best identities of 62 and 50% to A. nidulans NsdD, respectively. After 4 days of constant darkness cultivation, CcnsdD2, but not CcnsdD1, was upregulated on the first day of light/dark cultivation to induce fruiting bodies, and overexpression of CcnsdD2, but not CcnsdD1, produced more fruiting bodies under a light/dark rhythm. Although single knockdown of CcnsdD2 did not affect fruiting body production due to upregulation of its homolog CcnsdD1, the double-knockdown CcNsdD1/NsdD2-RNAi transformant showed defects in fruiting body formation under a light/dark rhythm. Knockdown of CcnsdD1/nsdD2 led to the differentiation of primary hyphal knots into sclerotia rather than secondary hyphal knots under a light/dark rhythm, similar to the differentiation of primary hyphal knots into sclerotia of the wild-type strain under darkness. The CcNsdD2-overexpressing transformant produced more primary hyphal knots, secondary hyphal knots, and fruiting bodies under a light/dark rhythm but only more primary hyphal knots and sclerotia under darkness. RNA-seq revealed that some genes reported previously to be involved in formation of hyphal knots and primordia, cyclopropane-fatty-acyl-phospholipid synthases cfs1-3, galectins cgl1-3, and hydrophobins hyd1-3 were downregulated in the CcNsdD1/NsdD2-RNAi transformant compared to the mock transformant. ChIP-seq and electrophoretic mobility shift assay demonstrated that CcNsdD2 bound to promoter regulatory sequences containing a GATC motif in cfs1, cfs2, cgl1, and hyd1. A molecular mechanism by which CcNsdD2 regulates the developmental fate of C. cinerea under dark or light conditions is proposed. IMPORTANCE The model mushroom Coprinopsis cinerea exhibits remarkable photomorphogenesis during fruiting body development. This study reports that the C. cinerea transcription factor CcNsdD2 promotes primary hyphal knot formation by upregulating cfs1, cfs2, cgl1, and hyd1. Although the induction of CcnsdD2 is not under direct control of light and photoreceptors, the CcNsdD2-mediated developmental fates of the primary hyphal knots depend on the following light/dark rhythm cultivation or dark cultivation after full growth of mycelia in the constant dark cultivation. This study provides new insight into the molecular mechanism by which CcNsdD2 regulates the developmental fate of C. cinerea under dark or light conditions. In addition, the result that overexpression of CcnsdD2 induced more secondary hyphal knots, primordia, and fruiting bodies under light/dark rhythm cultivation conditions has potential applied value in the edible mushroom industry.
Collapse
|
7
|
Asai S, Tsunematsu Y, Masuya T, Otaka J, Osada H, Watanabe K. Uncovering hidden sesquiterpene biosynthetic pathway through expression boost area-mediated productivity enhancement in basidiomycete. J Antibiot (Tokyo) 2020; 73:721-728. [DOI: 10.1038/s41429-020-0355-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/09/2022]
|
8
|
Nguyen H, Das U, Xie J. Genome-wide evolution of wobble base-pairing nucleotides of branchpoint motifs with increasing organismal complexity. RNA Biol 2019; 17:311-324. [PMID: 31814500 DOI: 10.1080/15476286.2019.1697548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
How have the branchpoint motifs evolved in organisms of different complexity? Here we identified and examined the consensus motifs (R1C2T3R4A5Y6, R: A or G, Y: C or T) of 898 fungal genomes. In Ascomycota unicellular yeasts, the G4/A4 ratio is mostly (98%) below 0.125 but increases sharply in multicellular species by about 40 times on average, and in the more complex Basidiomycota, it increases further by about 7 times. The global G4 increase is consistent with A4 to G4 transitions in evolution. Of the G4/A4-interacting amino acids of the branchpoint binding protein MSL5 (SF1) and the HSH155 (SF3B1), as well as the 5' splice sites (SS) and U2 snRNA genes, the 5' SS G3/A3 co-vary with the G4 to some extent. However, corresponding increase of the G4-complementary GCAGTA-U2 gene is rare, suggesting wobble-base pairing between the G4-containing branchpoint motif and GTAGTA-U2 in most of these species. Interestingly, the G4/A4 ratio correlates well with the abundance of alternative splicing in the two phyla, and G4 enriched significantly at the alternative 3' SS of genes in RNA metabolism, kinases and membrane proteins. Similar wobble nucleotides also enriched at the 3' SS of multicellular fungi with only thousands of protein-coding genes. Thus, branchpoint motifs have evolved U2-complementarity in unicellular Ascomycota yeasts, but have gradually gained more wobble base-pairing nucleotides in fungi of higher complexity, likely to destabilize branchpoint motif-U2 interaction and/or branchpoint A protrusion for alternative splicing. This implies an important role of relaxing the branchpoint signals in the multicellularity and further complexity of fungi.
Collapse
Affiliation(s)
- Hai Nguyen
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.,Department of Applied Computer Sciences, University of Winnipeg, Winnipeg, Canada
| | - Urmi Das
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Jiuyong Xie
- Department of Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
9
|
Nguyen DX, Sakaguchi T, Nakazawa T, Sakamoto M, Honda Y. A 14-bp stretch plays a critical role in regulating gene expression from β1-tubulin promoters of basidiomycetes. Curr Genet 2019; 66:217-228. [DOI: 10.1007/s00294-019-01014-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 11/25/2022]
|
10
|
Nakazawa T, Izuno A, Horii M, Kodera R, Nishimura H, Hirayama Y, Tsunematsu Y, Miyazaki Y, Awano T, Muraguchi H, Watanabe K, Sakamoto M, Takabe K, Watanabe T, Isagi Y, Honda Y. Effects of pex1 disruption on wood lignin biodegradation, fruiting development and the utilization of carbon sources in the white-rot Agaricomycete Pleurotus ostreatus and non-wood decaying Coprinopsis cinerea. Fungal Genet Biol 2017; 109:7-15. [PMID: 29030267 DOI: 10.1016/j.fgb.2017.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/05/2017] [Accepted: 10/08/2017] [Indexed: 10/18/2022]
Abstract
Peroxisomes are well-known organelles that are present in most eukaryotic organisms. Mutant phenotypes caused by the malfunction of peroxisomes have been shown in many fungi. However, these have never been investigated in Agaricomycetes, which include white-rot fungi that degrade wood lignin in nature almost exclusively and play an important role in the global carbon cycle. Based on the results of a forward genetics study to identify mutations causing defects in the ligninolytic activity of the white-rot Agaricomycete Pleurotus ostreatus, we report phenotypes of pex1 disruptants in P. ostreatus, which are defective in two major features of white-rot Agaricomycetes: lignin biodegradation and mushroom formation. Pex1 disruption was also shown to cause defects in the hyphal growth of P. ostreatus on certain sawdust and minimum media. We also demonstrated that pex1 is essential for fruiting initiation in the non-wood decaying Agaricomycete Coprinopsis cinerea. However, unlike P. ostreatus, significant defects in hyphal growth on the aforementioned agar medium were not observed in C. cinerea. This result, together with previous C. cinerea genetic studies, suggests that the regulation mechanisms for the utilization of carbon sources are altered during the evolution of Agaricomycetes or Agaricales.
Collapse
Affiliation(s)
- Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Ayako Izuno
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masato Horii
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Rina Kodera
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Nishimura
- Laboratory of Biomass Conversion, Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Yuichiro Hirayama
- Department of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yasumasa Miyazaki
- Department of Applied Microbiology, Forestry and Forest Product Research Institute, PO Box 16, Tsukuba-Norin 305-8687, Japan
| | - Tatsuya Awano
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hajime Muraguchi
- Department of Biotechnology, Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Keiji Takabe
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takashi Watanabe
- Laboratory of Biomass Conversion, Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Yuji Isagi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Nakazawa T, Izuno A, Kodera R, Miyazaki Y, Sakamoto M, Isagi Y, Honda Y. Identification of two mutations that cause defects in the ligninolytic system through an efficient forward genetics in the white-rot agaricomycete Pleurotus ostreatus. Environ Microbiol 2017; 19:261-272. [PMID: 27871142 DOI: 10.1111/1462-2920.13595] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/10/2016] [Indexed: 01/13/2023]
Abstract
White-rot fungi play an important role in the global carbon cycle because they are the species that almost exclusively biodegrade wood lignin in nature. Lignin peroxidases (LiPs), manganese peroxidases (MnPs) and versatile peroxidases (VPs) are considered key players in the ligninolytic system. Apart from LiPs, MnPs and VPs, however, only few other factors involved in the ligninolytic system have been investigated using molecular genetics, implying the existence of unidentified elements. By combining classical genetic techniques with next-generation sequencing technology, they successfully showed an efficient forward genetics approach to identify mutations causing defects in the ligninolytic system of the white-rot fungus Pleurotus ostreatus. In this study, they identified two genes - chd1 and wtr1 - mutations in which cause an almost complete loss of Mn2+ -dependent peroxidase activity. The chd1 gene encodes a putative chromatin modifier, and wtr1 encodes an agaricomycete-specific protein with a putative DNA-binding domain. The chd1-1 mutation and targeted disruption of wtr1 hamper the ability of P. ostreatus to biodegrade wood lignin. Examination of the effects of the aforementioned mutation and disruption on the expression of certain MnP/VP genes suggests that a complex mechanism underlies the ligninolytic system in P. ostreatus.
Collapse
Affiliation(s)
- Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ayako Izuno
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Rina Kodera
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yasumasa Miyazaki
- Department of Applied Microbiology, Forestry and Forest Product Research Institute, P O Box 16, Tsukuba-Norin, 305-8687, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yuji Isagi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
12
|
Sen K, Kinoshita H, Tazuke K, Maki Y, Yoshiura Y, Yakushi T, Shibai H, Kurosawa SI. Analysis of the sexual development-promoting region of Schizophyllum commune TRP1 gene. Biosci Biotechnol Biochem 2016; 80:2033-44. [PMID: 27296855 DOI: 10.1080/09168451.2016.1194179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study aims to elucidate the mechanism of sexual development of basidiomycetous mushrooms from mating to fruit body formation. Sequencing analysis showed the TRP1 gene of basidiomycete Schizophyllum commune encoded an enzyme with three catalytic regions of GAT (glutamine amidotransferase), IGPS (indole-3-glycerol phosphate synthase), and PRAI (5-phosphoribosyl anthranilate isomerase); among these three regions, the trp1 mutant (Trp(-)) had a missense mutation (L→F) of a 338th amino acid residue of the TRP1 protein within the IGPS region. To investigate the function of IGPS region related to sexual development, dikaryons with high, usual, and no expression of the IGPS region of TRP1 gene were made. The dikaryotic mycelia with high expression of the IGPS formed mature fruit bodies earlier than those with usual and no expression of the IGPS. These results showed that the IGPS region in TRP1 gene promoted sexual development of S. commune.
Collapse
Affiliation(s)
- Kikuo Sen
- a Faculty of Agriculture, Division of Bioscience and Biotechnology, Department of Agricultural and Life Sciences , Shinshu University , Nagano , Japan
| | - Hideki Kinoshita
- a Faculty of Agriculture, Division of Bioscience and Biotechnology, Department of Agricultural and Life Sciences , Shinshu University , Nagano , Japan
| | - Kazuyuki Tazuke
- a Faculty of Agriculture, Division of Bioscience and Biotechnology, Department of Agricultural and Life Sciences , Shinshu University , Nagano , Japan
| | - Yoshinori Maki
- a Faculty of Agriculture, Division of Bioscience and Biotechnology, Department of Agricultural and Life Sciences , Shinshu University , Nagano , Japan
| | - Yumi Yoshiura
- a Faculty of Agriculture, Division of Bioscience and Biotechnology, Department of Agricultural and Life Sciences , Shinshu University , Nagano , Japan
| | - Toshiharu Yakushi
- b Faculty of Agriculture, Department of Biological Chemistry , Yamaguchi University , Yamaguchi , Japan
| | - Hiroshiro Shibai
- a Faculty of Agriculture, Division of Bioscience and Biotechnology, Department of Agricultural and Life Sciences , Shinshu University , Nagano , Japan
| | - Shin-Ichi Kurosawa
- a Faculty of Agriculture, Division of Bioscience and Biotechnology, Department of Agricultural and Life Sciences , Shinshu University , Nagano , Japan
| |
Collapse
|
13
|
Satterlee T, Cary JW, Calvo AM. RmtA, a Putative Arginine Methyltransferase, Regulates Secondary Metabolism and Development in Aspergillus flavus. PLoS One 2016; 11:e0155575. [PMID: 27213959 PMCID: PMC4877107 DOI: 10.1371/journal.pone.0155575] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/01/2016] [Indexed: 12/31/2022] Open
Abstract
Aspergillus flavus colonizes numerous oil seed crops such as corn, peanuts, treenuts and cotton worldwide, contaminating them with aflatoxin and other harmful potent toxins. In the phylogenetically related model fungus Aspergillus nidulans, the methyltransferase, RmtA, has been described to be involved in epigenetics regulation through histone modification. Epigenetics regulation affects a variety of cellular processes, including morphogenesis and secondary metabolism. Our study shows that deletion of rmtA in A. flavus results in hyperconidiating colonies, indicating that rmtA is a repressor of asexual development in this fungus. The increase in conidiation in the absence of rmtA coincides with greater expression of brlA, abaA, and wetA compared to that in the wild type. Additionally, the rmtA deletion mutant presents a drastic reduction or loss of sclerotial production, while forced expression of this gene increased the ability of this fungus to generate these resistant structures, revealing rmtA as a positive regulator of sclerotial formation. Importantly, rmtA is also required for the production of aflatoxin B1 in A. flavus, affecting the expression of aflJ. Furthermore, biosynthesis of additional metabolites is also controlled by rmtA, indicating a broad regulatory output in the control of secondary metabolism. This study also revealed that rmtA positively regulates the expression of the global regulatory gene veA, which could contribute to mediate the effects of rmtA on development and secondary metabolism in this relevant opportunistic plant pathogen.
Collapse
Affiliation(s)
- Timothy Satterlee
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, United States of America
| | - Jeffrey W. Cary
- USDA, ARS, Southern Regional Research Center, New Orleans, LA, 70124, United States of America
| | - Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, Dekalb, IL, 60115, United States of America
- * E-mail:
| |
Collapse
|
14
|
Nakazawa T, Ando Y, Hata T, Nakahori K. A mutation in the Cc.arp9 gene encoding a putative actin-related protein causes defects in fruiting initiation and asexual development in the agaricomycete Coprinopsis cinerea. Curr Genet 2016; 62:565-74. [DOI: 10.1007/s00294-015-0560-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/21/2015] [Accepted: 12/24/2015] [Indexed: 12/27/2022]
|
15
|
Nakazawa T, Honda Y. Absence of a gene encoding cytosine deaminase in the genome of the agaricomyceteCoprinopsis cinereaenables simple marker recycling through 5-fluorocytosine counterselection. FEMS Microbiol Lett 2015. [DOI: 10.1093/femsle/fnv123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
16
|
Kües U, Navarro-González M. How do Agaricomycetes shape their fruiting bodies? 1. Morphological aspects of development. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
|
18
|
Cell Factories of Higher Fungi for Useful Metabolite Production. BIOREACTOR ENGINEERING RESEARCH AND INDUSTRIAL APPLICATIONS I 2015; 155:199-235. [DOI: 10.1007/10_2015_335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Plaza DF, Lin CW, van der Velden NSJ, Aebi M, Künzler M. Comparative transcriptomics of the model mushroom Coprinopsis cinerea reveals tissue-specific armories and a conserved circuitry for sexual development. BMC Genomics 2014; 15:492. [PMID: 24942908 PMCID: PMC4082614 DOI: 10.1186/1471-2164-15-492] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/12/2014] [Indexed: 11/12/2022] Open
Abstract
Background It is well known that mushrooms produce defense proteins and secondary metabolites against predators and competitors; however, less is known about the correlation between the tissue-specific expression and the target organism (antagonist) specificity of these molecules. In addition, conserved transcriptional circuitries involved in developing sexual organs in fungi are not characterized, despite the growing number of gene expression datasets available from reproductive and vegetative tissue. The aims of this study were: first, to evaluate the tissue specificity of defense gene expression in the model mushroom Coprinopsis cinerea and, second, to assess the degree of conservation in transcriptional regulation during sexual development in basidiomycetes. Results In order to characterize the regulation in the expression of defense loci and the transcriptional circuitries controlling sexual reproduction in basidiomycetes, we sequenced the poly (A)-positive transcriptome of stage 1 primordia and vegetative mycelium of C. cinerea A43mutB43mut. Our data show that many genes encoding predicted and already characterized defense proteins are differentially expressed in these tissues. The predicted specificity of these proteins with regard to target organisms suggests that their expression pattern correlates with the type of antagonists these tissues are confronted with. Accordingly, we show that the stage 1 primordium-specific protein CC1G_11805 is toxic to insects and nematodes. Comparison of our data to analogous data from Laccaria bicolor and Schizophyllum commune revealed that the transcriptional regulation of nearly 70 loci is conserved and probably subjected to stabilizing selection. A Velvet domain-containing protein was found to be up-regulated in all three fungi, providing preliminary evidence of a possible role of the Velvet protein family in sexual development of basidiomycetes. The PBS-soluble proteome of C. cinerea primordia and mycelium was analyzed by shotgun LC-MS. This proteome data confirmed the presence of intracellular defense proteins in primordia. Conclusions This study shows that the exposure of different tissues in fungi to different types of antagonists shapes the expression pattern of defense loci in a tissue-specific manner. Furthermore, we identify a transcriptional circuitry conserved among basidiomycetes during fruiting body formation that involves, amongst other transcription factors, the up-regulation of a Velvet domain-containing protein. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-492) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Markus Künzler
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
20
|
Feldman D, Ziv C, Gorovits R, Efrat M, Yarden O. Neurospora crassa protein arginine methyl transferases are involved in growth and development and interact with the NDR kinase COT1. PLoS One 2013; 8:e80756. [PMID: 24260473 PMCID: PMC3834314 DOI: 10.1371/journal.pone.0080756] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/11/2013] [Indexed: 11/18/2022] Open
Abstract
The protein arginine methyltransferaseas (PRMTs) family is conserved from yeast to human, and regulates stability, localization and activity of proteins. We have characterized deletion strains corresponding to genes encoding for PRMT1/3/5 (designated amt-1, amt-3 and skb-1, respectively) in Neurospora crassa. Deletion of PRMT-encoding genes conferred altered Arg-methylated protein profiles, as determined immunologically. Δamt-1 exhibited reduced hyphal elongation rates (70% of wild type) and increased susceptibility to the ergosterol biosynthesis inhibitor voriconazole. In ▵amt-3, distances between branches were significantly longer than the wild type, suggesting this gene is required for proper regulation of hyphal branching. Deletion of skb-1 resulted in hyper conidiation (2-fold of the wild type) and increased tolerance to the chitin synthase inhibitor polyoxin D. Inactivation of two Type I PRMTs (amt-1 and amt-3) conferred changes in both asymmetric as well as symmetric protein methylation profiles, suggesting either common substrates and/or cross-regulation of different PRMTs. The PRMTs in N. crassa apparently share cellular pathways which were previously reported to be regulated by the NDR (Nuclear DBF2-related) kinase COT1. Using co-immunprecipitation experiments (with MYC-tagged proteins), we have shown that SKB1 and COT1 physically interacted and the abundance of the 75 kDa MYC::COT1 isoform was increased in a Δskb-1 background. On the basis of immunological detection, we propose the possible involvement of PRMTs in Arg-methylation of COT1.
Collapse
Affiliation(s)
- Daria Feldman
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | |
Collapse
|
21
|
Ando Y, Nakazawa T, Oka K, Nakahori K, Kamada T. Cc.snf5, a gene encoding a putative component of the SWI/SNF chromatin remodeling complex, is essential for sexual development in the agaricomycete Coprinopsis cinerea. Fungal Genet Biol 2012; 50:82-9. [PMID: 23078835 DOI: 10.1016/j.fgb.2012.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 11/24/2022]
Abstract
We characterized a Coprinopsis cinerea mutant strain, Spe20, defective in fruiting initiation, which was isolated after restriction enzyme-mediated integration (REMI) mutagenesis of a homokaryotic fruiting strain, 326. A plasmid rescue followed by complementation experiments, RACE, and cDNA analyses revealed that the gene, a mutation of which is responsible for the phenotype, is predicted to encode a protein that exhibits a high similarity to yeast Snf5p, a key component of the chromatin remodeling complex SWI/SNF, and named Cc.snf5. Cc.Snf5 is, however, different from Snf5p in that the former has, in addition to an Snf5 domain comprising N-terminal repeat1 (rp1) and C-terminal repeat2 (rp2) subdomains in a middle region, a GATA Zn-finger domain in a C-terminal region. In strain Spe20, plasmid pPHT1 used for REMI is inserted in the ORF encoding rp2. This raised the possibility that in strain Spe20, the disrupted Cc.Snf5 is functionally active albeit incompletely because it retains rp1. Thus, we disrupted the whole SNF5 domain and its downstream peptide and found that the disruption results in inhibition of not only fruiting initiation but also dikaryon development, a prerequisite for fruiting. We also found that specific disruption of the Zn-finger domain results in inhibition of fruiting initiation. These results indicate that Cc.Snf5 plays an essential role in sexual development of C. cinerea.
Collapse
Affiliation(s)
- Yuki Ando
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | | | | | | | |
Collapse
|
22
|
Nakazawa T, Ando Y, Kitaaki K, Nakahori K, Kamada T. Efficient gene targeting in ΔCc.ku70 or ΔCc.lig4 mutants of the agaricomycete Coprinopsis cinerea. Fungal Genet Biol 2011; 48:939-46. [PMID: 21704178 DOI: 10.1016/j.fgb.2011.06.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 12/25/2022]
Abstract
Coprinopsis cinerea is a model for studies of sexual development in agaricomycetes (homobasidiomycetes). Efficient gene targeting should facilitate such studies, especially because increasing genome and transcriptome information is now available in C. cinerea. To estimate the frequency of gene disruption by homologous integration in this fungus, we tried to disrupt Cc.wc-2, which encodes a WC-2 homolog, a partner of the fungal blue-light photoreceptor, WC-1. Disruption of Cc.wc-2 did not occur when recipients (protoplasts) of the disrupting construct were prepared from asexual spores, oidia, from the wild type, 326, while it occurred when protoplasts were prepared from mycelial cells from the same strain, albeit at a low frequency (3%). Double-stranded RNA-mediated silencing of a ku70 homolog, named Cc.ku70, or the lig4 homolog Cc.lig4 more or less increased the frequency of Cc.wc-2 targeting. On the basis of these results, we disrupted Cc.ku70 using a Cc.lig4-silenced strain. We then disrupted Cc.lig4 using the Cc.ku70 disruptant. We found that the disruption of Cc.ku70 or Cc.lig4 greatly enhanced gene targeting. In addition, this study demonstrates that Cc.wc-2 is involved in blue light perception in this fungus.
Collapse
Affiliation(s)
- Takehito Nakazawa
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Okayama, Japan
| | | | | | | | | |
Collapse
|