1
|
Chávez R, Vaca I, García-Estrada C. Secondary Metabolites Produced by the Blue-Cheese Ripening Mold Penicillium roqueforti; Biosynthesis and Regulation Mechanisms. J Fungi (Basel) 2023; 9:jof9040459. [PMID: 37108913 PMCID: PMC10144355 DOI: 10.3390/jof9040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Filamentous fungi are an important source of natural products. The mold Penicillium roqueforti, which is well-known for being responsible for the characteristic texture, blue-green spots, and aroma of the so-called blue-veined cheeses (French Bleu, Roquefort, Gorgonzola, Stilton, Cabrales, and Valdeón, among others), is able to synthesize different secondary metabolites, including andrastins and mycophenolic acid, as well as several mycotoxins, such as Roquefortines C and D, PR-toxin and eremofortins, Isofumigaclavines A and B, festuclavine, and Annullatins D and F. This review provides a detailed description of the biosynthetic gene clusters and pathways of the main secondary metabolites produced by P. roqueforti, as well as an overview of the regulatory mechanisms controlling secondary metabolism in this filamentous fungus.
Collapse
Affiliation(s)
- Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Campus de Vegazana, Universidad de León, 24071 León, Spain
| |
Collapse
|
2
|
Penicillium roqueforti: an overview of its genetics, physiology, metabolism and biotechnological applications. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2020.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Gillot G, Jany JL, Dominguez-Santos R, Poirier E, Debaets S, Hidalgo PI, Ullán RV, Coton E, Coton M. Genetic basis for mycophenolic acid production and strain-dependent production variability in Penicillium roqueforti. Food Microbiol 2016; 62:239-250. [PMID: 27889155 DOI: 10.1016/j.fm.2016.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 08/29/2016] [Accepted: 10/03/2016] [Indexed: 11/16/2022]
Abstract
Mycophenolic acid (MPA) is a secondary metabolite produced by various Penicillium species including Penicillium roqueforti. The MPA biosynthetic pathway was recently described in Penicillium brevicompactum. In this study, an in silico analysis of the P. roqueforti FM164 genome sequence localized a 23.5-kb putative MPA gene cluster. The cluster contains seven genes putatively coding seven proteins (MpaA, MpaB, MpaC, MpaDE, MpaF, MpaG, MpaH) and is highly similar (i.e. gene synteny, sequence homology) to the P. brevicompactum cluster. To confirm the involvement of this gene cluster in MPA biosynthesis, gene silencing using RNA interference targeting mpaC, encoding a putative polyketide synthase, was performed in a high MPA-producing P. roqueforti strain (F43-1). In the obtained transformants, decreased MPA production (measured by LC-Q-TOF/MS) was correlated to reduced mpaC gene expression by Q-RT-PCR. In parallel, mycotoxin quantification on multiple P. roqueforti strains suggested strain-dependent MPA-production. Thus, the entire MPA cluster was sequenced for P. roqueforti strains with contrasted MPA production and a 174bp deletion in mpaC was observed in low MPA-producers. PCRs directed towards the deleted region among 55 strains showed an excellent correlation with MPA quantification. Our results indicated the clear involvement of mpaC gene as well as surrounding cluster in P. roqueforti MPA biosynthesis.
Collapse
Affiliation(s)
- Guillaume Gillot
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jean-Luc Jany
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Rebeca Dominguez-Santos
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain; Instituto de Biotecnología de León (INBIOTEC), Avenida Real n°1, Parque Científico de León, 24006 León, Spain
| | - Elisabeth Poirier
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Stella Debaets
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Pedro I Hidalgo
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Ricardo V Ullán
- mAbxience, Upstream Production, Parque Tecnológico de León, Julia Morros s/n, Armunia, 24009, León, Spain
| | - Emmanuel Coton
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Monika Coton
- Université de Brest, EA 3882 Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM ESIAB, Technopôle Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
4
|
Tosato V, Sims J, West N, Colombin M, Bruschi CV. Post-translocational adaptation drives evolution through genetic selection and transcriptional shift in Saccharomyces cerevisiae. Curr Genet 2016; 63:281-292. [PMID: 27491680 DOI: 10.1007/s00294-016-0635-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/22/2016] [Accepted: 07/25/2016] [Indexed: 10/21/2022]
Abstract
Adaptation by natural selection might improve the fitness of an organism and its probability to survive in unfavorable environmental conditions. Decoding the genetic basis of adaptive evolution is one of the great challenges to deal with. To this purpose, Saccharomyces cerevisiae has been largely investigated because of its short division time, excellent aneuploidy tolerance and the availability of the complete sequence of its genome with a thorough genome database. In the past, we developed a system, named bridge-induced translocation, to trigger specific, non-reciprocal translocations, exploiting the endogenous recombination system of budding yeast. This technique allows users to generate a heterogeneous population of cells with different aneuploidies and increased phenotypic variation. In this work, we demonstrate that ad hoc chromosomal translocations might induce adaptation, fostering selection of thermo-tolerant yeast strains with improved phenotypic fitness. This "yeast eugenomics" correlates with a shift to enhanced expression of genes involved in stress response, heat shock as well as carbohydrate metabolism. We propose that the bridge-induced translocation is a suitable approach to generate adapted, physiologically boosted strains for biotechnological applications.
Collapse
Affiliation(s)
- Valentina Tosato
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310, Izola, Slovenia. .,Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy.
| | - Jason Sims
- Department of Chromosome Biology, Max Perutz Laboratories, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Nicole West
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy.,Clinical Pathology, Maggiore Hospital, Piazza dell' Ospitale 2, 34125, Trieste, Italy
| | - Martina Colombin
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy
| | - Carlo V Bruschi
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Padriciano, 99, 34149, Trieste, Italy.,Genetics Division, Department of Cell Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| |
Collapse
|
5
|
Ropars J, Rodríguez de la Vega RC, López-Villavicencio M, Gouzy J, Sallet E, Dumas É, Lacoste S, Debuchy R, Dupont J, Branca A, Giraud T. Adaptive Horizontal Gene Transfers between Multiple Cheese-Associated Fungi. Curr Biol 2015; 25:2562-9. [PMID: 26412136 PMCID: PMC4598740 DOI: 10.1016/j.cub.2015.08.025] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 07/09/2015] [Accepted: 08/11/2015] [Indexed: 11/29/2022]
Abstract
Domestication is an excellent model for studies of adaptation because it involves recent and strong selection on a few, identified traits [1–5]. Few studies have focused on the domestication of fungi, with notable exceptions [6–11], despite their importance to bioindustry [12] and to a general understanding of adaptation in eukaryotes [5]. Penicillium fungi are ubiquitous molds among which two distantly related species have been independently selected for cheese making—P. roqueforti for blue cheeses like Roquefort and P. camemberti for soft cheeses like Camembert. The selected traits include morphology, aromatic profile, lipolytic and proteolytic activities, and ability to grow at low temperatures, in a matrix containing bacterial and fungal competitors [13–15]. By comparing the genomes of ten Penicillium species, we show that adaptation to cheese was associated with multiple recent horizontal transfers of large genomic regions carrying crucial metabolic genes. We identified seven horizontally transferred regions (HTRs) spanning more than 10 kb each, flanked by specific transposable elements, and displaying nearly 100% identity between distant Penicillium species. Two HTRs carried genes with functions involved in the utilization of cheese nutrients or competition and were found nearly identical in multiple strains and species of cheese-associated Penicillium fungi, indicating recent selective sweeps; they were experimentally associated with faster growth and greater competitiveness on cheese and contained genes highly expressed in the early stage of cheese maturation. These findings have industrial and food safety implications and improve our understanding of the processes of adaptation to rapid environmental changes. New HTRs are found in cheese fungi HTRs are flanked by specific transposable elements HTRs have spread in cheese-associated fungi through recent selective sweeps Experiments link two HTRs to growth and competitive advantages on cheese
Collapse
Affiliation(s)
- Jeanne Ropars
- Ecologie, Systématique et Evolution, UMR8079, Univ. Paris-Sud, 91405 Orsay, France; Ecologie, Systématique et Evolution, UMR8079, CNRS, 91405 Orsay, France
| | - Ricardo C Rodríguez de la Vega
- Ecologie, Systématique et Evolution, UMR8079, Univ. Paris-Sud, 91405 Orsay, France; Ecologie, Systématique et Evolution, UMR8079, CNRS, 91405 Orsay, France
| | - Manuela López-Villavicencio
- Institut de Systématique, Evolution, Biodiversité, UMR 7205 CNRS-MNHN-UPMC-EPHE, Muséum national d'Histoire naturelle, Sorbonne Université, CP39, 57 Rue Cuvier, 75231 Paris Cedex 05, France
| | - Jérôme Gouzy
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, INRA, Castanet-Tolosan 31326, France; Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, CNRS, Castanet-Tolosan 31326, France
| | - Erika Sallet
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, INRA, Castanet-Tolosan 31326, France; Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, CNRS, Castanet-Tolosan 31326, France
| | - Émilie Dumas
- Ecologie, Systématique et Evolution, UMR8079, Univ. Paris-Sud, 91405 Orsay, France; Ecologie, Systématique et Evolution, UMR8079, CNRS, 91405 Orsay, France
| | - Sandrine Lacoste
- Institut de Systématique, Evolution, Biodiversité, UMR 7205 CNRS-MNHN-UPMC-EPHE, Muséum national d'Histoire naturelle, Sorbonne Université, CP39, 57 Rue Cuvier, 75231 Paris Cedex 05, France
| | - Robert Debuchy
- Institut de Génétique et Microbiologie, UMR8621, Univ. Paris-Sud, 91405 Orsay, France; Institut de Génétique et Microbiologie, UMR8621, CNRS, 91405 Orsay, France
| | - Joëlle Dupont
- Institut de Systématique, Evolution, Biodiversité, UMR 7205 CNRS-MNHN-UPMC-EPHE, Muséum national d'Histoire naturelle, Sorbonne Université, CP39, 57 Rue Cuvier, 75231 Paris Cedex 05, France
| | - Antoine Branca
- Ecologie, Systématique et Evolution, UMR8079, Univ. Paris-Sud, 91405 Orsay, France; Ecologie, Systématique et Evolution, UMR8079, CNRS, 91405 Orsay, France.
| | - Tatiana Giraud
- Ecologie, Systématique et Evolution, UMR8079, Univ. Paris-Sud, 91405 Orsay, France; Ecologie, Systématique et Evolution, UMR8079, CNRS, 91405 Orsay, France.
| |
Collapse
|