1
|
Fiorin GL, Sanchéz-Vallet A, Thomazella DPDT, do Prado PFV, do Nascimento LC, Figueira AVDO, Thomma BPHJ, Pereira GAG, Teixeira PJPL. Suppression of Plant Immunity by Fungal Chitinase-like Effectors. Curr Biol 2018; 28:3023-3030.e5. [PMID: 30220500 DOI: 10.1016/j.cub.2018.07.055] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/03/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
Crop diseases caused by fungi constitute one of the most important problems in agriculture, posing a serious threat to food security [1]. To establish infection, phytopathogens interfere with plant immune responses [2, 3]. However, strategies to promote virulence employed by fungal pathogens, especially non-model organisms, remain elusive [4], mainly because fungi are more complex and difficult to study when compared to the better-characterized bacterial pathogens. Equally incomplete is our understanding of the birth of microbial virulence effectors. Here, we show that the cacao pathogen Moniliophthora perniciosa evolved an enzymatically inactive chitinase (MpChi) that functions as a putative pathogenicity factor. MpChi is among the most highly expressed fungal genes during the biotrophic interaction with cacao and encodes a chitinase with mutations that abolish its enzymatic activity. Despite the lack of chitinolytic activity, MpChi retains substrate binding specificity and prevents chitin-triggered immunity by sequestering immunogenic chitin fragments. Remarkably, its sister species M. roreri encodes a second non-orthologous catalytically impaired chitinase with equivalent function. Thus, a class of conserved enzymes independently evolved as putative virulence factors in these fungi. In addition to unveiling a strategy of host immune suppression by fungal pathogens, our results demonstrate that the neofunctionalization of enzymes may be an evolutionary pathway for the rise of new virulence factors in fungi. We anticipate that analogous strategies are likely employed by other pathogens.
Collapse
Affiliation(s)
- Gabriel Lorencini Fiorin
- Graduate Program in Genetics and Molecular Biology, Instituto de Biologia, Universidade de Estadual de Campinas, Campinas 13083-970, Brazil; Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
| | - Andrea Sanchéz-Vallet
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 Wageningen, the Netherlands; Plant Pathology, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Paula Favoretti Vital do Prado
- Graduate Program in Genetics and Molecular Biology, Instituto de Biologia, Universidade de Estadual de Campinas, Campinas 13083-970, Brazil; Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
| | - Leandro Costa do Nascimento
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-970, Brazil; Centro Nacional de Processamento de Alto Desempenho, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
| | - Antonio Vargas de Oliveira Figueira
- Laboratório de Melhoramento de Plantas, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Campus "Luiz de Queiroz," Piracicaba 13400-970, Brazil
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 Wageningen, the Netherlands
| | - Gonçalo Amarante Guimarães Pereira
- Laboratório de Genômica e Expressão, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas, Campinas 13083-970, Brazil.
| | | |
Collapse
|
2
|
Shiller J, Van de Wouw AP, Taranto AP, Bowen JK, Dubois D, Robinson A, Deng CH, Plummer KM. A Large Family of AvrLm6-like Genes in the Apple and Pear Scab Pathogens, Venturia inaequalis and Venturia pirina. FRONTIERS IN PLANT SCIENCE 2015; 6:980. [PMID: 26635823 PMCID: PMC4646964 DOI: 10.3389/fpls.2015.00980] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/26/2015] [Indexed: 05/19/2023]
Abstract
Venturia inaequalis and V. pirina are Dothideomycete fungi that cause apple scab and pear scab disease, respectively. Whole genome sequencing of V. inaequalis and V. pirina isolates has revealed predicted proteins with sequence similarity to AvrLm6, a Leptosphaeria maculans effector that triggers a resistance response in Brassica napus and B. juncea carrying the resistance gene, Rlm6. AvrLm6-like genes are present as large families (>15 members) in all sequenced strains of V. inaequalis and V. pirina, while in L. maculans, only AvrLm6 and a single paralog have been identified. The Venturia AvrLm6-like genes are located in gene-poor regions of the genomes, and mostly in close proximity to transposable elements, which may explain the expansion of these gene families. An AvrLm6-like gene from V. inaequalis with the highest sequence identity to AvrLm6 was unable to trigger a resistance response in Rlm6-carrying B. juncea. RNA-seq and qRT-PCR gene expression analyses, of in planta- and in vitro-grown V. inaequalis, has revealed that many of the AvrLm6-like genes are expressed during infection. An AvrLm6 homolog from V. inaequalis that is up-regulated during infection was shown (using an eYFP-fusion protein construct) to be localized to the sub-cuticular stroma during biotrophic infection of apple hypocotyls.
Collapse
Affiliation(s)
- Jason Shiller
- Animal, Plant and Soil Sciences Department, AgriBio, AgriBiosciences Research Centre, La Trobe University, MelbourneVIC, Australia
| | | | - Adam P. Taranto
- Animal, Plant and Soil Sciences Department, AgriBio, AgriBiosciences Research Centre, La Trobe University, MelbourneVIC, Australia
- Plant Sciences Division, Research School of Biology, The Australian National University, CanberraACT, Australia
| | - Joanna K. Bowen
- The New Zealand Institute for Plant and Food Research LimitedAuckland, New Zealand
| | - David Dubois
- School of BioSciences, University of Melbourne, ParkvilleVIC, Australia
| | - Andrew Robinson
- Animal, Plant and Soil Sciences Department, AgriBio, AgriBiosciences Research Centre, La Trobe University, MelbourneVIC, Australia
- Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, MelbourneVIC, Australia
| | - Cecilia H. Deng
- The New Zealand Institute for Plant and Food Research LimitedAuckland, New Zealand
| | - Kim M. Plummer
- Animal, Plant and Soil Sciences Department, AgriBio, AgriBiosciences Research Centre, La Trobe University, MelbourneVIC, Australia
| |
Collapse
|