1
|
Singh A, V R, Iyyappan Y, Ghosh A. Modulation of peptidoglycan recognition protein expression alters begomovirus vectoring efficiency and fitness of Bemisia tabaci. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 179:104276. [PMID: 39961393 DOI: 10.1016/j.ibmb.2025.104276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Peptidoglycan recognition proteins (PGRPs) are evolutionarily conserved molecules. Their role in the immune response to invading pathogens makes them a natural target for viral defence study in a wide range of organisms. Silverleaf whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is one of the invasive insect pests and transmits begomoviruses in a circulative and persistent manner to vegetables, legumes, fibres and ornamentals. The virus entry, retention, circulation, and release process involve interactions with several proteins in B. tabaci and evade innate immunity to avoid the antiviral mechanisms. The present study investigated the role of BtPGRP in chilli leaf curl virus (ChiLCV, Begomovirus capsica) transmission by B. tabaci. Silencing of BtPGRP using double-stranded (ds) RNA led to the loss of innate immunity to ChiLCV resulting in increased virus titre in B. tabaci. DsBtPGRP was orally administered to adults of B. tabaci at a concentration of 1, 3, and 5 μg/mL. The expression of BtPGRP was downregulated up to 4.67-fold. The virus titre in B. tabaci increased 90.05 times post-exposure to dsBtPGRP at 5 μg/mL. The test plants inoculated with ChiLCV by dsBtPGRP-exposed B. tabaci expressed severe curling symptoms with a higher virus load and transmission ratio than the control. Besides, the silencing of BtPGRP also induced up to 56.67% mortality in treated B. tabaci. The active site pocket of BtPGRP was found to interact directly with the ChiLCV-CP in computational analyses. Key residues of BtPGRP, including Tyr45, Asp84, His86, Trp87, and Asn119 exhibited critical interactions with the ChiLCV-CP. To our knowledge, this is the first report on the effect of PGRP silencing on ChiLCV acquisition and transmission efficiency and fitness of B. tabaci Asia II I.
Collapse
Affiliation(s)
- Anupma Singh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rakesh V
- Insect Vector Laboratory, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Yuvaraj Iyyappan
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Amalendu Ghosh
- Insect Vector Laboratory, Advanced Centre for Plant Virology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
2
|
Tang S, Zhang M, Cai J, Wen Q, Mo J, Long M, Lu Y, Gan Z. Identification and functional characterization of a long-type peptidoglycan recognition protein, PGRP-L in amphibian Xenopus laevis. Gene 2024; 928:148770. [PMID: 39032703 DOI: 10.1016/j.gene.2024.148770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Peptidoglycan recognition proteins (PGRPs) are a family of multifunctional proteins playing vital roles in PGN metabolism and antibacterial defense, and their functions have been well-characterized in mammals, bony fishes, and insects. However, the information about the functions of amphibian long-type PGRP is rather limited. Here, we identified and cloned a long-type PGRP gene (named Xl-PGRP-L) from African clawed frog, Xenopus laevis. Xl-PGRP-L gene was detected in all orangs/tissues examined, and was rapidly induced in intestine, liver, and lung following the stimulation of PGN. Sequence analysis showed that Xl-PGRP-L possesses four Zn2+-binding residues (His358, Tyr395, His470, and Cys478) required for amidase activity of catalytic PGRPs, and assays for amidase activity revealed that recombinant Xl-PGRP-L cloud degrade PGN in a Zn2+-dependent manner, indicating that Xl-PGRP-L is belonging to catalytic PGRPs. In addition, Xl-PGRP-L have antibacterial activity against Gram-negative bacteria Edwardsiella tarda and Gram-positive bacteria Streptococcus agalactiae. The present investigation represents the first characterization regarding the biological activities of amphibian long-type PGRPs, thus contributes to a better understanding of the functions of tetrapod PGRPs and the molecular mechanisms of amphibian antibacterial defense.
Collapse
Affiliation(s)
- Shaoshuai Tang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Meiling Zhang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Jiaqiao Cai
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qingqing Wen
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Jingyi Mo
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Meng Long
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Yishan Lu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China.
| | - Zhen Gan
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China.
| |
Collapse
|
3
|
Hafeez M, Mc Donnell R, Colton A, Howe D, Denver D, Martin RC, Choi MY. Immune-Related Gene Profiles and Differential Expression in the Grey Garden Slug Deroceras reticulatum Infected with the Parasitic Nematode Phasmarhabditis hermaphrodita. INSECTS 2024; 15:311. [PMID: 38786867 PMCID: PMC11122010 DOI: 10.3390/insects15050311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
The grey garden slug (Deroceras reticulatum), a common terrestrial slug native to Europe with a global distribution including North America, is commonly considered the most severe slug pest in agriculture. The nematode Phasmarhabditis hermaphrodita, which has been used in the U.K. and Europe as a commercial biocontrol agent since 1994, has also recently been collected in Oregon and California and has long been considered a candidate biocontrol agent for slug management in the U.S. In this study, we report differential gene expressions in nematode-infected slugs using RNA-seq to identify slug immune-related genes against nematodes. Comparison of gene expression levels between the whole bodies of a nematode-infected slug (N-S) and an uninfected control slug (C-S) revealed that there were a total of 39,380 regulated unigenes, of which 3084 (3%) were upregulated and 6761 (6%) were downregulated at greater than 2-fold change (FC > 2) in the nematode-infected slug. To further investigate the biological functions of differentially expressed genes (DEGs), gene ontology (GO) and functional enrichment analysis were performed to map the DEGs to terms in the GO, eukaryotic ortholog groups of proteins (KOG) and Kyoto Encyclopedia of Genes and Genome Pathway (KEGG) databases. Among these DEGs, approximately 228 genes associated with immunity or immune-related pathways were upregulated 2-fold or more in the N-S compared to C-S. These genes include toll, Imd, JNK, scavenger receptors (SCRs), C-type lectins (CTLs), immunoglobulin-like domains, and JAK/STAT63 signaling pathways. From the RNA-seq results, we selected 18 genes and confirmed their expression levels by qRT-PCR. Our findings provide insights into the immune response of slugs during nematode infection. These studies provide fundamental information that will be valuable for the development of new methods of pest slug control using pathogenic nematodes in the field.
Collapse
Affiliation(s)
- Muhammad Hafeez
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR 97330, USA;
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA;
| | - Rory Mc Donnell
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA; (R.M.D.); (A.C.)
| | - Andrew Colton
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331, USA; (R.M.D.); (A.C.)
| | - Dana Howe
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA; (D.H.); (D.D.)
| | - Dee Denver
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331, USA; (D.H.); (D.D.)
| | - Ruth C. Martin
- Department of Horticulture, Oregon State University, Corvallis, OR 97331, USA;
| | - Man-Yeon Choi
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR 97330, USA;
| |
Collapse
|
4
|
Mushtaq Z, Kurcheti PP, Jeena K, Gireesh-Babu P. Short peptidoglycan recognition protein 5 modulates immune response to bacteria in Indian major carp, Cirrhinusmrigala. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 152:105104. [PMID: 38040045 DOI: 10.1016/j.dci.2023.105104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) function in host antibacterial responses by recognizing bacterial peptidoglycan (PGN). In the present study, a short pgrp5 (named mpgrp5) was identified in Cirrhinus mrigala (mrigal). The full-length cDNA of the mpgrp5 gene was 1255 bp, containing an open reading frame of 746 bp encoding a protein of 248 amino acids. The predicted protein contained the typical Pgrp/amidase domain, conserved Zn2+, and PGN binding residues. The phylogenetic analysis revealed that the mpgrp5 is closely related to Pgrps reported in Labeo rohita, Cyrinus carpio, and Ctenopharyngodon idella. The ontogenetic expression of mpgrp5 was highest at 7 days post-hatching (dph) and its possible maternal transfer. mpgrp5 was constitutively expressed in all tissues examined, with the highest expression observed in the intestine. Furthermore, mpgrp5 was found upregulated in mrigal post-challenge in a time-dependent manner at 6hpi in the liver (3.16 folds, p < 0.05) and kidney (2.79 folds, p < 0.05) and at 12hpi in gill (1.90 folds, p < 0.01), skin (1.93 folds, p < 0.01), and intestine, (2.71 folds, p < 0.05) whereas at 24hpi in spleen (4.0 folds, p < 0.01). Our results suggest that mpgrp5 may play an important role in antibacterial immune response from early life stages in mrigal.
Collapse
Affiliation(s)
- Zahoor Mushtaq
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | | | - K Jeena
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, India
| | - P Gireesh-Babu
- ICAR-National Research Centre on Meat, Hyderabad, 500092, India
| |
Collapse
|
5
|
Zhao L, Niu J, Feng D, Wang X, Zhang R. Immune functions of pattern recognition receptors in Lepidoptera. Front Immunol 2023; 14:1203061. [PMID: 37398667 PMCID: PMC10312389 DOI: 10.3389/fimmu.2023.1203061] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Pattern recognition receptors (PRRs), as the "sensors" in the immune response, play a prominent role in recognizing pathogen-associated molecular patterns (PAMPs) and initiating an effective defense response to pathogens in Lepidoptera. It is becoming increasingly clear that damage-associated molecular patterns (DAMPs) normally play a physiological role within cells; however, when exposed to extracellular, they may become "part-time" critical signals of the immune response. Based on research in recent years, we review herein typical PRRs of Lepidoptera, including peptidoglycan recognition protein (PGRP), gram-negative binding protein (GNBP), β-1,3-glucan recognition protein (βGRP), C-type lectin (CTL), and scavenger receptor (SR). We also outline the ways in which DAMPs participate in the immune response and the correlation between PRRs and immune escape. Taken together, these findings suggest that the role of PRRs in insect innate immunity may be much greater than expected and that it is possible to recognize a broader range of signaling molecules.
Collapse
Affiliation(s)
- Lin Zhao
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinlan Niu
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Disong Feng
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, China
| | - Rong Zhang
- School of Life Science and Bio-Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
6
|
The Chloroplast Envelope of Angiosperms Contains a Peptidoglycan Layer. Cells 2023; 12:cells12040563. [PMID: 36831230 PMCID: PMC9954125 DOI: 10.3390/cells12040563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Plastids in plants are assumed to have evolved from cyanobacteria as they have maintained several bacterial features. Recently, peptidoglycans, as bacterial cell wall components, have been shown to exist in the envelopes of moss chloroplasts. Phylogenomic comparisons of bacterial and plant genomes have raised the question of whether such structures are also part of chloroplasts in angiosperms. To address this question, we visualized canonical amino acids of peptidoglycan around chloroplasts of Arabidopsis and Nicotiana via click chemistry and fluorescence microscopy. Additional detection by different peptidoglycan-binding proteins from bacteria and animals supported this observation. Further Arabidopsis experiments with D-cycloserine and AtMurE knock-out lines, both affecting putative peptidoglycan biosynthesis, revealed a central role of this pathway in plastid genesis and division. Taken together, these results indicate that peptidoglycans are integral parts of plastids in the whole plant lineage. Elucidating their biosynthesis and further roles in the function of these organelles is yet to be achieved.
Collapse
|
7
|
Tang J, Suo L, Li F, Bian K, Yang C, Wang Y. Transcriptome profiling of lung immune responses potentially related to acute respiratory distress syndrome in forest musk deer. BMC Genomics 2022; 23:701. [PMID: 36221054 PMCID: PMC9552132 DOI: 10.1186/s12864-022-08917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 09/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background Forest musk deer is an endangered species globally. The death of captive forest musk deer can be caused by certain respiratory system diseases. Acute respiratory distress syndrome (ARDS) is a huge threat to the life of forest muck deer that breed in our department. Methods Lung histopathologic analysis was conducted by hematoxylin and eosin (HE) staining. The lung gene changes triggered by ARDS were examined by RNA sequencing and related bioinformatics analysis in forest musk deer. The potential functions of unigenes were investigated by NR, SwissProt KOG, GO, and KEGG annotation analyses. Vital biological processes or pathways in ARDS were examined by GO and KEGG enrichment analyses. Results A total of 3265 unigenes were differentially expressed (|log2fold-change|> 2 and adjusted P value < 0.01) in lung tissues of 3 forest musk deer with ARDS compared with normal lung tissues of the non-ARDS group. These differentially expressed unigenes (DEGs) played crucial roles in immunity and defense responses to pathogens. Moreover, we identified the DEGs related to one or more of the following biological processes: lung development, immunity, and bacterial/viral/fungal infection. And six DEGs that might be involved in lung injury caused by immune dysregulation or viral/fungal infection were identified. Conclusion ARDS-mediated lung gene alterations were identified in forest musk deer. Moreover, multiple genes involved in lung development and lung defense responses to bacteria/viruses/fungi in ARDS were filtered out in forest musk deer. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08917-7.
Collapse
Affiliation(s)
- Jie Tang
- Shaanxi Institute of Zoology, Xi'an710032, Shaanxi, China
| | - Lijuan Suo
- Shaanxi Institute of Zoology, Xi'an710032, Shaanxi, China
| | - Feiran Li
- Shaanxi Institute of Zoology, Xi'an710032, Shaanxi, China
| | - Kun Bian
- Shaanxi Institute of Zoology, Xi'an710032, Shaanxi, China
| | - Chao Yang
- Shaanxi Institute of Zoology, Xi'an710032, Shaanxi, China.
| | - Yan Wang
- Shaanxi Institute of Zoology, Xi'an710032, Shaanxi, China.,Shaanxi Provincial Field Observation & Research Station for Golden Monkey, Giant Panda and Biodiversity, Xi'an 723400, Shaanxi, China
| |
Collapse
|
8
|
Escobar‐Salom M, Torrens G, Jordana‐Lluch E, Oliver A, Juan C. Mammals' humoral immune proteins and peptides targeting the bacterial envelope: from natural protection to therapeutic applications against multidrug‐resistant
Gram
‐negatives. Biol Rev Camb Philos Soc 2022; 97:1005-1037. [PMID: 35043558 PMCID: PMC9304279 DOI: 10.1111/brv.12830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Mammalian innate immunity employs several humoral ‘weapons’ that target the bacterial envelope. The threats posed by the multidrug‐resistant ‘ESKAPE’ Gram‐negative pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are forcing researchers to explore new therapeutic options, including the use of these immune elements. Here we review bacterial envelope‐targeting (peptidoglycan and/or membrane‐targeting) proteins/peptides of the mammalian immune system that are most likely to have therapeutic applications. Firstly we discuss their general features and protective activity against ESKAPE Gram‐negatives in the host. We then gather, integrate, and discuss recent research on experimental therapeutics harnessing their bactericidal power, based on their exogenous administration and also on the discovery of bacterial and/or host targets that improve the performance of this endogenous immunity, as a novel therapeutic concept. We identify weak points and knowledge gaps in current research in this field and suggest areas for future work to obtain successful envelope‐targeting therapeutic options to tackle the challenge of antimicrobial resistance.
Collapse
Affiliation(s)
- María Escobar‐Salom
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Gabriel Torrens
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Elena Jordana‐Lluch
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Antonio Oliver
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Carlos Juan
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| |
Collapse
|
9
|
Zhang H, Chen J, Liu Y, Xu Q, Inam M, He C, Jiang X, Jia Y, Ma H, Kong L. Discovery of a novel antibacterial protein CB6-C to target methicillin-resistant Staphylococcus aureus. Microb Cell Fact 2022; 21:4. [PMID: 34983528 PMCID: PMC8725309 DOI: 10.1186/s12934-021-01726-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Given a serious threat of multidrug-resistant bacterial pathogens to global healthcare, there is an urgent need to find effective antibacterial compounds to treat drug-resistant bacterial infections. In our previous studies, Bacillus velezensis CB6 with broad-spectrum antibacterial activity was obtained from the soil of Changbaishan, China. In this study, with methicillin-resistant Staphylococcus aureus as an indicator bacterium, an antibacterial protein was purified by ammonium sulfate precipitation, Sephadex G-75 column, QAE-Sephadex A 25 column and RP-HPLC, which demonstrated a molecular weight of 31.405 kDa by SDS-PAGE. LC–MS/MS analysis indicated that the compound was an antibacterial protein CB6-C, which had 88.5% identity with chitosanase (Csn) produced by Bacillus subtilis 168. An antibacterial protein CB6-C showed an effective antimicrobial activity against gram-positive bacteria (in particular, the MIC for MRSA was 16 μg/mL), low toxicity, thermostability, stability in different organic reagents and pH values, and an additive effect with conventionally used antibiotics. Mechanistic studies showed that an antibacterial protein CB6-C exerted anti-MRSA activity through destruction of lipoteichoic acid (LTA) on the cell wall. In addition, an antibacterial protein CB6-C was efficient in preventing MRSA infections in in vivo models. In conclusion, this protein CB6-C is a newly discovered antibacterial protein and has the potential to become an effective antibacterial agent due to its high therapeutic index, safety, nontoxicity and great stability.
Collapse
Affiliation(s)
- Haipeng Zhang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.,The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Jingrui Chen
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Yuehua Liu
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.,The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Qijun Xu
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Muhammad Inam
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.,The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Chengguang He
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Xiuyun Jiang
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.,Changchun Sci-Tech University, Shuangyang District, Changchun, 130600, China
| | - Yu Jia
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China
| | - Hongxia Ma
- College of Life Science, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China. .,The Engineering Research Center of Bioreactor and Drug Development, Ministry of Education, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China. .,The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.
| | - Lingcong Kong
- College of Veterinary Medicine, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China. .,The Key Laboratory of New Veterinary Drug Research and Development of Jilin Province, Jilin Agricultural University, Xincheng Street No. 2888, Changchun, 130118, China.
| |
Collapse
|
10
|
Kotrange H, Najda A, Bains A, Gruszecki R, Chawla P, Tosif MM. Metal and Metal Oxide Nanoparticle as a Novel Antibiotic Carrier for the Direct Delivery of Antibiotics. Int J Mol Sci 2021; 22:ijms22179596. [PMID: 34502504 PMCID: PMC8431128 DOI: 10.3390/ijms22179596] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
In addition to the benefits, increasing the constant need for antibiotics has resulted in the development of antibiotic bacterial resistance over time. Antibiotic tolerance mainly evolves in these bacteria through efflux pumps and biofilms. Leading to its modern and profitable uses, emerging nanotechnology is a significant field of research that is considered as the most important scientific breakthrough in recent years. Metal nanoparticles as nanocarriers are currently attracting a lot of interest from scientists, because of their wide range of applications and higher compatibility with bioactive components. As a consequence of their ability to inhibit the growth of bacteria, nanoparticles have been shown to have significant antibacterial, antifungal, antiviral, and antiparasitic efficacy in the battle against antibiotic resistance in microorganisms. As a result, this study covers bacterial tolerance to antibiotics, the antibacterial properties of various metal nanoparticles, their mechanisms, and the use of various metal and metal oxide nanoparticles as novel antibiotic carriers for direct antibiotic delivery.
Collapse
Affiliation(s)
- Harshada Kotrange
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar 144411, Punjab, India; (H.K.); (M.M.T.)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, Doświadczalna Street, 20-280 Lublin, Poland;
- Correspondence: (A.N.); (P.C.)
| | - Aarti Bains
- Department of Biotechnology, CT Institute of Pharmaceutical Sciences, South Campus, Jalandhar 144020, Punjab, India;
| | - Robert Gruszecki
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, Doświadczalna Street, 20-280 Lublin, Poland;
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar 144411, Punjab, India; (H.K.); (M.M.T.)
- Correspondence: (A.N.); (P.C.)
| | - Mansuri M. Tosif
- Department of Food Technology and Nutrition, Lovely Professional University, Jalandhar 144411, Punjab, India; (H.K.); (M.M.T.)
| |
Collapse
|
11
|
Chen Y, Vargas SM, Smith TC, Karna SLR, MacMackin Ingle T, Wozniak KL, Wormley FL, Seshu J. Borrelia peptidoglycan interacting Protein (BpiP) contributes to the fitness of Borrelia burgdorferi against host-derived factors and influences virulence in mouse models of Lyme disease. PLoS Pathog 2021; 17:e1009535. [PMID: 33882111 PMCID: PMC8092773 DOI: 10.1371/journal.ppat.1009535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 05/03/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
The Peptidoglycan (PG) cell wall of the Lyme disease (LD) spirochete, Borrelia burgdorferi (Bb), contributes to structural and morphological integrity of Bb; is a persistent antigen in LD patients; and has a unique pentapeptide with L-Ornithine as the third amino acid that cross-links its glycan polymers. A borrelial homolog (BB_0167) interacted specifically with borrelilal PG via its peptidoglycan interacting motif (MHELSEKRARAIGNYL); was localized to the protoplasmic cylinder of Bb; and was designated as Borrelia peptidoglycan interacting Protein (BpiP). A bpiP mutant displayed no defect under in vitro growth conditions with similar levels of several virulence-related proteins. However, the burden of bpiP mutant in C3H/HeN mice at day 14, 28 and 62 post-infection was significantly lower compared to control strains. No viable bpiP mutant was re-isolated from any tissues at day 62 post-infection although bpiP mutant was able to colonize immunodeficient SCID at day 28 post-infection. Acquisition or transmission of bpiP mutant by Ixodes scapularis larvae or nymphs respectively, from and to mice, was significantly lower compared to control strains. Further analysis of bpiP mutant revealed increased sensitivity to vancomycin, osmotic stress, lysosomal extracts, human antimicrobial peptide cathelicidin-LL37, complement-dependent killing in the presence of day 14 post-infection mouse serum and increased internalization of CFSC-labeled bpiP mutant by macrophages and dendritic cells compared to control strains. These studies demonstrate the importance of accessory protein/s involved in sustaining integrity of PG and cell envelope during different phases of Bb infection.
Collapse
Affiliation(s)
- Yue Chen
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Sean M. Vargas
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Trever C. Smith
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Sai Lakshmi Rajasekhar Karna
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Taylor MacMackin Ingle
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Karen L. Wozniak
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Floyd L. Wormley
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| | - Janakiram Seshu
- South Texas Center for Emerging Infectious Diseases (STCEID) and Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
12
|
Li E, Qin J, Feng H, Li J, Li X, Nyamwasa I, Cao Y, Ruan W, Li K, Yin J. Immune-related genes of the larval Holotrichia parallela in response to entomopathogenic nematodes Heterorhabditis beicherriana LF. BMC Genomics 2021; 22:192. [PMID: 33731017 PMCID: PMC7967997 DOI: 10.1186/s12864-021-07506-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/04/2021] [Indexed: 12/02/2022] Open
Abstract
Background Entomopathogenic nematodes (EPNs) emerge as compatible alternatives to conventional insecticides in controlling Holotrichia parallela larvae (Coleoptera: Scarabaeidae). However, the immune responses of H. parallela against EPNs infection remain unclear. Results In present research, RNA-Seq was firstly performed. A total of 89,427 and 85,741 unigenes were achieved from the midgut of H. parallela larvae treated with Heterorhabditis beicherriana LF for 24 and 72 h, respectively; 2545 and 3156 unigenes were differentially regulated, respectively. Among those differentially expressed genes (DEGs), 74 were identified potentially related to the immune response. Notably, some immune-related genes, such as peptidoglycan recognition protein SC1 (PGRP-SC1), pro-phenoloxidase activating enzyme-I (PPAE-I) and glutathione s-transferase (GST), were induced at both treatment points. Bioinformatics analysis showed that PGRP-SC1, PPAE-I and GST were all involved in anti-parasitic immune process. Quantitative real-time PCR (qRT-PCR) results showed that the three immune-related genes were expressed in all developmental stages; PGRP-SC1 and PPAE-I had higher expressions in midgut and fat body, respectively, while GST exhibited high expression in both of them. Moreover, in vivo silencing of them resulted in increased susceptibility of H. parallela larvae to H. beicherriana LF. Conclusion These results suggest that H. parallela PGRP-SC1, PPAE-I and GST are involved in the immune responses to resist H. beicherriana LF infection. This study provides the first comprehensive transcriptome resource of H. parallela exposure to nematode challenge that will help to support further comparative studies on host-EPN interactions. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07506-4.
Collapse
Affiliation(s)
- Ertao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China
| | - Jianhui Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China
| | - Honglin Feng
- Boyce Thompson Institute for Plant Research, Cornell University, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Jinqiao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China
| | - Xiaofeng Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China
| | - Innocent Nyamwasa
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China
| | - Yazhong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China
| | - Weibin Ruan
- College of Life Sciences, Nankai University, Tianjin, 300071, P.R. China
| | - Kebin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China.
| | - Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
13
|
García-Del Portillo F. Building peptidoglycan inside eukaryotic cells: A view from symbiotic and pathogenic bacteria. Mol Microbiol 2020; 113:613-626. [PMID: 32185832 PMCID: PMC7154730 DOI: 10.1111/mmi.14452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/08/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022]
Abstract
The peptidoglycan (PG), as the exoskeleton of most prokaryotes, maintains a defined shape and ensures cell integrity against the high internal turgor pressure. These important roles have attracted researchers to target PG metabolism in order to control bacterial infections. Most studies, however, have been performed in bacteria grown under laboratory conditions, leading to only a partial view on how the PG is synthetized in natural environments. As a case in point, PG metabolism and its regulation remain poorly understood in symbiotic and pathogenic bacteria living inside eukaryotic cells. This review focuses on the PG metabolism of intracellular bacteria, emphasizing the necessity of more in vivo studies involving the analysis of enzymes produced in the intracellular niche and the isolation of PG from bacteria residing within eukaryotic cells. The review also points to persistent infections caused by some intracellular bacterial pathogens and the extent at which the PG could contribute to establish such physiological state. Based on recent evidences, I speculate on the idea that certain structural features of the PG may facilitate attenuation of intracellular growth. Lastly, I discuss recent findings in endosymbionts supporting a cooperation between host and bacterial enzymes to assemble a mature PG.
Collapse
|
14
|
Adaptive evolution of peptidoglycan recognition protein family regulates the innate signaling against microbial pathogens in vertebrates. Microb Pathog 2020; 147:104361. [PMID: 32622926 DOI: 10.1016/j.micpath.2020.104361] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/28/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
The innate immune system is the first line of defense in vertebrates against microbial pathogens. This defense system depends on the peptidoglycan pathogen recognition of receptors (PGRPs) existing in both invertebrates and vertebrates. Although some studies revealed the structural and functional differences between them, however, the evolutionary history and the selection pressures on these genes during adaptive evolution are poorly understood. In this study, we examined four (PGLYRP1, PGLYRP2, PGLYRP3, and PGLYRP4) genes of 127 vertebrates' species, conserved across vertebrates to evaluate positive selection pressure drives by adaptive evolution. The codons under positive selection were recognized through likelihood tests by comparing different models based on ω ratios in these genes across the vertebrate species. The positive selection test used two sets of models M1a vs. M2a and M7 vs. M8. The results showed that the test of these genes in M1a vs. M2a was not significant with the likelihood value 2ΔlnL = 0, while the likelihood ratios (2ΔlnL) were 2ΔlnL = 12.386, 2ΔlnL = 4.9283, 2ΔlnL = 24.031, and 2ΔlnL = 103.39 for PGLYRP1, PGLYRP2, PGLYRP3, and PGLYRP4 in M7 vs. M8, respectively. Our study identified the evidence of robust positive selection for these four genes across the vertebrates. These protuberant changes in PGRPs evolution of vertebrates reveal their role in innate immunity. Our study provides an insight based on PGRP genes to understand the evolution of host and pathogens interaction that leads to the progress of the novel conducts for immune diseases that include proteins linked to the recognition of pathogens.
Collapse
|
15
|
Torrens G, Escobar-Salom M, Oliver A, Juan C. Activity of mammalian peptidoglycan-targeting immunity against Pseudomonas aeruginosa. J Med Microbiol 2020; 69:492-504. [PMID: 32427563 DOI: 10.1099/jmm.0.001167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most important opportunistic pathogens, whose clinical relevance is not only due to the high morbidity/mortality of the infections caused, but also to its striking capacity for antibiotic resistance development. In the current scenario of a shortage of effective antipseudomonal drugs, it is essential to have thorough knowledge of the pathogen's biology from all sides, so as to find weak points for drug development. Obviously, one of these points could be the peptidoglycan, given its essential role for cell viability. Meanwhile, immune weapons targeting this structure could constitute an excellent model to be taken advantage of in order to design new therapeutic strategies. In this context, this review gathers all the information regarding the activity of mammalian peptidoglycan-targeting innate immunity (namely lysozyme and peptidoglycan recognition proteins), specifically against P. aeruginosa. All the published studies were considered, from both in vitro and in vivo fields, including works that envisage these weapons as options not only to potentiate their innate effects within the host or for use as exogenously administered treatments, but also harnessing their inflammatory and immune regulatory capacity to finally reduce damage in the patient. Altogether, this review has the objective of anticipating and discussing whether these innate immune resources, in combination or not with other drugs attacking certain P. aeruginosa targets leading to its increased sensitization, could be valid therapeutic antipseudomonal allies.
Collapse
Affiliation(s)
- Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Maria Escobar-Salom
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària Illes Balears (IdISBa), Palma, Spain
| | | |
Collapse
|
16
|
Forsthoefel DJ, Cejda NI, Khan UW, Newmark PA. Cell-type diversity and regionalized gene expression in the planarian intestine. eLife 2020; 9:e52613. [PMID: 32240093 PMCID: PMC7117911 DOI: 10.7554/elife.52613] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/06/2020] [Indexed: 12/17/2022] Open
Abstract
Proper function and repair of the digestive system are vital to most animals. Deciphering the mechanisms involved in these processes requires an atlas of gene expression and cell types. Here, we applied laser-capture microdissection (LCM) and RNA-seq to characterize the intestinal transcriptome of Schmidtea mediterranea, a planarian flatworm that can regenerate all organs, including the gut. We identified hundreds of genes with intestinal expression undetected by previous approaches. Systematic analyses revealed extensive conservation of digestive physiology and cell types with other animals, including humans. Furthermore, spatial LCM enabled us to uncover previously unappreciated regionalization of gene expression in the planarian intestine along the medio-lateral axis, especially among intestinal goblet cells. Finally, we identified two intestine-enriched transcription factors that specifically regulate regeneration (hedgehog signaling effector gli-1) or maintenance (RREB2) of goblet cells. Altogether, this work provides resources for further investigation of mechanisms involved in gastrointestinal function, repair and regeneration.
Collapse
Affiliation(s)
- David J Forsthoefel
- Genes and Human Disease Research Program, Oklahoma Medical Research FoundationOklahoma CityUnited States
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Nicholas I Cejda
- Genes and Human Disease Research Program, Oklahoma Medical Research FoundationOklahoma CityUnited States
| | - Umair W Khan
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Phillip A Newmark
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| |
Collapse
|
17
|
Kashyap DR, Kowalczyk DA, Shan Y, Yang CK, Gupta D, Dziarski R. Formate dehydrogenase, ubiquinone, and cytochrome bd-I are required for peptidoglycan recognition protein-induced oxidative stress and killing in Escherichia coli. Sci Rep 2020; 10:1993. [PMID: 32029761 PMCID: PMC7005000 DOI: 10.1038/s41598-020-58302-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/14/2020] [Indexed: 11/09/2022] Open
Abstract
Mammalian Peptidoglycan Recognition Proteins (PGRPs) kill bacteria through induction of synergistic oxidative, thiol, and metal stress. PGRPs induce oxidative stress in bacteria through a block in the respiratory chain, which results in decreased respiration and incomplete reduction of oxygen (O2) to hydrogen peroxide (H2O2). In this study we identify the site of PGRP-induced generation of H2O2 in Escherichia coli. Tn-seq screening of E. coli Tn10 insertion library revealed that mutants in formate dehydrogenase (FDH) genes had the highest survival following PGRP treatment. Mutants lacking functional FDH-O had abolished PGRP-induced H2O2 production and the highest resistance to PGRP-induced killing, and formate enhanced PGRP-induced killing and H2O2 production in an FDH-dependent manner. Mutants in ubiquinone synthesis (but not menaquinone and demethylmenaquinone) and cytochrome bd-I (but not cytochromes bo3 and bd-II) also had completely abolished PGRP-induced H2O2 production and high resistance to PGRP-induced killing. Because electrons in the respiratory chain flow from dehydrogenases' substrates through quinones and then cytochromes to O2, these results imply that the site of PGRP-induced incomplete reduction of O2 to H2O2 is downstream from dehydrogenases and ubiquinone at the level of cytochrome bd-I, which results in oxidative stress. These results reveal several essential steps in PGRP-induced bacterial killing.
Collapse
Affiliation(s)
- Des R Kashyap
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | | | - Yue Shan
- Antimicrobial Discovery Center, Northeastern University, Boston, MA, 02115, USA.,Department of Medicine, The University of Chicago, Chicago, 60637, USA
| | - Chun-Kai Yang
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Dipika Gupta
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA
| | - Roman Dziarski
- Indiana University School of Medicine-Northwest, Gary, IN, 46408, USA.
| |
Collapse
|
18
|
Galeas-Pena M, McLaughlin N, Pociask D. The role of the innate immune system on pulmonary infections. Biol Chem 2019; 400:443-456. [PMID: 29604208 DOI: 10.1515/hsz-2018-0304] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
Inhalation is required for respiration and life in all vertebrates. This process is not without risk, as it potentially exposes the host to environmental pathogens with every breath. This makes the upper respiratory tract one of the most common routes of infection and one of the leading causes of morbidity and mortality in the world. To combat this, the lung relies on the innate immune defenses. In contrast to the adaptive immune system, the innate immune system does not require sensitization, previous exposure or priming to attack foreign particles. In the lung, the innate immune response starts with the epithelial barrier and mucus production and is reinforced by phagocytic cells and T cells. These cells are vital for the production of cytokines, chemokines and anti-microbial peptides that are critical for clearance of infectious agents. In this review, we discuss all aspects of the innate immune response, with a special emphasis on ways to target aspects of the immune response to combat antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Michelle Galeas-Pena
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Nathaniel McLaughlin
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Derek Pociask
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| |
Collapse
|
19
|
Huelsmann M, Hecker N, Springer MS, Gatesy J, Sharma V, Hiller M. Genes lost during the transition from land to water in cetaceans highlight genomic changes associated with aquatic adaptations. SCIENCE ADVANCES 2019; 5:eaaw6671. [PMID: 31579821 PMCID: PMC6760925 DOI: 10.1126/sciadv.aaw6671] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/28/2019] [Indexed: 05/22/2023]
Abstract
The transition from land to water in whales and dolphins (cetaceans) was accompanied by remarkable adaptations. To reveal genomic changes that occurred during this transition, we screened for protein-coding genes that were inactivated in the ancestral cetacean lineage. We found 85 gene losses. Some of these were likely beneficial for cetaceans, for example, by reducing the risk of thrombus formation during diving (F12 and KLKB1), erroneous DNA damage repair (POLM), and oxidative stress-induced lung inflammation (MAP3K19). Additional gene losses may reflect other diving-related adaptations, such as enhanced vasoconstriction during the diving response (mediated by SLC6A18) and altered pulmonary surfactant composition (SEC14L3), while loss of SLC4A9 relates to a reduced need for saliva. Last, loss of melatonin synthesis and receptor genes (AANAT, ASMT, and MTNR1A/B) may have been a precondition for adopting unihemispheric sleep. Our findings suggest that some genes lost in ancestral cetaceans were likely involved in adapting to a fully aquatic lifestyle.
Collapse
Affiliation(s)
- Matthias Huelsmann
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Mark S. Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
| | - John Gatesy
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA 92521, USA
- Division of Vertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Corresponding author.
| |
Collapse
|
20
|
Green DR, Schulte F, Lee KH, Pugach MK, Hardt M, Bidlack FB. Mapping the Tooth Enamel Proteome and Amelogenin Phosphorylation Onto Mineralizing Porcine Tooth Crowns. Front Physiol 2019; 10:925. [PMID: 31417410 PMCID: PMC6682599 DOI: 10.3389/fphys.2019.00925] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/09/2019] [Indexed: 01/13/2023] Open
Abstract
Tooth enamel forms in an ephemeral protein matrix where changes in protein abundance, composition and posttranslational modifications are critical to achieve healthy enamel properties. Amelogenin (AMELX) with its splice variants is the most abundant enamel matrix protein, with only one known phosphorylation site at serine 16 shown in vitro to be critical for regulating mineralization. The phosphorylated form of AMELX stabilizes amorphous calcium phosphate, while crystalline hydroxyapatite forms in the presence of the unphosphorylated protein. While AMELX regulates mineral transitions over space and time, it is unknown whether and when un-phosphorylated amelogenin occurs during enamel mineralization. This study aims to reveal the spatiotemporal distribution of the cleavage products of the most abundant AMLEX splice variants including the full length P173, the shorter leucine-rich amelogenin protein (LRAP), and the exon 4-containing P190 in forming enamel, all within the context of the changing enamel matrix proteome during mineralization. We microsampled permanent pig molars, capturing known stages of enamel formation from both crown surface and inner enamel. Nano-LC-MS/MS proteomic analyses after tryptic digestion rendered more than 500 unique protein identifications in enamel, dentin, and bone. We mapped collagens, keratins, and proteolytic enzymes (CTSL, MMP2, MMP10) and determined distributions of P173, LRAP, and P190 products, the enamel proteins enamelin (ENAM) and ameloblastin (AMBN), and matrix-metalloprotease-20 (MMP20) and kallikrein-4 (KLK4). All enamel proteins and KLK4 were near-exclusive to enamel and in excellent agreement with published abundance levels. Phosphorylated P173 and LRAP products decreased in abundance from recently deposited matrix toward older enamel, mirrored by increasing abundances of testicular acid phosphatase (ACPT). Our results showed that hierarchical clustering analysis of secretory enamel links closely matching distributions of unphosphorylated P173 and LRAP products with ACPT and non-traditional amelogenesis proteins, many associated with enamel defects. We report higher protein diversity than previously published and Gene Ontology (GO)-defined protein functions related to the regulation of mineral formation in secretory enamel (e.g., casein α-S1, CSN1S1), immune response in erupted enamel (e.g., peptidoglycan recognition protein, PGRP), and phosphorylation. This study presents a novel approach to characterize and study functional relationships through spatiotemporal mapping of the ephemeral extracellular matrix proteome.
Collapse
Affiliation(s)
- Daniel R Green
- The Forsyth Institute, Cambridge, MA, United States.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | | | - Kyu-Ha Lee
- The Forsyth Institute, Cambridge, MA, United States.,Department of Oral Health Policy and Epidemiology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Megan K Pugach
- The Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Markus Hardt
- The Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Felicitas B Bidlack
- The Forsyth Institute, Cambridge, MA, United States.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
21
|
Torrens G, Barceló IM, Pérez-Gallego M, Escobar-Salom M, Tur-Gracia S, Munar-Bestard M, González-Nicolau MDM, Cabrera-Venegas YJ, Rigo-Rumbos EN, Cabot G, López-Causapé C, Rojo-Molinero E, Oliver A, Juan C. Profiling the susceptibility of Pseudomonas aeruginosa strains from acute and chronic infections to cell-wall-targeting immune proteins. Sci Rep 2019; 9:3575. [PMID: 30837659 PMCID: PMC6401076 DOI: 10.1038/s41598-019-40440-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/06/2019] [Indexed: 02/06/2023] Open
Abstract
In the current scenario of high antibiotic resistance, the search for therapeutic options against Pseudomonas aeruginosa must be approached from different perspectives: cell-wall biology as source of bacterial weak points and our immune system as source of weapons. Our recent study suggests that once the permeability barrier has been overcome, the activity of our cell-wall-targeting immune proteins is notably enhanced, more in mutants with impaired peptidoglycan recycling. The present work aims at analyzing the activity of these proteins [lysozyme and Peptidoglycan-Recognition-Proteins (PGLYRPs)], alone or with a permeabilizer (subinhibitory colistin) in clinical strains, along with other features related to the cell-wall. We compared the most relevant and complementary scenarios: acute (bacteremia) and chronic infections [early/late isolates from lungs of cystic fibrosis (CF) patients]. Although a low activity of lysozyme/PGLYRPs per se (except punctual highly susceptible strains) was found, the colistin addition significantly increased their activity regardless of the strains’ colistin resistance levels. Our results show increased susceptibility in late CF isolates, suggesting that CF adaptation renders P. aeruginosa more vulnerable to proteins targeting the cell-wall. Thus, our work suggests that attacking some P. aeruginosa cell-wall biology-related elements to increase the activity of our innate weapons could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Isabel M Barceló
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Marcelo Pérez-Gallego
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Maria Escobar-Salom
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Sara Tur-Gracia
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Marta Munar-Bestard
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - María Del Mar González-Nicolau
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Yoandy José Cabrera-Venegas
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Estefany Nayarith Rigo-Rumbos
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Gabriel Cabot
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Carla López-Causapé
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Estrella Rojo-Molinero
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain
| | - Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Universitari Son Espases-Institut de Investigació Sanitària de Balears (IdISBa), Palma, Spain.
| |
Collapse
|
22
|
Bobrovsky P, Larin A, Polina N, Lazarev V. Transcriptional Analysis of HELA Cells - Producers of the Recombinant Peptidoglycan Recognition Protein PGLYRP1 at Different Stages of the Chlamydia Trachomatis Infection Development. ACTA ACUST UNITED AC 2019. [DOI: 10.18097/bmcrm00113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human peptidoglycan recognition proteins (PGLYRPs) are the components of innate immunity that exhibit antibacterial activity. In this study a cell line secreting recombinant PGLYRP1 into a culture medium was obtained. Transcriptional profiling of cell lines expressing PGLYRP1 was performed at different stages of C. trachomatis infection. Differential gene expression was studied using the whole transcriptome profiling method on the HumanHT-12 v4 Expression BeadChip microchip using the Illumina Direct Hybridization Whole-Gene Expression Assay protocol. Sample clustering followed by bioinformatics analysis revealed about 100 differentially expressed genes in response to infection with C. trachomatis. PGLYRP1- expressing cells infected with C. trachomatis had a similar transcriptional profile as non-infected cells.
Collapse
Affiliation(s)
- P.A. Bobrovsky
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - A.K. Larin
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - N.F. Polina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - V.N. Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
23
|
Yan G, Chen X, Du S, Deng Z, Wang L, Chen S. Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr Genet 2018; 65:329-338. [PMID: 30349994 DOI: 10.1007/s00294-018-0894-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/25/2018] [Accepted: 10/13/2018] [Indexed: 02/06/2023]
Abstract
Arsenic, distributed pervasively in the natural environment, is an extremely toxic substance which can severely impair the normal functions of living cells. Research on the genetic mechanisms of arsenic metabolism is of great importance for remediating arsenic-contaminated environments. Many organisms, including bacteria, have developed various strategies to tolerate arsenic, by either detoxifying this harmful element or utilizing it for energy generation. This review summarizes arsenic detoxification as well as arsenic respiratory metabolic pathways in bacteria and discusses novel arsenic resistance pathways in various bacterial strains. This knowledge provides insights into the mechanisms of arsenic biotransformation in bacteria. Multiple detoxification strategies among bacteria imply possible functional relationships among different arsenic detoxification/metabolism pathways. In addition, this review sheds light on the bioremediation of arsenic-contaminated environments and prevention of antibiotic resistance.
Collapse
Affiliation(s)
- Ge Yan
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xingxiang Chen
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Shiming Du
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zixin Deng
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Lianrong Wang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China
| | - Shi Chen
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, Hubei, China. .,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
24
|
Kawai Y, Mickiewicz K, Errington J. Lysozyme Counteracts β-Lactam Antibiotics by Promoting the Emergence of L-Form Bacteria. Cell 2018; 172:1038-1049.e10. [PMID: 29456081 PMCID: PMC5847170 DOI: 10.1016/j.cell.2018.01.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/13/2017] [Accepted: 01/12/2018] [Indexed: 01/01/2023]
Abstract
β-lactam antibiotics inhibit bacterial cell wall assembly and, under classical microbiological culture conditions that are generally hypotonic, induce explosive cell death. Here, we show that under more physiological, osmoprotective conditions, for various Gram-positive bacteria, lysis is delayed or abolished, apparently because inhibition of class A penicillin-binding protein leads to a block in autolytic activity. Although these cells still then die by other mechanisms, exogenous lytic enzymes, such as lysozyme, can rescue viability by enabling the escape of cell wall-deficient "L-form" bacteria. This protective L-form conversion was also observed in macrophages and in an animal model, presumably due to the production of host lytic activities, including lysozyme. Our results demonstrate the potential for L-form switching in the host environment and highlight the unexpected effects of innate immune effectors, such as lysozyme, on antibiotic activity. Unlike previously described dormant persisters, L-forms can continue to proliferate in the presence of antibiotic.
Collapse
Affiliation(s)
- Yoshikazu Kawai
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Katarzyna Mickiewicz
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK.
| |
Collapse
|