1
|
Yeast Ribonucleotide Reductase Is a Direct Target of the Proteasome and Provides Hyper Resistance to the Carcinogen 4-NQO. J Fungi (Basel) 2023; 9:jof9030351. [PMID: 36983519 PMCID: PMC10057556 DOI: 10.3390/jof9030351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Various external and internal factors damaging DNA constantly disrupt the stability of the genome. Cells use numerous dedicated DNA repair systems to detect damage and restore genomic integrity in a timely manner. Ribonucleotide reductase (RNR) is a key enzyme providing dNTPs for DNA repair. Molecular mechanisms of indirect regulation of yeast RNR activity are well understood, whereas little is known about its direct regulation. The study was aimed at elucidation of the proteasome-dependent mechanism of direct regulation of RNR subunits in Saccharomyces cerevisiae. Proteome analysis followed by Western blot, RT-PCR, and yeast plating analysis showed that upregulation of RNR by proteasome deregulation is associated with yeast hyper resistance to 4-nitroquinoline-1-oxide (4-NQO), a UV-mimetic DNA-damaging drug used in animal models to study oncogenesis. Inhibition of RNR or deletion of RNR regulatory proteins reverses the phenotype of yeast hyper resistance to 4-NQO. We have shown for the first time that the yeast Rnr1 subunit is a substrate of the proteasome, which suggests a common mechanism of RNR regulation in yeast and mammals.
Collapse
|
2
|
The C-terminal domain of Hsp70 is responsible for paralog-specific regulation of ribonucleotide reductase. PLoS Genet 2022; 18:e1010079. [PMID: 35417483 PMCID: PMC9037926 DOI: 10.1371/journal.pgen.1010079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/25/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
The Hsp70 family of molecular chaperones is well-conserved and expressed in all organisms. In budding yeast, cells express four highly similar cytosolic Hsp70s Ssa1, 2, 3 and 4 which arose from gene duplication. Ssa1 and 2 are constitutively expressed while Ssa3 and 4 are induced upon heat shock. Recent evidence suggests that despite their amino acid similarity, these Ssas have unique roles in the cell. Here we examine the relative importance of Ssa1-4 in the regulation of the enzyme ribonucleotide reductase (RNR). We demonstrate that cells expressing either Ssa3 or Ssa4 as their sole Ssa are compromised for their resistance to DNA damaging agents and activation of DNA damage response (DDR)-regulated transcription. In addition, we show that the steady state levels and stability of RNR small subunits Rnr2 and Rnr4 are reduced in Ssa3 or Ssa4-expressing cells, a result of decreased Ssa-RNR interaction. Interaction between the Hsp70 co-chaperone Ydj1 and RNR is correspondingly decreased in cells only expressing Ssa3 and 4. Through studies of Ssa2/4 domain swap chimeras, we determined that the C-terminal domain of Ssas are the source of this functional specificity. Taking together, our work suggests a distinct role for Ssa paralogs in regulating DNA replication mediated by C-terminus sequence variation. Cells require molecular chaperones to fold proteins into their active conformation. A major mystery however is why cells express so many highly-related and apparently redundant Hsp70 paralogs. We examined the role of four Hsp70 paralogs in budding yeast (Ssa1, 2, 3 and 4) on the activity of the ribonucleotide reductase (RNR complex). Importantly, we demonstrate there is selectivity of RNR subunits for Ssa1 and Ssa2 subunits, which is dictated by the co-chaperone Ydj1. Taken together, our work provides new insight into the functional specificity of Hsp70 paralogs using a native client protein.
Collapse
|
3
|
Kapoor I, Varshney U. Diverse roles of nucleoside diphosphate kinase in genome stability and growth fitness. Curr Genet 2020; 66:671-682. [PMID: 32249353 DOI: 10.1007/s00294-020-01073-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/01/2023]
Abstract
Nucleoside diphosphate kinase (NDK), a ubiquitous enzyme, catalyses reversible transfer of the γ phosphate from nucleoside triphosphates to nucleoside diphosphates and functions to maintain the pools of ribonucleotides and deoxyribonucleotides in the cell. As even a minor imbalance in the nucleotide pools can be mutagenic, NDK plays an antimutator role in maintaining genome integrity. However, the mechanism of the antimutator roles of NDK is not completely understood. In addition, NDKs play important roles in the host-pathogen interactions, metastasis, gene regulation, and various cellular metabolic processes. To add to these diverse roles of NDK in cells, a recent study now reveals that NDK may even confer mutator phenotypes to the cell by acting on the damaged deoxyribonucleoside diphosphates that may be formed during the oxidative stress. In this review, we discuss the roles of NDK in homeostasis of the nucleotide pools and genome integrity, and its possible implications in conferring growth/survival fitness to the organisms in the changing environmental niches.
Collapse
Affiliation(s)
- Indu Kapoor
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India. .,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.
| |
Collapse
|
4
|
The yeast Aft1 transcription factor activates ribonucleotide reductase catalytic subunit RNR1 in response to iron deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194522. [PMID: 32147528 DOI: 10.1016/j.bbagrm.2020.194522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 12/18/2022]
Abstract
Eukaryotic ribonucleotide reductases are iron-dependent enzymes that catalyze the rate-limiting step in the de novo synthesis of deoxyribonucleotides. Multiple mechanisms regulate the activity of ribonucleotide reductases in response to genotoxic stresses and iron deficiency. Upon iron starvation, the Saccharomyces cerevisiae Aft1 transcription factor specifically binds to iron-responsive cis elements within the promoter of a group of genes, known as the iron regulon, activating their transcription. Members of the iron regulon participate in iron acquisition, mobilization and recycling, and trigger a genome-wide metabolic remodeling of iron-dependent pathways. Here, we describe a mechanism that optimizes the activity of yeast ribonucleotide reductase when iron is scarce. We demonstrate that Aft1 and the DNA-binding protein Ixr1 enhance the expression of the gene encoding for its catalytic subunit, RNR1, in response to iron limitation, leading to an increase in both mRNA and protein levels. By mutagenesis of the Aft1-binding sites within RNR1 promoter, we conclude that RNR1 activation by iron depletion is important for Rnr1 protein and deoxyribonucleotide synthesis. Remarkably, Aft1 also activates the expression of IXR1 upon iron scarcity through an iron-responsive element located within its promoter. These results provide a novel mechanism for the direct activation of ribonucleotide reductase function by the iron-regulated Aft1 transcription factor.
Collapse
|
5
|
Nersisyan L, Nikoghosyan M, Arakelyan A. WGS-based telomere length analysis in Dutch family trios implicates stronger maternal inheritance and a role for RRM1 gene. Sci Rep 2019; 9:18758. [PMID: 31822713 PMCID: PMC6904582 DOI: 10.1038/s41598-019-55109-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022] Open
Abstract
Telomere length (TL) regulation is an important factor in ageing, reproduction and cancer development. Genetic, hereditary and environmental factors regulating TL are currently widely investigated, however, their relative contribution to TL variability is still understudied. We have used whole genome sequencing data of 250 family trios from the Genome of the Netherlands project to perform computational measurement of TL and a series of regression and genome-wide association analyses to reveal TL inheritance patterns and associated genetic factors. Our results confirm that TL is a largely heritable trait, primarily with mother's, and, to a lesser extent, with father's TL having the strongest influence on the offspring. In this cohort, mother's, but not father's age at conception was positively linked to offspring TL. Age-related TL attrition of 40 bp/year had relatively small influence on TL variability. Finally, we have identified TL-associated variations in ribonuclease reductase catalytic subunit M1 (RRM1 gene), which is known to regulate telomere maintenance in yeast. We also highlight the importance of multivariate approach and the limitations of existing tools for the analysis of TL as a polygenic heritable quantitative trait.
Collapse
Affiliation(s)
- Lilit Nersisyan
- Bioinformatics Group, Institute of Molecular Biology NAS RA, 7 Hasratyan str., 0014, Yerevan, Armenia.
| | - Maria Nikoghosyan
- Bioinformatics Group, Institute of Molecular Biology NAS RA, 7 Hasratyan str., 0014, Yerevan, Armenia
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, 123 Hovsep Emin St, 0051, Yerevan, Armenia
| | - Arsen Arakelyan
- Bioinformatics Group, Institute of Molecular Biology NAS RA, 7 Hasratyan str., 0014, Yerevan, Armenia
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, 123 Hovsep Emin St, 0051, Yerevan, Armenia
| |
Collapse
|
6
|
Harari Y, Gershon L, Alonso-Perez E, Klein S, Berneman Y, Choudhari K, Singh P, Sau S, Liefshitz B, Kupiec M. Telomeres and stress in yeast cells: When genes and environment interact. Fungal Biol 2019; 124:311-315. [PMID: 32389293 DOI: 10.1016/j.funbio.2019.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022]
Abstract
Telomeres are structures composed of simple DNA repeats and specific proteins that protect the eukaryotic chromosomal ends from degradation, and facilitate the replication of the genome. They are central to the maintenance of the genome integrity, and play important roles in the development of cancer and in the process of aging in humans. The yeast Saccharomyces cerevisiae has greatly contributed to our understanding of basic telomere biology. Our laboratory has carried out systematic screen for mutants that affect telomere length, and identified ∼500 genes that, when mutated, affect telomere length. Remarkably, all ∼500 TLM (Telomere Length Maintenance) genes participate in a very tight homeostatic process, and it is enough to mutate one of them to change the steady-state telomere length. Despite this complex network of balances, it is also possible to change telomere length in yeast by applying several types of external stresses. We summarize our insights about the molecular mechanisms by which genes and environment interact to affect telomere length.
Collapse
Affiliation(s)
- Yaniv Harari
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Lihi Gershon
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Elisa Alonso-Perez
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Shir Klein
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Yael Berneman
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Karan Choudhari
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Pragyan Singh
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Soumitra Sau
- Amity Institute of Biotechnology, Amity University Kolkata, Kolkata, India
| | - Batia Liefshitz
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel
| | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 69978, Israel.
| |
Collapse
|
7
|
Novel insights into molecular chaperone regulation of ribonucleotide reductase. Curr Genet 2018; 65:477-482. [PMID: 30519713 DOI: 10.1007/s00294-018-0916-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/17/2022]
Abstract
The molecular chaperones Hsp70 and Hsp90 bind and fold a significant proportion of the proteome. They are responsible for the activity and stability of many disease-related proteins including those in cancer. Substantial effort has been devoted to developing a range of chaperone inhibitors for clinical use. Recent studies have identified the oncogenic ribonucleotide reductase (RNR) complex as an interactor of chaperones. While several generations of RNR inhibitor have been developed for use in cancer patients, many of these produce severe side effects such as nausea, vomiting and hair loss. Development of more potent, less patient-toxic anti-RNR strategies would be highly desirable. Inhibition of chaperones and associated co-chaperone molecules in both cancer and model organisms such as budding yeast result in the destabilization of RNR subunits and a corresponding sensitization to RNR inhibitors. Going forward, this may form part of a novel strategy to target cancer cells that are resistant to standard RNR inhibitors.
Collapse
|