1
|
Korsak S, Banecki KH, Buka K, Górski PJ, Plewczynski D. Chromatin as a Coevolutionary Graph: Modeling the Interplay of Replication with Chromatin Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646315. [PMID: 40236036 PMCID: PMC11996380 DOI: 10.1101/2025.03.31.646315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Modeling DNA replication poses significant challenges due to the intricate interplay of biophysical processes and the need for precise parameter optimization. In this study, we explore the interactions among three key biophysical factors that influence chromatin folding: replication, loop extrusion, and compartmentalization. Replication forks, known to act as barriers to the motion of loop extrusion factors, also correlate with the phase separation of chromatin into A and B compartments. Our approach integrates three components: (1) a numerical model that takes into advantage single-cell replication timing data to simulate replication fork propagation; (2) a stochastic Monte Carlo simulation that captures the interplay between the biophysical factors, with loop extrusion factors binding, unbinding, and extruding dynamically, while CTCF barriers and replication forks act as static and moving barriers, and a Potts Hamiltonian governs the spreading of epigenetic states driving chromatin compartmentalization; and (3) a 3D OpenMM simulation that reconstructs the chromatin's 3D structure based on the states generated by the stochastic model. To our knowledge, this is the first framework to dynamically integrate and simulate these three biophysical factors, enabling insights into chromatin behavior during replication. Furthermore, we investigate how replication stress alters these dynamics and affects chromatin structure.
Collapse
|
2
|
Genetic alterations of the SUMO isopeptidase SENP6 drive lymphomagenesis and genetic instability in diffuse large B-cell lymphoma. Nat Commun 2022; 13:281. [PMID: 35022408 PMCID: PMC8755833 DOI: 10.1038/s41467-021-27704-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/07/2021] [Indexed: 02/08/2023] Open
Abstract
SUMOylation is a post-translational modification of proteins that regulates these proteins’ localization, turnover or function. Aberrant SUMOylation is frequently found in cancers but its origin remains elusive. Using a genome-wide transposon mutagenesis screen in a MYC-driven B-cell lymphoma model, we here identify the SUMO isopeptidase (or deconjugase) SENP6 as a tumor suppressor that links unrestricted SUMOylation to tumor development and progression. Notably, SENP6 is recurrently deleted in human lymphomas and SENP6 deficiency results in unrestricted SUMOylation. Mechanistically, SENP6 loss triggers release of DNA repair- and genome maintenance-associated protein complexes from chromatin thereby impairing DNA repair in response to DNA damages and ultimately promoting genomic instability. In line with this hypothesis, SENP6 deficiency drives synthetic lethality to Poly-ADP-Ribose-Polymerase (PARP) inhibition. Together, our results link SENP6 loss to defective genome maintenance and reveal the potential therapeutic application of PARP inhibitors in B-cell lymphoma. SUMOylation is a post-translational modification that has been shown to be altered in cancer. Here, the authors show that loss of the SUMO isopeptidase SENP6 leads to unrestricted SUMOylation and genomic instability promoting lymphomagenesis and generating vulnerability to PARP inhibition.
Collapse
|
3
|
García-Gutiérrez P, García-Domínguez M. BETting on a Transcriptional Deficit as the Main Cause for Cornelia de Lange Syndrome. Front Mol Biosci 2021; 8:709232. [PMID: 34386522 PMCID: PMC8353280 DOI: 10.3389/fmolb.2021.709232] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is a human developmental syndrome with complex multisystem phenotypic features. It has been traditionally considered a cohesinopathy together with other phenotypically related diseases because of their association with mutations in subunits of the cohesin complex. Despite some overlap, the clinical manifestations of cohesinopathies vary considerably and, although their precise molecular mechanisms are not well defined yet, the potential pathomechanisms underlying these diverse developmental defects have been theoretically linked to alterations of the cohesin complex function. The cohesin complex plays a critical role in sister chromatid cohesion, but this function is not affected in CdLS. In the last decades, a non-cohesion-related function of this complex on transcriptional regulation has been well established and CdLS pathoetiology has been recently associated to gene expression deregulation. Up to 70% of CdLS cases are linked to mutations in the cohesin-loading factor NIPBL, which has been shown to play a prominent function on chromatin architecture and transcriptional regulation. Therefore, it has been suggested that CdLS can be considered a transcriptomopathy. Actually, CdLS-like phenotypes have been associated to mutations in chromatin-associated proteins, as KMT2A, AFF4, EP300, TAF6, SETD5, SMARCB1, MAU2, ZMYND11, MED13L, PHIP, ARID1B, NAA10, BRD4 or ANKRD11, most of which have no known direct association with cohesin. In the case of BRD4, a critical highly investigated transcriptional coregulator, an interaction with NIPBL has been recently revealed, providing evidence on their cooperation in transcriptional regulation of developmentally important genes. This new finding reinforces the notion of an altered gene expression program during development as the major etiological basis for CdLS. In this review, we intend to integrate the recent available evidence on the molecular mechanisms underlying the clinical manifestations of CdLS, highlighting data that favors a transcription-centered framework, which support the idea that CdLS could be conceptualized as a transcriptomopathy.
Collapse
Affiliation(s)
- Pablo García-Gutiérrez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| | - Mario García-Domínguez
- Andalusian Centre for Molecular Biology and Regenerative Medicine-CABIMER, CSIC-Universidad de Sevilla-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
4
|
Curti L, Campaner S. MYC-Induced Replicative Stress: A Double-Edged Sword for Cancer Development and Treatment. Int J Mol Sci 2021; 22:6168. [PMID: 34201047 PMCID: PMC8227504 DOI: 10.3390/ijms22126168] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
MYC is a transcription factor that controls the expression of a large fraction of cellular genes linked to cell cycle progression, metabolism and differentiation. MYC deregulation in tumors leads to its pervasive genome-wide binding of both promoters and distal regulatory regions, associated with selective transcriptional control of a large fraction of cellular genes. This pairs with alterations of cell cycle control which drive anticipated S-phase entry and reshape the DNA-replication landscape. Under these circumstances, the fine tuning of DNA replication and transcription becomes critical and may pose an intrinsic liability in MYC-overexpressing cancer cells. Here, we will review the current understanding of how MYC controls DNA and RNA synthesis, discuss evidence of replicative and transcriptional stress induced by MYC and summarize preclinical data supporting the therapeutic potential of triggering replicative stress in MYC-driven tumors.
Collapse
Affiliation(s)
- Laura Curti
- Center for Genomic Science of IIT@CGS, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT@CGS, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| |
Collapse
|
5
|
Muñoz S, Passarelli F, Uhlmann F. Conserved roles of chromatin remodellers in cohesin loading onto chromatin. Curr Genet 2020; 66:951-956. [PMID: 32277274 PMCID: PMC7497338 DOI: 10.1007/s00294-020-01075-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 12/23/2022]
Abstract
Cohesin is a conserved, ring-shaped protein complex that topologically entraps DNA. This ability makes this member of the structural maintenance of chromosomes (SMC) complex family a central hub of chromosome dynamics regulation. Besides its essential role in sister chromatid cohesion, cohesin shapes the interphase chromatin domain architecture and plays important roles in transcriptional regulation and DNA repair. Cohesin is loaded onto chromosomes at centromeres, at the promoters of highly expressed genes, as well as at DNA replication forks and sites of DNA damage. However, the features that determine these binding sites are still incompletely understood. We recently described a role of the budding yeast RSC chromatin remodeler in cohesin loading onto chromosomes. RSC has a dual function, both as a physical chromatin receptor of the Scc2/Scc4 cohesin loader complex, as well as by providing a nucleosome-free template for cohesin loading. Here, we show that the role of RSC in sister chromatid cohesion is conserved in fission yeast. We discuss what is known about the broader conservation of the contribution of chromatin remodelers to cohesin loading onto chromatin.
Collapse
Affiliation(s)
- Sofía Muñoz
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK.
| | | | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
6
|
Schvartzman JB, Hernández P, Krimer DB. Replication Fork Barriers and Topological Barriers: Progression of DNA Replication Relies on DNA Topology Ahead of Forks. Bioessays 2020; 42:e1900204. [PMID: 32115727 DOI: 10.1002/bies.201900204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/05/2020] [Indexed: 11/09/2022]
Abstract
During replication, the topology of DNA changes continuously in response to well-known activities of DNA helicases, polymerases, and topoisomerases. However, replisomes do not always progress at a constant speed and can slow-down and even stall at precise sites. The way these changes in the rate of replisome progression affect DNA topology is not yet well understood. The interplay of DNA topology and replication in several cases where progression of replication forks reacts differently to changes in DNA topology ahead is discussed here. It is proposed, there are at least two types of replication fork barriers: those that behave also as topological barriers and those that do not. Two-Dimensional (2D) agarose gel electrophoresis is the method of choice to distinguish between these two different types of replication fork barriers.
Collapse
Affiliation(s)
- Jorge B Schvartzman
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Pablo Hernández
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Dora B Krimer
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
7
|
Challa K, Shinohara M, Shinohara A. Meiotic prophase-like pathway for cleavage-independent removal of cohesin for chromosome morphogenesis. Curr Genet 2019; 65:817-827. [PMID: 30923890 DOI: 10.1007/s00294-019-00959-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
Sister chromatid cohesion is essential for chromosome segregation both in mitosis and meiosis. Cohesion between two chromatids is mediated by a protein complex called cohesin. The loading and unloading of the cohesin are tightly regulated during the cell cycle. In vertebrate cells, cohesin is released from chromosomes by two distinct pathways. The best characterized pathway occurs at the onset of anaphase, when the kleisin component of the cohesin is destroyed by a protease, separase. The cleavage of the cohesin by separase releases entrapped sister chromatids allowing anaphase to commence. In addition, prior to the metaphase-anaphase transition, most of cohesin is removed from chromosomes in a cleavage-independent manner. This cohesin release is referred to as the prophase pathway. In meiotic cells, sister chromatid cohesion is essential for the segregation of homologous chromosomes during meiosis I. Thus, it was assumed that the prophase pathway for cohesin removal from chromosome arms would be suppressed during meiosis to avoid errors in chromosome segregation. However, recent studies revealed the presence of a meiosis-specific prophase-like pathway for cleavage-independent removal of cohesin during late prophase I in different organisms. In budding yeast, the cleavage-independent removal of cohesin is mediated through meiosis-specific phosphorylation of cohesin subunits, Rec8, the meiosis-specific kleisin, and the yeast Wapl ortholog, Rad61/Wpl1. This pathway plays a role in chromosome morphogenesis during late prophase I, promoting chromosome compaction. In this review, we give an overview of the prophase pathway for cohesin dynamics during meiosis, which has a complex regulation leading to differentially localized populations of cohesin along meiotic chromosomes.
Collapse
Affiliation(s)
- Kiran Challa
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
- Friedrich Miescher Institute for Biomedical Research, CH-4058, Basel, Switzerland
| | - Miki Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
- Graduate School of Agriculture, Kindai University, Nara, 631-8505, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
A role for the yeast PCNA unloader Elg1 in eliciting the DNA damage checkpoint. Curr Genet 2019; 66:79-84. [PMID: 31332476 DOI: 10.1007/s00294-019-01020-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/28/2022]
Abstract
During cell proliferation, the genome is constantly threatened by cellular and external factors. When the DNA is damaged, or when its faithful duplication is delayed by DNA polymerase stalling, the cells induce a coordinated response termed the DNA damage response (DDR) or checkpoint. Elg1 forms an RFC-like complex in charge of unloading the DNA polymerase processively factor PCNA during DNA replication and DNA repair. Using checkpoint-inducible strains, a recently published paper (Sau et al. in mBio 10(3):e01159-19. https://doi.org/10.1128/mbio.01159-19, 2019) uncovered a role for Elg1 in eliciting the DNA damage checkpoint (DC), one of the branches of the DDR. The apical kinase Mec1/ATR phosphorylates Elg1, as well as the adaptor proteins Rad9/53BP1 and Dpb11/TopBP1, which are recruited to the site of DNA damage to amplify the checkpoint signal. In the absence of Elg1, Rad9 and Dpb11 are recruited but fail to be phosphorylated and the signal is therefore not amplified. Thus, Elg1 appears to coordinate DNA repair and the induction of the DNA damage checkpoint.
Collapse
|
9
|
Maya-Miles D, Andújar E, Pérez-Alegre M, Murillo-Pineda M, Barrientos-Moreno M, Cabello-Lobato MJ, Gómez-Marín E, Morillo-Huesca M, Prado F. Crosstalk between chromatin structure, cohesin activity and transcription. Epigenetics Chromatin 2019; 12:47. [PMID: 31331360 PMCID: PMC6647288 DOI: 10.1186/s13072-019-0293-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/10/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND A complex interplay between chromatin and topological machineries is critical for genome architecture and function. However, little is known about these reciprocal interactions, even for cohesin, despite its multiple roles in DNA metabolism. RESULTS We have used genome-wide analyses to address how cohesins and chromatin structure impact each other in yeast. Cohesin inactivation in scc1-73 mutants during the S and G2 phases causes specific changes in chromatin structure that preferentially take place at promoters; these changes include a significant increase in the occupancy of the - 1 and + 1 nucleosomes. In addition, cohesins play a major role in transcription regulation that is associated with specific promoter chromatin architecture. In scc1-73 cells, downregulated genes are enriched in promoters with short or no nucleosome-free region (NFR) and a fragile "nucleosome - 1/RSC complex" particle. These results, together with a preferential increase in the occupancy of nucleosome - 1 of these genes, suggest that cohesins promote transcription activation by helping RSC to form the NFR. In sharp contrast, the scc1-73 upregulated genes are enriched in promoters with an "open" chromatin structure and are mostly at cohesin-enriched regions, suggesting that a local accumulation of cohesins might help to inhibit transcription. On the other hand, a dramatic loss of chromatin integrity by histone depletion during DNA replication has a moderate effect on the accumulation and distribution of cohesin peaks along the genome. CONCLUSIONS Our analyses of the interplay between chromatin integrity and cohesin activity suggest that cohesins play a major role in transcription regulation, which is associated with specific chromatin architecture and cohesin-mediated nucleosome alterations of the regulated promoters. In contrast, chromatin integrity plays only a minor role in the binding and distribution of cohesins.
Collapse
Affiliation(s)
- Douglas Maya-Miles
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Eloísa Andújar
- Genomic Unit, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Mónica Pérez-Alegre
- Genomic Unit, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Marina Murillo-Pineda
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
- Present Address: Department of Biochemistry, University of Oxford, Oxford, UK
| | - Marta Barrientos-Moreno
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - María J. Cabello-Lobato
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
- Present Address: Division of Cancer Sciences, Manchester Cancer Research Center, University of Manchester, Manchester, UK
| | - Elena Gómez-Marín
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Macarena Morillo-Huesca
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Félix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| |
Collapse
|
10
|
Abstract
The Elg1protein forms an RFC-like complex in charge of unloading PCNA from chromatin during DNA replication and repair. Mutations in the ELG1 gene caused genomic instability in all organisms tested and cancer in mammals. Here we show that Elg1 plays a role in the induction of the DNA damage checkpoint, a cellular response to DNA damage. We show that this defect is due to a defect in the signal amplification process during induction. Thus, cells coordinate the cell's response and the PCNA unloading through the activity of Elg1. The PCNA (proliferating cell nuclear antigen) ring plays central roles during DNA replication and repair. The yeast Elg1 RFC-like complex (RLC) is the principal unloader of chromatin-bound PCNA and thus plays a central role in maintaining genome stability. Here we identify a role for Elg1 in the unloading of PCNA during DNA damage. Using DNA damage checkpoint (DC)-inducible and replication checkpoint (RC)-inducible strains, we show that Elg1 is essential for eliciting the signal in the DC branch. In the absence of Elg1 activity, the Rad9 (53BP1) and Dpb11 (TopBP1) adaptor proteins are recruited but fail to be phosphorylated by Mec1 (ATR), resulting in a lack of checkpoint activation. The chromatin immunoprecipitation of PCNA at the Lac operator sites reveals that accumulated local PCNA influences the checkpoint activation process in elg1 mutants. Our data suggest that Elg1 participates in a mechanism that may coordinate PCNA unloading during DNA repair with DNA damage checkpoint induction.
Collapse
|
11
|
Nakagawa T, Okita AK. Transcriptional silencing of centromere repeats by heterochromatin safeguards chromosome integrity. Curr Genet 2019; 65:1089-1098. [PMID: 30997531 DOI: 10.1007/s00294-019-00975-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 12/25/2022]
Abstract
The centromere region of chromosomes consists of repetitive DNA sequences, and is, therefore, one of the fragile sites of chromosomes in many eukaryotes. In the core region, the histone H3 variant CENP-A forms centromere-specific nucleosomes that are required for kinetochore formation. In the pericentromeric region, histone H3 is methylated at lysine 9 (H3K9) and heterochromatin is formed. The transcription of pericentromeric repeats by RNA polymerase II is strictly repressed by heterochromatin. However, the role of the transcriptional silencing of the pericentromeric repeats remains largely unclear. Here, we focus on the chromosomal rearrangements that occur at the repetitive centromeres, and highlight our recent studies showing that transcriptional silencing by heterochromatin suppresses gross chromosomal rearrangements (GCRs) at centromeres in fission yeast. Inactivation of the Clr4 methyltransferase, which is essential for the H3K9 methylation, increased GCRs with breakpoints located in centromeric repeats. However, mutations in RNA polymerase II or the transcription factor Tfs1/TFIIS, which promotes restart of RNA polymerase II following its backtracking, reduced the GCRs that occur in the absence of Clr4, demonstrating that heterochromatin suppresses GCRs by repressing the Tfs1-dependent transcription. We also discuss how the transcriptional restart gives rise to chromosomal rearrangements at centromeres.
Collapse
Affiliation(s)
- Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| | - Akiko K Okita
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
12
|
Pherson M, Misulovin Z, Gause M, Dorsett D. Cohesin occupancy and composition at enhancers and promoters are linked to DNA replication origin proximity in Drosophila. Genome Res 2019; 29:602-612. [PMID: 30796039 PMCID: PMC6442380 DOI: 10.1101/gr.243832.118] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/20/2019] [Indexed: 12/23/2022]
Abstract
Cohesin consists of the SMC1-SMC3-Rad21 tripartite ring and the SA protein that interacts with Rad21. The Nipped-B protein loads cohesin topologically around chromosomes to mediate sister chromatid cohesion and facilitate long-range control of gene transcription. It is largely unknown how Nipped-B and cohesin associate specifically with gene promoters and transcriptional enhancers, or how sister chromatid cohesion is established. Here, we use genome-wide chromatin immunoprecipitation in Drosophila cells to show that SA and the Fs(1)h (BRD4) BET domain protein help recruit Nipped-B and cohesin to enhancers and DNA replication origins, whereas the MED30 subunit of the Mediator complex directs Nipped-B and Vtd in Drosophila (also known as Rad21) to promoters. All enhancers and their neighboring promoters are close to DNA replication origins and bind SA with proportional levels of cohesin subunits. Most promoters are far from origins and lack SA but bind Nipped-B and Rad21 with subproportional amounts of SMC1, indicating that they bind cohesin rings only part of the time. Genetic data show that Nipped-B and Rad21 function together with Fs(1)h to facilitate Drosophila development. These findings show that Nipped-B and cohesin are differentially targeted to enhancers and promoters, and suggest models for how SA and DNA replication help establish sister chromatid cohesion and facilitate enhancer-promoter communication. They indicate that SA is not an obligatory cohesin subunit but a factor that controls cohesin location on chromosomes.
Collapse
Affiliation(s)
- Michelle Pherson
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA
| | - Ziva Misulovin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA
| | - Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA
| |
Collapse
|
13
|
Li S, Dong Z, Yang S, Feng J, Li Q. Chaperoning RPA during DNA metabolism. Curr Genet 2019; 65:857-864. [PMID: 30796471 DOI: 10.1007/s00294-019-00945-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/17/2022]
Abstract
Single-stranded DNA (ssDNA) is widely generated during DNA metabolisms including DNA replication, repair and recombination and is susceptible to digestion by nucleases and secondary structure formation. It is vital for DNA metabolism and genome stability that ssDNA is protected and stabilized, which are performed by the major ssDNA-binding protein, and replication protein A (RPA) in these processes. In addition, RPA-coated ssDNA also serves as a protein-protein-binding platform for coordinating multiple events during DNA metabolisms. However, little is known about whether and how the formation of RPA-ssDNA platform is regulated. Here we highlight our recent study of a novel RPA-binding protein, Regulator of Ty1 transposition 105 (Rtt105) in Saccharomyces cerevisiae, which regulates the RPA-ssDNA platform assembly at replication forks. We propose that Rtt105 functions as an "RPA chaperone" during DNA replication, likely also promoting the assembly of RPA-ssDNA platform in other processes in which RPA plays a critical role.
Collapse
Affiliation(s)
- Shuqi Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.,Laboratory of Host-Pathogen Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Ziqi Dong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Shuangshuang Yang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jianxun Feng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
14
|
Linking the organization of DNA replication with genome maintenance. Curr Genet 2019; 65:677-683. [PMID: 30600398 DOI: 10.1007/s00294-018-0923-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022]
Abstract
The spatial and temporal organization of genome duplication, also referred to as the replication program, is defined by the distribution and the activities of the sites of replication initiation across the genome. Alterations to the replication profile are associated with cell fate changes during development and in pathologies, but the importance of undergoing S phase with distinct and specific programs remains largely unexplored. We have recently addressed this question, focusing on the interplay between the replication program and genome maintenance. In particular, we demonstrated that when cells encounter challenges to DNA synthesis, the organization of DNA replication drives the response to replication stress that is mediated by the ATR/Rad3 checkpoint pathway, thus shaping the pattern of genome instability along the chromosomes. In this review, we present the major findings of our study and discuss how they may bring new perspectives to our understanding of the biological importance of the replication program.
Collapse
|
15
|
Frattini C, Bermejo R. Analysis of Cohesin Association to Newly Replicated DNA Through Nascent Strand Binding Assay (NSBA). Methods Mol Biol 2019; 2004:139-153. [PMID: 31147915 DOI: 10.1007/978-1-4939-9520-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Replication forks engage chromatin-bound cohesin complexes during chromosome replication. Interfacing between cohesin and replication forks influences both cohesion establishment and fork functionality. However, the mechanisms mediating this process are scarcely understood. Here we describe the nascent strand binding assay (NSBA) methodology, developed in budding yeast to discriminate the association of cohesin to either parental unreplicated or nascent DNA in the environment of replication forks. NSBA quantitatively estimates the association of a protein of interest to newly replicated DNA. For this, nascent strands are in vivo labeled with the thymine analogue bromodeoxyuridine and chromatin is immunoprecipitated to isolate a fraction enriched in DNA associated to the target protein. The abundance of nascent DNA is then assessed through BrdU immunoprecipitation followed by quantitative PCR, allowing for the parallel analysis of diverse genomic regions. While originally employed to characterize the association of cohesin to nascent sister chromatids, NSBA can be applied to study other factors dynamically associating to nascent DNA.
Collapse
Affiliation(s)
- Camilla Frattini
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain
- Institut de Génétique Humaine-IGH, Montpellier, France
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain.
| |
Collapse
|
16
|
Dvořák M, Dvořáková M. Genes and Mechanisms Responsible for Expansion of Acute Myeloid Leukaemia Blasts. Folia Biol (Praha) 2019; 65:11-23. [PMID: 31171078 DOI: 10.14712/fb2019065010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Acute myeloid leukaemia (AML) is the leading form of fatal acute leukaemia in adults. AML is a heterogeneous disease with respect to responsible mutations and chromosomal abnormalities as well as to their clinicopathological image. In recent years, great progress has been made in techniques allowing detection of genetic changes in both de novo AML and in secondary AML induced by other haematological disorders or therapy, and in detection of residual disease after therapy. Accumulated knowledge allowed better understanding of the molecules and mechanisms involved not only in the formation and expansion of a primary leukaemia-founding clone, but also of a temporal order of changes leading to the fully malignant phenotype. The recent knowledge of bone marrow (BM) compartments and interrelations among various BM resident and recruited cell types helps in understanding the AML development. The progress in the techniques and knowledge will result in the development and use of molecularly targeted therapies tailored to individual patient needs.
Collapse
Affiliation(s)
- M Dvořák
- Department of Cell Differentiation, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - M Dvořáková
- Department of Cell Differentiation, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| |
Collapse
|
17
|
Acharya N, Manohar K, Peroumal D, Khandagale P, Patel SK, Sahu SR, Kumari P. Multifaceted activities of DNA polymerase η: beyond translesion DNA synthesis. Curr Genet 2018; 65:649-656. [PMID: 30535880 DOI: 10.1007/s00294-018-0918-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 10/27/2022]
Abstract
DNA polymerases are evolved to extend the 3'-OH of a growing primer annealed to a template DNA substrate. Since replicative DNA polymerases have a limited role while replicating structurally distorted template, translesion DNA polymerases mostly from Y-family come to the rescue of stalled replication fork and maintain genome stability. DNA polymerase eta is one such specialized enzyme whose function is directly associated with casual development of certain skin cancers and chemo-resistance. More than 20 years of extensive studies are available to support TLS activities of Polη in bypassing various DNA lesions, in addition, limited but crucial growing evidence also exist to suggest Polη possessing TLS-independent cellular functions. In this review, we have mostly focused on non-TLS activities of Polη from different organisms including our recent findings from pathogenic yeast Candida albicans.
Collapse
Affiliation(s)
- Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India.
| | - Kodavati Manohar
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Doureradjou Peroumal
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Prashant Khandagale
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Premlata Kumari
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, 751023, India
| |
Collapse
|
18
|
Gao D, Zhu B, Cao X, Zhang M, Wang X. Roles of NIPBL in maintenance of genome stability. Semin Cell Dev Biol 2018; 90:181-186. [PMID: 30096364 DOI: 10.1016/j.semcdb.2018.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022]
Abstract
A cohesin-loading factor (NIPBL) is one of important regulatory factors in the maintenance of 3D genome organization and function, by interacting with a large number of factors, e.g. cohesion, CCCTC-binding factor (CTCF) or cohesin complex component. The present article overviews the critical and regulatory roles of NIBPL in cohesion loading on chromotin and in gene expression and transcriptional signaling. We explore molecular mechanisms by which NIPBL recruits endogenous histone deacetylase (HDAC) to induce histone deacetylation and influence multi-dimensions of genome, through which NIPBL "hop" movement in chromatin regulates gene expression and alters genome folding. NIPBL regulates the process of CTCF and cohesion into chromatin loops and topologically associated domains, binding of cohesion and H3K4mes3 through interaction among promoters and enhancers. HP1 recruits NIPBL to DNA damage site through RNF8/RNF168 ubiquitylation pathway. NIPBL contributes to regulation of genome-controlled gene expression through the influence of cohesin in chromosome structure. NIPBL interacts with cohesin and then increases transcriptional activities of REC8 promoter, leading to up-regulation of gene expression. NIPBL movement among chromosomal loops regulates gene expression through dynamic alterations of genome organization. Thus, we expect a new and deep insight to understand dynamics of chromosome and explore potential strategies of therapiesc on basis of NIPBL.
Collapse
Affiliation(s)
- Danyan Gao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China
| | - Bijun Zhu
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China
| | - Miaomiao Zhang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Medical School, Shanghai Institute of Clinical Bioinformatics Shanghai, China.
| |
Collapse
|