3
|
Huang K, Matsumura H, Zhao Y, Herbig M, Yuan D, Mineharu Y, Harmon J, Findinier J, Yamagishi M, Ohnuki S, Nitta N, Grossman AR, Ohya Y, Mikami H, Isozaki A, Goda K. Deep imaging flow cytometry. LAB ON A CHIP 2022; 22:876-889. [PMID: 35142325 DOI: 10.1039/d1lc01043c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Imaging flow cytometry (IFC) has become a powerful tool for diverse biomedical applications by virtue of its ability to image single cells in a high-throughput manner. However, there remains a challenge posed by the fundamental trade-off between throughput, sensitivity, and spatial resolution. Here we present deep-learning-enhanced imaging flow cytometry (dIFC) that circumvents this trade-off by implementing an image restoration algorithm on a virtual-freezing fluorescence imaging (VIFFI) flow cytometry platform, enabling higher throughput without sacrificing sensitivity and spatial resolution. A key component of dIFC is a high-resolution (HR) image generator that synthesizes "virtual" HR images from the corresponding low-resolution (LR) images acquired with a low-magnification lens (10×/0.4-NA). For IFC, a low-magnification lens is favorable because of reduced image blur of cells flowing at a higher speed, which allows higher throughput. We trained and developed the HR image generator with an architecture containing two generative adversarial networks (GANs). Furthermore, we developed dIFC as a method by combining the trained generator and IFC. We characterized dIFC using Chlamydomonas reinhardtii cell images, fluorescence in situ hybridization (FISH) images of Jurkat cells, and Saccharomyces cerevisiae (budding yeast) cell images, showing high similarities of dIFC images to images obtained with a high-magnification lens (40×/0.95-NA), at a high flow speed of 2 m s-1. We lastly employed dIFC to show enhancements in the accuracy of FISH-spot counting and neck-width measurement of budding yeast cells. These results pave the way for statistical analysis of cells with high-dimensional spatial information.
Collapse
Affiliation(s)
- Kangrui Huang
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Hiroki Matsumura
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Yaqi Zhao
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Maik Herbig
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Dan Yuan
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Yohei Mineharu
- Department of Neurosurgery, Kyoto University, Kyoto 606-8507, Japan
- Department of Artificial Intelligence in Healthcare and Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Jeffrey Harmon
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Justin Findinier
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, California 94305, USA
| | - Mai Yamagishi
- Department of Biological Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | | | - Arthur R Grossman
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, California 94305, USA
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8654, Japan
| | - Hideharu Mikami
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Akihiro Isozaki
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan.
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Institute of Technological Sciences, Wuhan University, Hubei 430072, China
| |
Collapse
|
4
|
Nakagawa Y, Ohnuki S, Kondo N, Itto-Nakama K, Ghanegolmohammadi F, Isozaki A, Ohya Y, Goda K. Are droplets really suitable for single-cell analysis? A case study on yeast in droplets. LAB ON A CHIP 2021; 21:3793-3803. [PMID: 34581379 DOI: 10.1039/d1lc00469g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single-cell analysis has become one of the main cornerstones of biotechnology, inspiring the advent of various microfluidic compartments for cell cultivation such as microwells, microtrappers, microcapillaries, and droplets. A fundamental assumption for using such microfluidic compartments is that unintended stress or harm to cells derived from the microenvironments is insignificant, which is a crucial condition for carrying out unbiased single-cell studies. Despite the significance of this assumption, simple viability or growth tests have overwhelmingly been the assay of choice for evaluating culture conditions while empirical studies on the sub-lethal effect on cellular functions have been insufficient in many cases. In this work, we assessed the effect of culturing cells in droplets on the cellular function using yeast morphology as an indicator. Quantitative morphological analysis using CalMorph, an image-analysis program, demonstrated that cells cultured in flasks, large droplets, and small droplets significantly differed morphologically. From these differences, we identified that the cell cycle was delayed in droplets during the G1 phase and during the process of bud growth likely due to the checkpoint mechanism and impaired mitochondrial function, respectively. Furthermore, comparing small and large droplets, cells cultured in large droplets were morphologically more similar to those cultured in a flask, highlighting the advantage of increasing the droplet size. These results highlight a potential source of bias in cell analysis using droplets and reinforce the significance of assessing culture conditions of microfluidic cultivation methods for specific study cases.
Collapse
Affiliation(s)
- Yuta Nakagawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Naoko Kondo
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Kaori Itto-Nakama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Farzan Ghanegolmohammadi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Akihiro Isozaki
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Keisuke Goda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, 420 Westwood Plaza, California 90095, USA
- Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
5
|
Ghanegolmohammadi F, Okada H, Liu Y, Itto-Nakama K, Ohnuki S, Savchenko A, Bi E, Yoshida S, Ohya Y. Defining Functions of Mannoproteins in Saccharomyces cerevisiae by High-Dimensional Morphological Phenotyping. J Fungi (Basel) 2021; 7:jof7090769. [PMID: 34575807 PMCID: PMC8466635 DOI: 10.3390/jof7090769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Mannoproteins are non-filamentous glycoproteins localized to the outermost layer of the yeast cell wall. The physiological roles of these structural components have not been completely elucidated due to the limited availability of appropriate tools. As the perturbation of mannoproteins may affect cell morphology, we investigated mannoprotein mutants in Saccharomyces cerevisiae via high-dimensional morphological phenotyping. The mannoprotein mutants were morphologically classified into seven groups using clustering analysis with Gaussian mixture modeling. The pleiotropic phenotypes of cluster I mutant cells (ccw12Δ) indicated that CCW12 plays major roles in cell wall organization. Cluster II (ccw14Δ, flo11Δ, srl1Δ, and tir3Δ) mutants exhibited altered mother cell size and shape. Mutants of cluster III and IV exhibited no or very small morphological defects. Cluster V (dse2Δ, egt2Δ, and sun4Δ) consisted of endoglucanase mutants with cell separation defects due to incomplete septum digestion. The cluster VI mutant cells (ecm33Δ) exhibited perturbation of apical bud growth. Cluster VII mutant cells (sag1Δ) exhibited differences in cell size and actin organization. Biochemical assays further confirmed the observed morphological defects. Further investigations based on various omics data indicated that morphological phenotyping is a complementary tool that can help with gaining a deeper understanding of the functions of mannoproteins.
Collapse
Affiliation(s)
- Farzan Ghanegolmohammadi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan or (F.G.); (Y.L.); (K.I.-N.); (S.O.); (A.S.)
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.O.); (E.B.)
| | - Yaxuan Liu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan or (F.G.); (Y.L.); (K.I.-N.); (S.O.); (A.S.)
| | - Kaori Itto-Nakama
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan or (F.G.); (Y.L.); (K.I.-N.); (S.O.); (A.S.)
| | - Shinsuke Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan or (F.G.); (Y.L.); (K.I.-N.); (S.O.); (A.S.)
| | - Anna Savchenko
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan or (F.G.); (Y.L.); (K.I.-N.); (S.O.); (A.S.)
- Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, ER 6229 Maastricht, The Netherlands
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.O.); (E.B.)
| | - Satoshi Yoshida
- School of International Liberal Studies, Nishi-Waseda Campus, Waseda University, Tokyo 169-8050, Japan;
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan or (F.G.); (Y.L.); (K.I.-N.); (S.O.); (A.S.)
- Correspondence:
| |
Collapse
|
8
|
Isozaki A, Nakagawa Y, Loo MH, Shibata Y, Tanaka N, Setyaningrum DL, Park JW, Shirasaki Y, Mikami H, Huang D, Tsoi H, Riche CT, Ota T, Miwa H, Kanda Y, Ito T, Yamada K, Iwata O, Suzuki K, Ohnuki S, Ohya Y, Kato Y, Hasunuma T, Matsusaka S, Yamagishi M, Yazawa M, Uemura S, Nagasawa K, Watarai H, Di Carlo D, Goda K. Sequentially addressable dielectrophoretic array for high-throughput sorting of large-volume biological compartments. SCIENCE ADVANCES 2020; 6:eaba6712. [PMID: 32524002 PMCID: PMC7259936 DOI: 10.1126/sciadv.aba6712] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/25/2020] [Indexed: 05/27/2023]
Abstract
Droplet microfluidics has become a powerful tool in precision medicine, green biotechnology, and cell therapy for single-cell analysis and selection by virtue of its ability to effectively confine cells. However, there remains a fundamental trade-off between droplet volume and sorting throughput, limiting the advantages of droplet microfluidics to small droplets (<10 pl) that are incompatible with long-term maintenance and growth of most cells. We present a sequentially addressable dielectrophoretic array (SADA) sorter to overcome this problem. The SADA sorter uses an on-chip array of electrodes activated and deactivated in a sequence synchronized to the speed and position of a passing target droplet to deliver an accumulated dielectrophoretic force and gently pull it in the direction of sorting in a high-speed flow. We use it to demonstrate large-droplet sorting with ~20-fold higher throughputs than conventional techniques and apply it to long-term single-cell analysis of Saccharomyces cerevisiae based on their growth rate.
Collapse
Affiliation(s)
- A. Isozaki
- Department of Chemistry, Graduate School of Science, University of Tokyo, East Chemistry Building, Room 213, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu-ku, Kawasaki-shi, Kanagawa 213-0012, Japan
| | - Y. Nakagawa
- Department of Chemistry, Graduate School of Science, University of Tokyo, East Chemistry Building, Room 213, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - M. H. Loo
- Department of Chemistry, Graduate School of Science, University of Tokyo, East Chemistry Building, Room 213, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Y. Shibata
- Department of Chemistry, Graduate School of Science, University of Tokyo, East Chemistry Building, Room 213, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - N. Tanaka
- Department of Chemistry, Graduate School of Science, University of Tokyo, East Chemistry Building, Room 213, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - D. L. Setyaningrum
- Department of Chemistry, Graduate School of Science, University of Tokyo, East Chemistry Building, Room 213, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - J.-W. Park
- Department of Chemistry, Graduate School of Science, University of Tokyo, East Chemistry Building, Room 213, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Y. Shirasaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Faculty of Science Building 1 (East), Room 575, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - H. Mikami
- Department of Chemistry, Graduate School of Science, University of Tokyo, East Chemistry Building, Room 213, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - D. Huang
- Department of Chemistry, Graduate School of Science, University of Tokyo, East Chemistry Building, Room 213, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - H. Tsoi
- Department of Chemistry, Graduate School of Science, University of Tokyo, East Chemistry Building, Room 213, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - C. T. Riche
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, 420 Westwood Plaza, 5121E Engineering V, Los Angeles, CA 90095, USA
| | - T. Ota
- Department of Chemistry, Graduate School of Science, University of Tokyo, East Chemistry Building, Room 213, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - H. Miwa
- Department of Chemistry, Graduate School of Science, University of Tokyo, East Chemistry Building, Room 213, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Y. Kanda
- Department of Chemistry, Graduate School of Science, University of Tokyo, East Chemistry Building, Room 213, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - T. Ito
- Department of Chemistry, Graduate School of Science, University of Tokyo, East Chemistry Building, Room 213, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - K. Yamada
- R&D Department, euglena Co., Ltd., 75-1, Ono-machi, Tsurumi-ku, Yokohama-shi 230-0046, Japan
| | - O. Iwata
- R&D Department, euglena Co., Ltd., 75-1, Ono-machi, Tsurumi-ku, Yokohama-shi 230-0046, Japan
| | - K. Suzuki
- R&D Department, euglena Co., Ltd., 75-1, Ono-machi, Tsurumi-ku, Yokohama-shi 230-0046, Japan
| | - S. Ohnuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Y. Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
- AIST-UTokyo Advanced Operando-Measurement Technology Open Innovation Laboratory (OPERANDO-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8589, Japan
| | - Y. Kato
- Graduate School of Science, Technology Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - T. Hasunuma
- Graduate School of Science, Technology Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - S. Matsusaka
- Clinical Research and Regional Innovation, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - M. Yamagishi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Faculty of Science Building 1 (East), Room 575, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - M. Yazawa
- Department of Rehabilitation and Regenerative Medicine, Pharmacology, Columbia University, 650 West 168th Street, BB1108, New York, NY 10032, USA
| | - S. Uemura
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Faculty of Science Building 1 (East), Room 575, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - K. Nagasawa
- Division of Stem Cell Cellomics, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - H. Watarai
- Division of Stem Cell Cellomics, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Department of Immunology and Stem Cell Biology, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - D. Di Carlo
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, 420 Westwood Plaza, 5121E Engineering V, Los Angeles, CA 90095, USA
| | - K. Goda
- Department of Chemistry, Graduate School of Science, University of Tokyo, East Chemistry Building, Room 213, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, 420 Westwood Plaza, 5121E Engineering V, Los Angeles, CA 90095, USA
- Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
- Institute of Technological Sciences, Wuhan University, Hubei 430072, China
| |
Collapse
|