1
|
Palek M, Palkova N, Kleiblova P, Kleibl Z, Macurek L. RAD18 directs DNA double-strand break repair by homologous recombination to post-replicative chromatin. Nucleic Acids Res 2024; 52:7687-7703. [PMID: 38884202 PMCID: PMC11260465 DOI: 10.1093/nar/gkae499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
RAD18 is an E3 ubiquitin ligase that prevents replication fork collapse by promoting DNA translesion synthesis and template switching. Besides this classical role, RAD18 has been implicated in homologous recombination; however, this function is incompletely understood. Here, we show that RAD18 is recruited to DNA lesions by monoubiquitination of histone H2A at K15 and counteracts accumulation of 53BP1. Super-resolution microscopy revealed that RAD18 localizes to the proximity of DNA double strand breaks and limits the distribution of 53BP1 to the peripheral chromatin nanodomains. Whereas auto-ubiquitination of RAD18 mediated by RAD6 inhibits its recruitment to DNA breaks, interaction with SLF1 promotes RAD18 accumulation at DNA breaks in the post-replicative chromatin by recognition of histone H4K20me0. Surprisingly, suppression of 53BP1 function by RAD18 is not involved in homologous recombination and rather leads to reduction of non-homologous end joining. Instead, we provide evidence that RAD18 promotes HR repair by recruiting the SMC5/6 complex to DNA breaks. Finally, we identified several new loss-of-function mutations in RAD18 in cancer patients suggesting that RAD18 could be involved in cancer development.
Collapse
Affiliation(s)
- Matous Palek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Natalie Palkova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague CZ-14220, Czech Republic
| |
Collapse
|
2
|
Vaculíková J, Holá M, Králová B, Lelkes E, Štefanovie B, Vágnerová R, Angelis KJ, Paleček JJ. NSE5 subunit interacts with distant regions of the SMC arms in the Physcomitrium patens SMC5/6 complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38858852 DOI: 10.1111/tpj.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Structural maintenance of chromosome (SMC) complexes play roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of SMC proteins with a unique structure consisting of an ATPase head, long arm, and hinge. SMC complexes form long rod-like structures, which can change to ring-like and elbow-bent conformations upon binding ATP, DNA, and other regulatory factors. These SMC dynamic conformational changes are involved in their loading, translocation, and DNA loop extrusion. Here, we examined the binding and role of the PpNSE5 regulatory factor of Physcomitrium patens PpSMC5/6 complex. We found that the PpNSE5 C-terminal half (aa230-505) is required for binding to its PpNSE6 partner, while the N-terminal half (aa1-230) binds PpSMC subunits. Specifically, the first 71 amino acids of PpNSE5 were required for binding to PpSMC6. Interestingly, the PpNSE5 binding required the PpSMC6 head-proximal joint region and PpSMC5 hinge-proximal arm, suggesting a long distance between binding sites on PpSMC5 and PpSMC6 arms. Therefore, we hypothesize that PpNSE5 either links two antiparallel SMC5/6 complexes or binds one SMC5/6 in elbow-bent conformation, the later model being consistent with the role of NSE5/NSE6 dimer as SMC5/6 loading factor to DNA lesions. In addition, we generated the P. patens Ppnse5KO1 mutant line with an N-terminally truncated version of PpNSE5, which exhibited DNA repair defects while keeping a normal number of rDNA repeats. As the first 71 amino acids of PpNSE5 are required for PpSMC6 binding, our results suggest the role of PpNSE5-PpSMC6 interaction in SMC5/6 loading to DNA lesions.
Collapse
Affiliation(s)
- Jitka Vaculíková
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Marcela Holá
- Institute of Experimental Botany Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Barbora Králová
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Edit Lelkes
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Barbora Štefanovie
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Radka Vágnerová
- Institute of Experimental Botany Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Karel J Angelis
- Institute of Experimental Botany Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Jan J Paleček
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| |
Collapse
|
3
|
Roy S, Adhikary H, D’Amours D. The SMC5/6 complex: folding chromosomes back into shape when genomes take a break. Nucleic Acids Res 2024; 52:2112-2129. [PMID: 38375830 PMCID: PMC10954462 DOI: 10.1093/nar/gkae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
High-level folding of chromatin is a key determinant of the shape and functional state of chromosomes. During cell division, structural maintenance of chromosome (SMC) complexes such as condensin and cohesin ensure large-scale folding of chromatin into visible chromosomes. In contrast, the SMC5/6 complex plays more local and context-specific roles in the structural organization of interphase chromosomes with important implications for health and disease. Recent advances in single-molecule biophysics and cryo-electron microscopy revealed key insights into the architecture of the SMC5/6 complex and how interactions connecting the complex to chromatin components give rise to its unique repertoire of interphase functions. In this review, we provide an integrative view of the features that differentiates the SMC5/6 complex from other SMC enzymes and how these enable dramatic reorganization of DNA folding in space during DNA repair reactions and other genome transactions. Finally, we explore the mechanistic basis for the dynamic targeting of the SMC5/6 complex to damaged chromatin and its crucial role in human health.
Collapse
Affiliation(s)
- Shamayita Roy
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Hemanta Adhikary
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | - Damien D’Amours
- Ottawa Institute of Systems Biology, Department of Cellular and Molecular Medicine, University of Ottawa, Roger Guindon Hall, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
4
|
Huang W, Qiu F, Zheng L, Shi M, Shen M, Zhao X, Xiang S. Structural insights into Rad18 targeting by the SLF1 BRCT domains. J Biol Chem 2023; 299:105288. [PMID: 37748650 PMCID: PMC10598736 DOI: 10.1016/j.jbc.2023.105288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
Rad18 interacts with the SMC5/6 localization factor 1 (SLF1) to recruit the SMC5/6 complex to DNA damage sites for repair. The mechanism of the specific Rad18 recognition by SLF1 is unclear. Here, we present the crystal structure of the tandem BRCT repeat (tBRCT) in SLF1 (SLF1tBRCT) bound with the interacting Rad18 peptide. Our structure and biochemical studies demonstrate that SLF1tBRCT interacts with two phosphoserines and adjacent residues in Rad18 for high-affinity and specificity Rad18 recognition. We found that SLF1tBRCT utilizes mechanisms common among tBRCTs as well as unique ones for Rad18 binding, the latter include interactions with an α-helical structure in Rad18 that has not been observed in other tBRCT-bound ligand proteins. Our work provides structural insights into Rad18 targeting by SLF1 and expands the understanding of BRCT-mediated complex assembly.
Collapse
Affiliation(s)
- Wei Huang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, P. R. China
| | - Fangjie Qiu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, P. R. China
| | - Lin Zheng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, P. R. China
| | - Meng Shi
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, P. R. China
| | - Miaomiao Shen
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, P. R. China
| | - Xiaolan Zhao
- Department of Molecular Biology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, P. R. China.
| |
Collapse
|
5
|
Lelkes E, Jemelková J, Holá M, Štefanovie B, Kolesár P, Vágnerová R, Dvořák Tomaštíková E, Pecinka A, Angelis KJ, Paleček JJ. Characterization of the conserved features of the NSE6 subunit of the Physcomitrium patens SMC5/6 complex. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1084-1099. [PMID: 37191775 DOI: 10.1111/tpj.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/17/2023]
Abstract
Structural maintenance of chromosomes (SMC) complexes are molecular machines ensuring chromatin organization at higher levels. They play direct roles in cohesion, condensation, replication, transcription, and DNA repair. Their cores are composed of long-armed SMC, kleisin, and kleisin-associated subunits. Additional factors, like NSE6 within SMC5/6, bind to SMC core complexes and regulate their activities. In the human HsNSE6/SLF2, we recently identified a new CANIN domain. Here we tracked down its sequence homology to lower plants, selected the bryophyte Physcomitrium patens, and analyzed PpNSE6 protein-protein interactions to explore its conservation in detail. We identified a previously unrecognized core sequence motif conserved from yeasts to humans within the NSE6 CANIN domain. This motif mediates the interaction between NSE6 and its NSE5 partner in yeasts and plants. In addition, the CANIN domain and its preceding PpNSE6 sequences bind both PpSMC5 and PpSMC6 arms. Interestingly, we mapped the PpNSE6-binding site at the PpSMC5 arm right next to the PpNSE2-binding surface. The position of NSE6 at SMC arms suggests its role in the regulation of SMC5/6 dynamics. Consistent with the regulatory role of NSE6 subunits, Ppnse6 mutant lines were viable and sensitive to the DNA-damaging drug bleomycin and lost a large portion of rDNA copies. These moss mutants also exhibited reduced growth and developmental aberrations. Altogether, our data showed the conserved function of the NSE6 subunit and architecture of the SMC5/6 complex across species.
Collapse
Affiliation(s)
- Edit Lelkes
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Jitka Jemelková
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Marcela Holá
- Institute of Experimental Botany, Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Barbora Štefanovie
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Peter Kolesár
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Radka Vágnerová
- Institute of Experimental Botany, Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Eva Dvořák Tomaštíková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Ales Pecinka
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany, Czech Academy of Sciences, Šlechtitelů 31, 77900, Olomouc, Czech Republic
| | - Karel J Angelis
- Institute of Experimental Botany, Czech Academy of Sciences, Na Karlovce 1, 16000, Prague, Czech Republic
| | - Jan J Paleček
- National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| |
Collapse
|
6
|
Mahrik L, Stefanovie B, Maresova A, Princova J, Kolesar P, Lelkes E, Faux C, Helmlinger D, Prevorovsky M, Palecek JJ. The SAGA histone acetyltransferase module targets SMC5/6 to specific genes. Epigenetics Chromatin 2023; 16:6. [PMID: 36793083 PMCID: PMC9933293 DOI: 10.1186/s13072-023-00480-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Structural Maintenance of Chromosomes (SMC) complexes are molecular machines driving chromatin organization at higher levels. In eukaryotes, three SMC complexes (cohesin, condensin and SMC5/6) play key roles in cohesion, condensation, replication, transcription and DNA repair. Their physical binding to DNA requires accessible chromatin. RESULTS We performed a genetic screen in fission yeast to identify novel factors required for SMC5/6 binding to DNA. We identified 79 genes of which histone acetyltransferases (HATs) were the most represented. Genetic and phenotypic analyses suggested a particularly strong functional relationship between the SMC5/6 and SAGA complexes. Furthermore, several SMC5/6 subunits physically interacted with SAGA HAT module components Gcn5 and Ada2. As Gcn5-dependent acetylation facilitates the accessibility of chromatin to DNA-repair proteins, we first analysed the formation of DNA-damage-induced SMC5/6 foci in the Δgcn5 mutant. The SMC5/6 foci formed normally in Δgcn5, suggesting SAGA-independent SMC5/6 localization to DNA-damaged sites. Next, we used Nse4-FLAG chromatin-immunoprecipitation (ChIP-seq) analysis in unchallenged cells to assess SMC5/6 distribution. A significant portion of SMC5/6 accumulated within gene regions in wild-type cells, which was reduced in Δgcn5 and Δada2 mutants. The drop in SMC5/6 levels was also observed in gcn5-E191Q acetyltransferase-dead mutant. CONCLUSION Our data show genetic and physical interactions between SMC5/6 and SAGA complexes. The ChIP-seq analysis suggests that SAGA HAT module targets SMC5/6 to specific gene regions and facilitates their accessibility for SMC5/6 loading.
Collapse
Affiliation(s)
- L Mahrik
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - B Stefanovie
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - A Maresova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12800, Prague, Czech Republic
| | - J Princova
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12800, Prague, Czech Republic
| | - P Kolesar
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - E Lelkes
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic
| | - C Faux
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, CNRS, 1919 Route de Mende, 34293, Montpellier Cedex 05, France
| | - D Helmlinger
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, CNRS, 1919 Route de Mende, 34293, Montpellier Cedex 05, France
| | - M Prevorovsky
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, 12800, Prague, Czech Republic.
| | - J J Palecek
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137, Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
7
|
Oravcová M, Nie M, Zilio N, Maeda S, Jami-Alahmadi Y, Lazzerini-Denchi E, Wohlschlegel JA, Ulrich HD, Otomo T, Boddy MN. The Nse5/6-like SIMC1-SLF2 complex localizes SMC5/6 to viral replication centers. eLife 2022; 11:e79676. [PMID: 36373674 PMCID: PMC9708086 DOI: 10.7554/elife.79676] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The human SMC5/6 complex is a conserved guardian of genome stability and an emerging component of antiviral responses. These disparate functions likely require distinct mechanisms of SMC5/6 regulation. In yeast, Smc5/6 is regulated by its Nse5/6 subunits, but such regulatory subunits for human SMC5/6 are poorly defined. Here, we identify a novel SMC5/6 subunit called SIMC1 that contains SUMO interacting motifs (SIMs) and an Nse5-like domain. We isolated SIMC1 from the proteomic environment of SMC5/6 within polyomavirus large T antigen (LT)-induced subnuclear compartments. SIMC1 uses its SIMs and Nse5-like domain to localize SMC5/6 to polyomavirus replication centers (PyVRCs) at SUMO-rich PML nuclear bodies. SIMC1's Nse5-like domain binds to the putative Nse6 orthologue SLF2 to form an anti-parallel helical dimer resembling the yeast Nse5/6 structure. SIMC1-SLF2 structure-based mutagenesis defines a conserved surface region containing the N-terminus of SIMC1's helical domain that regulates SMC5/6 localization to PyVRCs. Furthermore, SLF1, which recruits SMC5/6 to DNA lesions via its BRCT and ARD motifs, binds SLF2 analogously to SIMC1 and forms a separate Nse5/6-like complex. Thus, two Nse5/6-like complexes with distinct recruitment domains control human SMC5/6 localization.
Collapse
Affiliation(s)
- Martina Oravcová
- Department of Molecular Medicine, The Scripps Research InstituteLa JollaUnited States
| | - Minghua Nie
- Department of Molecular Medicine, The Scripps Research InstituteLa JollaUnited States
| | | | - Shintaro Maeda
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | | | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los AngelesLos AngelesUnited States
| | | | - Takanori Otomo
- Department of Integrative Structural and Computational Biology, The Scripps Research InstituteLa JollaUnited States
- San Diego Biomedical Research InstituteSan DiegoUnited States
| | - Michael N Boddy
- Department of Molecular Medicine, The Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
8
|
Sucularli C. Identification of BRIP1, NSMCE2, ANAPC7, RAD18 and TTL from chromosome segregation gene set associated with hepatocellular carcinoma. Cancer Genet 2022; 268-269:28-36. [PMID: 36126360 DOI: 10.1016/j.cancergen.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/12/2022] [Accepted: 09/06/2022] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma is one of the most frequent cancers with high mortality rate worldwide. METHODS TCGA LIHC HTseq counts were analyzed. GSEA was performed with GO BP gene sets. GO analysis was performed with differentially expressed genes. The subset of genes contributing most of the enrichment result of GO_BP_CHROMOSOME_SEGREGATION of GSEA were identified. Five genes have been selected in this subset of genes for further analysis. A microarray data set, GSE112790, was analyzed as a validation data set. Survival analysis was performed. RESULTS According to GSEA and GO analysis several gene sets and processes related to chromosome segregation were enriched in LIHC. GO_BP_CHROMOSOME_SEGREGATION gene set from GSEA had the highest size of the genes contributing most of the enrichment. Five genes in this gene set; BRIP1, NSMCE2, ANAPC7, RAD18 and TTL, whose expressions and prognostic values have not been studied in hepatocellular carcinoma in detail, have been selected for further analyses. Expression of these five genes were identified as significantly upregulated in LIHC RNA-seq and HCC microarray data set. Survival analysis showed that high expression of the five genes was associated with poor overall survival in HCC patients. CONCLUSION Selected genes were upregulated and had prognostic value in HCC.
Collapse
Affiliation(s)
- Ceren Sucularli
- Department of Bioinformatics, Institute of Health Sciences, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
9
|
Li C, Ma X, Deng J, Li J, Liu Y, Zhu X, Liu J, Zhang P. Machine learning-based automated fungal cell counting under a complicated background with ilastik and ImageJ. Eng Life Sci 2021; 21:769-777. [PMID: 34764828 PMCID: PMC8576076 DOI: 10.1002/elsc.202100055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/19/2021] [Accepted: 08/10/2021] [Indexed: 11/06/2022] Open
Abstract
Measuring the concentration and viability of fungal cells is an important and fundamental procedure in scientific research and industrial fermentation. In consideration of the drawbacks of manual cell counting, large quantities of fungal cells require methods that provide easy, objective and reproducible high-throughput calculations, especially for samples in complicated backgrounds. To answer this challenge, we explored and developed an easy-to-use fungal cell counting pipeline that combined the machine learning-based ilastik tool with the freeware ImageJ, as well as a conventional photomicroscope. Briefly, learning from labels provided by the user, ilastik performs segmentation and classification automatically in batch processing mode and thus discriminates fungal cells from complex backgrounds. The files processed through ilastik can be recognized by ImageJ, which can compute the numeric results with the macro 'Fungal Cell Counter'. Taking the yeast Cryptococccus deneoformans and the filamentous fungus Pestalotiopsis microspora as examples, we observed that the customizable software algorithm reduced inter-operator errors significantly and achieved accurate and objective results, while manual counting with a haemocytometer exhibited some errors between repeats and required more time. In summary, a convenient, rapid, reproducible and extremely low-cost method to count yeast cells and fungal spores is described here, which can be applied to multiple kinds of eucaryotic microorganisms in genetics, cell biology and industrial fermentation.
Collapse
Affiliation(s)
- Chenxi Li
- Beijing Key Laboratory of Genetic Engineering Drug and BiotechnologyCollege of Life SciencesBeijing Normal UniversityBeijingP. R. China
| | - Xiaoyu Ma
- Beijing Key Laboratory of Genetic Engineering Drug and BiotechnologyCollege of Life SciencesBeijing Normal UniversityBeijingP. R. China
| | - Jing Deng
- Beijing Key Laboratory of Genetic Engineering Drug and BiotechnologyCollege of Life SciencesBeijing Normal UniversityBeijingP. R. China
| | - Jiajia Li
- Beijing Key Laboratory of Genetic Engineering Drug and BiotechnologyCollege of Life SciencesBeijing Normal UniversityBeijingP. R. China
| | - Yanjie Liu
- Beijing Key Laboratory of Genetic Engineering Drug and BiotechnologyCollege of Life SciencesBeijing Normal UniversityBeijingP. R. China
| | - Xudong Zhu
- Beijing Key Laboratory of Genetic Engineering Drug and BiotechnologyCollege of Life SciencesBeijing Normal UniversityBeijingP. R. China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resources and Molecular DevelopmentCollege of Life SciencesBeijing Normal UniversityBeijingP. R. China
| | - Ping Zhang
- Beijing Key Laboratory of Genetic Engineering Drug and BiotechnologyCollege of Life SciencesBeijing Normal UniversityBeijingP. R. China
| |
Collapse
|
10
|
Hallett ST, Schellenberger P, Zhou L, Beuron F, Morris E, Murray JM, Oliver AW. Nse5/6 is a negative regulator of the ATPase activity of the Smc5/6 complex. Nucleic Acids Res 2021; 49:4534-4549. [PMID: 33849072 PMCID: PMC8096239 DOI: 10.1093/nar/gkab234] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
The multi-component Smc5/6 complex plays a critical role in the resolution of recombination intermediates formed during mitosis and meiosis, and in the cellular response to replication stress. Using recombinant proteins, we have reconstituted a series of defined Saccharomyces cerevisiae Smc5/6 complexes, visualised them by negative stain electron microscopy, and tested their ability to function as an ATPase. We find that only the six protein ‘holo-complex’ is capable of turning over ATP and that its activity is significantly increased by the addition of double-stranded DNA to reaction mixes. Furthermore, stimulation is wholly dependent on functional ATP-binding pockets in both Smc5 and Smc6. Importantly, we demonstrate that budding yeast Nse5/6 acts as a negative regulator of Smc5/6 ATPase activity, binding to the head-end of the complex to suppress turnover, irrespective of the DNA-bound status of the complex.
Collapse
Affiliation(s)
- Stephen T Hallett
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Pascale Schellenberger
- Electron Microscopy Imaging Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Lihong Zhou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | | | - Ed Morris
- The Institute of Cancer Research, London, UK
| | - Johanne M Murray
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| | - Antony W Oliver
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, UK
| |
Collapse
|
11
|
Identification of novel biomarkers involved in pulmonary arterial hypertension based on multiple-microarray analysis. Biosci Rep 2021; 40:226338. [PMID: 32886110 PMCID: PMC7494994 DOI: 10.1042/bsr20202346] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening chronic cardiopulmonary disorder. However, studies providing PAH-related gene expression profiles are scarce. To identify hub genes involved in PAH, we investigate two microarray data sets from gene expression omnibus (GEO). A total of 150 differentially expressed genes (DEGs) were identified by limma package. Enriched Gene Ontology (GO) annotations and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of DEGs mostly included mitotic nuclear division, ATPase activity, and Herpes simplex virus one infection. Ten hub genes from three significant modules were ascertained by Cytoscape (CytoHubba). Gene set enrichment analysis (GSEA) plots showed that transcription elongation factor complex was the most significantly enriched gene set positively correlated with the PAH group. At the same time, solute proton symporter activity was the most significantly enriched gene set positively correlated with the control group. Correlation analysis between hub genes suggested that SMC4, TOP2A, SMC2, KIF11, KIF23, ANLN, ARHGAP11A, SMC3, SMC6 and RAD50 may involve in the pathogenesis of PAH. Then, the miRNA-target genes regulation network was performed to unveil the underlying complex association among them. Finally, RNA extracted from monocrotaline (MCT)-induced Rat-PAH model lung artery tissues were to conduct quantitative real-time PCR (qRT-PCR) to validate these hub genes. In conclusion, our study offers new evidence for the underlying molecular mechanisms of PAH as well as attractive targets for diagnosis and treatment of PAH.
Collapse
|
12
|
Adamus M, Lelkes E, Potesil D, Ganji SR, Kolesar P, Zabrady K, Zdrahal Z, Palecek JJ. Molecular Insights into the Architecture of the Human SMC5/6 Complex. J Mol Biol 2020; 432:3820-3837. [PMID: 32389690 DOI: 10.1016/j.jmb.2020.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023]
Abstract
A family of Structural Maintenance of Chromosome (SMC) complexes is essential for key cellular processes ensuring proper cohesion, condensation and replication. They share a common SMC-kleisin architecture allowing them to embrace DNA. In SMC5/6, the NSE1 and NSE3 KITE and NSE4 kleisin subunits form a stable subcomplex that binds DNA and regulates essential processes. In addition, NSE5 and NSE6 subunits associate with the core SMC5/6 complex and recruit it to DNA repair sites. The architecture of the SMC5/6 complex is crucial for its proper functioning, and mutations within the human SMC5/6 subunits result in severe syndromes. Therefore, we aimed to analyze interactions within the human SMC5/6 complex and determine its detailed architecture. Firstly, we analyzed different parts of SMC5/6 by crosslinking and MS/MS analysis. Our data suggested domain arrangements of hNSE1-hNSE3 and orientation of hNSE4 within the hNSE1-hNSE3-hNSE4 subcomplex. The crosslinking and electron microscopic analysis of the SMC5/6 core complex showed its rod-like architecture with juxtaposed hSMC5-hSMC6 arms. Additionally, we observed fully or partially opened hSMC5-hSMC6 shapes with the hNSE1-hNSE3-hNSE4 trimer localized in the SMC head domains. To complete mapping of the human SMC5/6 complex architecture, we analyzed positions of hNSE5-hNSE6 at the hSMC5-hSMC6 arms. We showed that hNSE6 binding to hNSE5 and the coiled-coil arm of hSMC6 is mediated by a conserved FAM178 domain, which we therefore renamed CANIN (Coiled-coil SMC6 And NSE5 INteracting) domain. Interestingly, hNSE6 bound both hSMC5 and hSMC6 arms, suggesting that hNSE6 may lock the arms and regulate the dynamics of the human SMC5/6 complex.
Collapse
Affiliation(s)
- M Adamus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - E Lelkes
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - D Potesil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - S R Ganji
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - P Kolesar
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - K Zabrady
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Z Zdrahal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - J J Palecek
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
| |
Collapse
|
13
|
Keyamura K, Hishida T. Topological DNA-binding of structural maintenance of chromosomes-like RecN promotes DNA double-strand break repair in Escherichia coli. Commun Biol 2019; 2:413. [PMID: 31754643 PMCID: PMC6856136 DOI: 10.1038/s42003-019-0655-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/16/2019] [Indexed: 12/21/2022] Open
Abstract
Bacterial RecN, closely related to the structural maintenance of chromosomes (SMC) family of proteins, functions in the repair of DNA double-strand breaks (DSBs) by homologous recombination. Here we show that the purified Escherichia coli RecN protein topologically loads onto both single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) that has a preference for ssDNA. RecN topologically bound to dsDNA slides off the end of linear dsDNA, but this is prevented by RecA nucleoprotein filaments on ssDNA, thereby allowing RecN to translocate to DSBs. Furthermore, we found that, once RecN is recruited onto ssDNA, it can topologically capture a second dsDNA substrate in an ATP-dependent manner, suggesting a role in synapsis. Indeed, RecN stimulates RecA-mediated D-loop formation and subsequent strand exchange activities. Our findings provide mechanistic insights into the recruitment of RecN to DSBs and sister chromatid interactions by RecN, both of which function in RecA-mediated DSB repair.
Collapse
Affiliation(s)
- Kenji Keyamura
- Department of Molecular Biology, Graduate School of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588 Japan
| | - Takashi Hishida
- Department of Molecular Biology, Graduate School of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo, 171-8588 Japan
| |
Collapse
|