1
|
Zhou M, Yu P, Hu C, Fang W, Jin C, Li S, Sun X. Suppressed Protein Translation Caused by MSP-8 Deficiency Determines Fungal Multidrug Resistance with Fitness Cost. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412514. [PMID: 39679802 PMCID: PMC11809369 DOI: 10.1002/advs.202412514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Antifungal resistance, particularly the rise of multidrug-resistance strains, poses a significant public health threat. In this study, the study identifies a novel multidrug-resistance gene, msp-8, encoding a helicase, through experimental evolution with Neurospora crassa as a model. Deletion of msp-8 conferred multidrug resistance in N. crassa, Aspergillus fumigatus, and Fusarium verticillioides. However, the transcript levels of genes encoding known drug targets or efflux pumps remain unaltered with msp-8 deletion. Interestingly, MSP-8 interacted with ribosomal proteins, and this mutant displays compromised ribosomal function, causing translational disturbance. Notably, inhibition of protein translation enhances resistance to azoles, amphotericin B, and polyoxin B. Furthermore, MSP-8 deficiency or inhibition of translation reduces intracellular ketoconazole accumulation and membrane-bound amphotericin B content, directly causing antifungal resistance. Additionaly, MSP-8 deficiency induces cell wall remodeling, and decreases intracellular ROS levels, further contributing to resistance. The findings reveal a novel multidrug resistance mechanism independent of changes in drug target or efflux pump, while MSP-8 deficiency suppresses protein translation, thereby facilitating the development of resistance with fitness cost. This study provides the first evidence that MSP-8 participates in protein translation and that translation suppression can cause multidrug resistance in fungi, offering new insights into resistance mechanisms in clinical and environmental fungal strains.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- National Institute for Radiological ProtectionChina CDCBeijing100088China
| | - Pengju Yu
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chengcheng Hu
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wenxia Fang
- Institute of Biological Sciences and TechnologyGuangxi Academy of SciencesNanningGuangxi530007China
| | - Cheng Jin
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shaojie Li
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xianyun Sun
- State Key Laboratory of MycologyInstitute of MicrobiologyChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
2
|
Zhao R, Suo X, Meng X, Wang Y, Dai P, Hu T, Cao K, Wang S, Li B. Global Analysis of microRNA-like RNAs Reveals Differential Regulation of Pathogenicity and Development in Fusarium oxysporum HS2 Causing Apple Replant Disease. J Fungi (Basel) 2024; 10:883. [PMID: 39728379 DOI: 10.3390/jof10120883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024] Open
Abstract
This study investigated the expression profiles of microRNA-like RNAs (milRNAs) in Fusarium oxysporum HS2 (FoHS2), a key pathogen causing Apple replant disease (ARD), across spore to mycelium formation stages. Using small RNA sequencing (sRNA-seq) and bioinformatics, we identified and analyzed milRNAs, revealing their targeting of 2364 mRNAs involved in 20 functional categories, including metabolic and cellular processes, based on gene ontology (GO) analysis. An analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that these mRNAs are related to carbohydrate and amino acid metabolism pathways. Notably, the highest number of differentially or specifically expressed milRNAs (DEmilRNAs/SEmilRNAs) was found during the spore stage, with FoHS2-milR19 targeting genes encoding histone acetyltransferases, methyltransferases, and cell wall-degrading enzymes (CWDEs), which are crucial for growth, development, and pathogenicity. We validated the reliability of our sRNA-seq data and the expression of target genes using stem-loop RT-PCR and qRT-PCR. Our results highlight the stage-specific expression of milRNAs in FoHS2, particularly in the spore stage, suggesting a key role in regulating host life activities and providing a theoretical basis for developing RNA-based pesticides to control ARD.
Collapse
Affiliation(s)
- Ruxin Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Xiangmin Suo
- Shijiazhuang Institute of Fruit, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Xianglong Meng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Yanan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Pengbo Dai
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Tongle Hu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Keqiang Cao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Shutong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Bo Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
- Institute of Agricultural Information and Economics, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| |
Collapse
|
3
|
Víglaš J, Olejníková P. Antifungal azoles trigger a xenobiotic detoxification pathway and chitin synthesis in Neurospora crassa. Res Microbiol 2023:104055. [PMID: 36963554 DOI: 10.1016/j.resmic.2023.104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
The presence of antifungal drugs is prompting the fungal microorganisms to react by mechanisms broader than the resistance. The fungi evolved mechanisms, by which they respond to various stress conditions, including the presence of antifungal compounds. In this work, we studied the response of model filamentous fungus Neurospora crassa to azole antifungals in the broader context of the adaptation mechanisms. We demonstrated the increase in expression of filamentous fungi-specific genes encoding cytochrome enzymes of CYP65 clan and plasma membrane-localized ABCC transporters. Azoles appear not to conjugate with glutathione. Surprisingly, the azoles caused changes in the hyphae organization and the amount of chitin in cell wall by the same manner that was thought to be echinocandin-specific. The response to individual azoles appeared to be influenced by the structure of azole compound (prochloraz - main outlier). Taken together, these findings demonstrate the importance of study of stress response mechanisms, specifically in filamentous fungi. Many aspects of the reaction within azoles seem to be similar, though specificities are occurring.
Collapse
Affiliation(s)
- Ján Víglaš
- Institute of Biochemistry and Microbiology, Faculty of Food and Chemical Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia.
| | - Petra Olejníková
- Institute of Biochemistry and Microbiology, Faculty of Food and Chemical Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237 Bratislava, Slovakia.
| |
Collapse
|
4
|
Coordinated Regulation of Membrane Homeostasis and Drug Accumulation by Novel Kinase STK-17 in Response to Antifungal Azole Treatment. Microbiol Spectr 2022; 10:e0012722. [PMID: 35196787 PMCID: PMC8865411 DOI: 10.1128/spectrum.00127-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The emergence of antifungal resistance, especially to the most widely used azole class of ergosterol biosynthesis inhibitors, makes fungal infections difficult to treat in clinics and agriculture. When exposed to azoles, fungi can make adaptive responses to alleviate azole toxicity and produce azole tolerance. However, except for azole efflux pumps and ergosterol biosynthesis genes, the role of most azole responsive genes in azole resistance is unknown. In this study, STK-17, whose transcription is upregulated by azoles, was characterized as a novel kinase that is required for azole resistance. Deletion or dysfunction of STK-17 led to azole hypersensitivity in Neurospora crassa and to other ergosterol biosynthesis inhibitors such as amorolfine, terbinafine, and amphotericin B, but not fatty acid and ceramide biosynthesis inhibitors. STK-17 was also required for oxidative stress resistance, but this was not connected to azole resistance. RNA-seq results showed that stk-17 deletion affected the basal expression and the response to ketoconazole of some membrane protein genes, indicating functional association of STK-17 with the membrane. Notably, deletion of stk-17 affected the normal response to azoles of erg genes, including the azole target-encoding gene erg11, and erg2, erg6, and erg24, and led to abnormal accumulation of sterols in the presence of azoles. HPLC-MS/MS analysis revealed increased intracellular azole accumulation in the stk-17 mutant, possibly due to enhanced azole influx and reduced azole efflux that was independent of the major efflux pump CDR4. Importantly, STK-17 was widely distributed and functionally conserved among fungi, thus providing a potential antifungal target. IMPORTANCE Antifungal resistance is increasing worldwide, especially to the most widely used azole class of ergosterol biosynthesis inhibitors, making control of fungal infections more challenging. A lot of effort has been expended in elucidating the mechanism of azole resistance and revealing potential antifungal targets. In this study, by analyzing azole-responsive genes in Neurospora crassa, we discovered STK-17, a novel kinase, that is required for azole resistance in several types of fungi. It has a role in regulating membrane homeostasis, responses to azole by ergosterol biosynthesis genes and azole accumulation, thus, deepening our understanding on the mechanism of azole stress response. Additionally, STK-17 is conserved among fungi and plays important roles in fungal development and stress resistance. Kinase inhibitors are broadly used for treating diseases, and our study pinpoints a potential drug target for antifungal development.
Collapse
|
5
|
Experimental Evolution of Multidrug Resistance in Neurospora crassa under Antifungal Azole Stress. J Fungi (Basel) 2022; 8:jof8020198. [PMID: 35205952 PMCID: PMC8875772 DOI: 10.3390/jof8020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Abstract
Multidrug resistance, defined as the resistance to multiple drugs in different categories, has been an increasing serious problem. Limited antifungal drugs and the rapid emergence of antifungal resistance prompt a thorough understanding of how the occurrence of multidrug resistance develops and which mechanisms are involved. In this study, experimental evolution was performed under single-azole-drug stress with the model filamentous fungus Neurospora crassa. By about 30 weeks of continuous growth on agar plates containing ketoconazole or voriconazole with weekly transfer, four evolved multidrug-resistant strains 30thK1, 30thK2, 26thV1, and 24thV2 were obtained. Compared to the ancestral strain, all four strains increased resistance not only to commonly used azoles, including ketoconazole, voriconazole, itraconazole, fluconazole, and triadimefon, but also to antifungal drugs in other categories, including terbinafine (allylamine), amorolfine (morpholine), amphotericin B (polyene), polyoxin B (chitin synthesis inhibitor), and carbendazim (β-tubulin inhibitor). After 8 weeks of growth on agar plates without antifungal drugs with weekly transfer, these evolved strains still displayed multidrug-resistant phenotype, suggesting the multidrug resistance could be stably inherited. Transcriptional measurement of drug target genes and drug transporter genes and deletion analysis of the efflux pump gene cdr4 in the evolved strains suggest that overexpression of cdr4 played a major role in the resistance mechanisms for azoles and terbinafine in the evolved strains, particularly for 30thK2 and 26thV1, and evolved drug-resistant strains had less intracellular ketoconazole accumulation and less disruption of ergosterol accumulations under ketoconazole stress compared to wild type. Mutations specifically present in evolved drug-resistant strains were identified by genome re-sequencing, and drug susceptibility test of knockout mutants for most of mutated genes suggests that mutations in 16 genes, functionally novel in drug resistance, potentially contribute to multidrug resistance in evolved strains.
Collapse
|
6
|
Fungal Zn(II) 2Cys 6 Transcription Factor ADS-1 Regulates Drug Efflux and Ergosterol Metabolism under Antifungal Azole Stress. Antimicrob Agents Chemother 2021; 65:AAC.01316-20. [PMID: 33199382 DOI: 10.1128/aac.01316-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/07/2020] [Indexed: 11/20/2022] Open
Abstract
Antifungal azoles are the most widely used antifungal drugs in clinical and agricultural practice. Fungi can mount adaptive responses to azole stress by modifying the transcript levels of many genes, and the responsive mechanisms to azoles are the basis for fungi to develop azole resistance. In this study, we identified a new Zn(II)2Cys6 transcription factor, ADS-1, with a positive regulatory function in transcriptional responses to azole stress in the model filamentous fungal species Neurospora crassa Under ketoconazole (KTC) stress, the ads-1 transcript level was significantly increased in N. crassa Deletion of ads-1 increased susceptibility to different azoles, while its overexpression increased resistance to these azoles. The cdr4 gene, which encodes the key azole efflux pump, was positively regulated by ADS-1. Deletion of ads-1 reduced the transcriptional response by cdr4 to KTC stress and increased cellular KTC accumulation under KTC stress, while ads-1 overexpression had the opposite effect. ADS-1 also positively regulated the transcriptional response by erg11, which encodes the azole target lanosterol 14α-demethylase for ergosterol biosynthesis, to KTC stress. After KTC treatment, the ads-1 deletion mutant had less ergosterol but accumulated more lanosterol than the wild type, while ads-1 overexpression had the opposite effect. Homologs of ADS-1 are widely present in filamentous fungal species of Ascomycota but not in yeasts. Deletion of the gene encoding an ADS-1 homolog in Aspergillus flavus also increased susceptibility to KTC and itraconazole (ITZ). Besides, deletion of A. flavus ads-1 (Afads-1) significantly reduced the transcriptional responses by genes encoding homologs of CDR4 and ERG11 in A. flavus to KTC stress, and the deletion mutant accumulated more KTC but less ergosterol. Taken together, these findings demonstrate that the function and regulatory mechanism of ADS-1 homologs among different fungal species in azole responses and the basal resistance of azoles are highly conserved.
Collapse
|
7
|
Two dominant selectable markers for genetic manipulation in Neurospora crassa. Curr Genet 2020; 66:835-847. [PMID: 32152733 DOI: 10.1007/s00294-020-01063-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/11/2022]
Abstract
Neurospora crassa is an excellent model fungus for studies on molecular genetics, biochemistry, physiology, and molecular cell biology. Along with the rapid progress of Neurospora research, new tools facilitating more efficient and accurate genetic analysis are in high demand. Here, we tested whether the dominant selective makers widely used in yeasts are applicable in N. crassa. Among them, we found that the strains of N. crassa are sensitive to the aminoglycoside antibiotics, G418 and nourseothricin. 1000 μg/mL of G418 or 50 μg/mL of nourseothricin is sufficient to inhibit Neurospora growth completely. When the neomycin phosphotransferase gene (neo) used in mammalian cells is expressed, N. crassa shows potent resistance to G418. This establishes G418-resistant marker as a dominant selectable marker to use in N. crassa. Similarly, when the nourseothricin acetyltransferase gene (nat) from Streptomyces noursei is induced by qa-2 promoter in the presence of quinic acid (QA), N. crassa shows potent resistance to nourseothricin. When nat is constitutively expressed by full-length or truncated versions of the promoter from the N. crassa cfp gene (NCU02193), or by the trpC promoter of Aspergillus nidulans, the growth of N. crassa in the presence of nourseothricin is proportional to the expression levels of Nat. Finally, these two markers are used to knock-out wc-2 or al-1 gene from the N. crassa genome. The successful development of these two markers in this study expands the toolbox for N. crassa and very likely for other filamentous fungi as well.
Collapse
|
8
|
Slee JA, Levine TP. Systematic prediction of FFAT motifs across eukaryote proteomes identifies nucleolar and eisosome proteins with the predicted capacity to form bridges to the endoplasmic reticulum. ACTA ACUST UNITED AC 2019; 2:1-21. [PMID: 31777772 DOI: 10.1177/2515256419883136] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER), the most pervasive organelle, exchanges information and material with many other organelles, but the extent of its inter-organelle connections and the proteins that form bridges are not well known. The integral ER membrane protein VAMP-associated protein (VAP) is found in multiple bridges, interacting with many proteins that contain a short linear motif consisting of "two phenylalanines in an acidic tract" (FFAT). The VAP-FFAT interaction is the most common mechanism by which cytoplasmic proteins, particularly inter-organelle bridges, target the ER. Therefore, predicting new FFAT motifs may both find new individual peripheral ER proteins and identify new routes of communication involving the ER. Here we searched for FFAT motifs across whole proteomes. The excess of eukaryotic proteins with FFAT motifs over background was ≥0.8%, suggesting this is the minimum number of peripheral ER proteins. In yeast, where VAP was previously known to bind 4 proteins with FFAT motifs, a detailed analysis of a subset of proteins predicted 20 FFAT motifs. Extrapolating these findings to the whole proteome estimated the number of FFAT motifs in yeast at approximately 50-55 (0.9% of proteome). Among these previously unstudied FFAT motifs, most have known functions outside the ER, so could be involved in inter-organelle communication. Many of these can target well-characterised membrane contact sites, however some are in nucleoli and eisosomes, organelles previously unknown to have molecular bridges to the ER. We speculate that the nucleolar and eisosomal proteins with predicted motifs may function while bridging to the ER, indicating novel ER-nucleolus and ER-eisosome routes of inter-organelle communication.
Collapse
Affiliation(s)
| | - Timothy P Levine
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| |
Collapse
|
9
|
Characterization of the promoter, downstream target genes and recognition DNA sequence of Mhy1, a key filamentation-promoting transcription factor in the dimorphic yeast Yarrowia lipolytica. Curr Genet 2019; 66:245-261. [DOI: 10.1007/s00294-019-01018-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/03/2019] [Accepted: 07/13/2019] [Indexed: 12/15/2022]
|