1
|
Alarjani WMA, Mohammed MEA. Antioxidant activities of Saudi honey samples related to their content of short peptides. Sci Rep 2024; 14:24318. [PMID: 39414854 PMCID: PMC11484816 DOI: 10.1038/s41598-024-74824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
This study explored the effect of geographical and floral origins on the antioxidant activities of Saudi honey samples related to their content of short peptides originated from honeybee proteins. The studied antioxidants were the total protein concentration, catalase activity, phenolic acids and flavonoids. The antioxidant activity assays included were the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, the ferric reducing antioxidant power (FRAP) assay and Ascorbic acid Equivalent Antioxidant Capacity (AEAC). The studied honey samples were obtained from the southwestern region of Saudi Arabia, namely Asir (65) and Jazan (25). The floral origins of the honey samples were Acacia (51), Ziziphus (4) and polyfloral (35). The LC/MS technique was used to detect the short peptides and the mascot database was used to identify the short peptides, their precursor proteins and the protease enzymes that produce them. Jazan honey was characterized by high number of short peptides. The short peptides were originated from honeybee proteins by the action of proteases from the honeybees and bacteria. The antioxidant activity of the honey samples increase with the increase of their content of short peptides and proteins. The amino acids type and sequence of the short peptides qualify them to act as antioxidant, antimicrobial, anti-diabetic, anti-hypertension, immunomodulatory and cholesterol lowering peptides.
Collapse
Affiliation(s)
- Wed Mohammed Ali Alarjani
- Department of Chemistry - Preparatory Year Program, Batterjee Medical College, Aseer, 62451, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
2
|
Li D, Liu L, Liu ZL, Tian Y, Gao X, Cheng TY. What are the main proteins in the hemolymph of Haemaphysalis flava ticks? Front Vet Sci 2024; 11:1387719. [PMID: 39086760 PMCID: PMC11289883 DOI: 10.3389/fvets.2024.1387719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Background Haemaphysalis flava is a notorious parasite for humans and animals worldwide. The organs of H. flava are bathed in hemolymph, which is a freely circulating fluid. Nutrients, immune factors, and waste can be transported to any part of the body via hemolymph. The main soluble components in hemolymph are proteins. However, knowledge of the H. flava proteome is limited. Methods The hemolymph was collected from fully engorged H. flava ticks by leg amputation. Hemolymph proteins were examined by both blue native polyacrylamide gel electrophoresis (BN-PAGE) and sodium dodecyl sulfate PAGE (SDS-PAGE). Proteins extracted from the gels were further identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results Two bands (380 and 520 kDa) were separated from tick hemolymph by BN-PAGE and were further separated into four bands (105, 120, 130, and 360 kDa) by SDS-PAGE. LC-MS/MS revealed that seven tick proteins and 13 host proteins were present in the four bands. These tick proteins mainly belonged to the vitellogenin (Vg) family and the α-macroglobulin family members. In silico structural analysis showed that these Vg family members all had common conserved domains, including the N-terminus lipid binding domain (LPD-N), the C-terminus von Willebrand type D domain (vWD), and the domain of unknown function (DUF). Additionally, two of the Vg family proteins were determined to belong to the carrier protein (CP) by analyzing the unique N-terminal amino acid sequences and the cleaving sites. Conclusion These findings suggest that the Vg family proteins and α-macroglobulin are the primary constituents of the hemolymph in the form of protein complexes. Our results provide a valuable resource for further functional investigations of H. flava hemolymph effectors and may be useful in tick management.
Collapse
Affiliation(s)
| | | | | | | | | | - Tian-yin Cheng
- Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
3
|
Degl'Innocenti A, Braccia C, Genchi GG, di Leo N, Leoncino L, Catalano F, Armirotti A, Ciofani G. Proteome Alterations and Nucleosome Activation in Rat Myoblasts Treated with Cerium Oxide Nanoparticles. ACS OMEGA 2024; 9:29226-29233. [PMID: 39005815 PMCID: PMC11238203 DOI: 10.1021/acsomega.3c09715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Oxidative stress is a widespread causative agent of disease. Together with its general relevance for biomedicine, such a dynamic is recognizably detrimental to space exploration. Among other solutions, cerium oxide nanoparticles (or nanoceria, NC) display a long-lasting, self-renewable antioxidant activity. In a previous experiment, we evaluated oxidative imbalance in rat myoblasts in space, aboard the International Space Station, and unveiled possible protective effects from NC through RNA sequencing. Here, we focus on the myoblast response to NC on land by means of proteomics, defining a list of proteins that putatively react to NC and confirming nucleosomes/histones as likely mediators of its molecular action. The proteomics data set we present here and its counterpart from the space study share four factors. These are coherently either up- (Hist1h4b) or down-regulated (Gnl3, Mtdh, Trip12) upon NC exposure.
Collapse
Affiliation(s)
- Andrea Degl'Innocenti
- Smart Bio-Interfaces, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy
- Department of Medical Biotechnologies, Polyclinic Hospital Santa Maria alle Scotte, Università degli Studi di Siena, Viale Mario Bracci 2, Siena 53100, Italy
| | - Clarissa Braccia
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Giada Graziana Genchi
- Smart Bio-Interfaces, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy
- Department of Biosciences, Biotechnologies and Biopharmaceutics, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, Bari 70125, Italy
| | - Nicoletta di Leo
- Smart Bio-Interfaces, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy
| | - Luca Leoncino
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Federico Catalano
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Center for Materials Interfaces, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, Pontedera, Pisa 56025, Italy
| |
Collapse
|
4
|
Sánchez-Chapul L, Santamaría A, Aschner M, Ke T, Tinkov AA, Túnez I, Osorio-Rico L, Galván-Arzate S, Rangel-López E. Thallium-induced DNA damage, genetic, and epigenetic alterations. Front Genet 2023; 14:1168713. [PMID: 37152998 PMCID: PMC10157259 DOI: 10.3389/fgene.2023.1168713] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Thallium (Tl) is a toxic heavy metal responsible for noxious effects in living organisms. As a pollutant, Tl can be found in the environment at high concentrations, especially in industrial areas. Systemic toxicity induced by this toxic metal can affect cell metabolism, including redox alterations, mitochondrial dysfunction, and activation of apoptotic signaling pathways. Recent focus on Tl toxicity has been devoted to the characterization of its effects at the nuclear level, with emphasis on DNA, which, in turn, may be responsible for cytogenetic damage, mutations, and epigenetic changes. In this work, we review and discuss past and recent evidence on the toxic effects of Tl at the systemic level and its effects on DNA. We also address Tl's role in cancer and its control.
Collapse
Affiliation(s)
- Laura Sánchez-Chapul
- Laboratorio de Enfermedades Neuromusculares, División de Neurociencias Clínicas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Alexey A. Tinkov
- Yaroslavl State University, Medical University (Sechenov University), Moscow, Russia
| | - Isaac Túnez
- Instituto de Investigaciones Biomédicas Maimonides de Córdoba, Departamento de Bioquímica Y Biología Molecular, Facultad de Medicina Y Enfermería, Red Española de Excelencia en Estimulación Cerebral (REDESTIM), Universidad de, Córdoba, Spain
| | - Laura Osorio-Rico
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Sonia Galván-Arzate
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Edgar Rangel-López
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| |
Collapse
|
5
|
Norton C, Clarke D, Holmstrom J, Stirland I, Reynolds PR, Jenkins TG, Arroyo JA. Altered Epigenetic Profiles in the Placenta of Preeclamptic and Intrauterine Growth Restriction Patients. Cells 2023; 12:1130. [PMID: 37190039 PMCID: PMC10136447 DOI: 10.3390/cells12081130] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/30/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Intrauterine growth restriction (IUGR) and preeclampsia (PE) are placental pathologies known to complicate pregnancy and cause neonatal disorders. To date, there is a limited number of studies on the genetic similarity of these conditions. DNA methylation is a heritable epigenetic process that can regulate placental development. Our objective was to identify methylation patterns in placental DNA from normal, PE and IUGR-affected pregnancies. DNA was extracted, and bisulfite was converted, prior to being hybridized for the methylation array. Methylation data were SWAN normalized and differently methylated regions were identified using applications within the USEQ program. UCSC's Genome browser and Stanford's GREAT analysis were used to identify gene promoters. The commonality among affected genes was confirmed by Western blot. We observed nine significantly hypomethylated regions, two being significantly hypomethylated for both PE and IGUR. Western blot confirmed differential protein expression of commonly regulated genes. We conclude that despite the uniqueness of methylation profiles for PE and IUGR, the similarity of some methylation alterations in pathologies could explain the clinical similarities observed with these obstetric complications. These results also provide insight into the genetic similarity between PE and IUGR and suggest possible gene candidates plausibly involved in the onset of both conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juan A. Arroyo
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
6
|
Screening and analysis of immune-related genes of Aedes aegypti infected with DENV2. Acta Trop 2022; 236:106698. [PMID: 36162456 DOI: 10.1016/j.actatropica.2022.106698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 01/08/2023]
Abstract
Dengue virus type Ⅱ (DENV2) is a primary serotype responsible for the dengue fever epidemic, and Aedes aegypti is the main DENV2 vector. Understanding the Aedes aegypti immune mechanism against DENV2 is the basis for research on immune blockade in mosquitoes. Some preliminary studies lack validation in the literature, so this study was performed to further study and validate the potential target genes to provide a further basis for screening key target genes. We screened 51 genes possibly related to Aedes aegypti infection and immunity from the literature for further verification. First, bioinformatic methods such as GO, KEGG and PPI analysis were used, and then RT-qPCR was used to detect the changes in mRNA expression in the midguts and salivary glands of Aedes aegypti infected with DENV2.Bioinformatic analysis showed that mostly genes of the glucose metabolism pathway and myoprotein were influenced. In salivary glands, the Gst (xa) and Toll (xb) expression levels were significantly correlated with DENV2 load (y, lg[DENV2 RNA copies]), y = -3436xa+0.2287xb+3.8194 (adjusted R2 = 0.5563, F = 9.148, PF = 0.0045). In midguts, DENV2 load was significantly correlated with the relative Fba(R2 = 0.4381, t = 2.497, p < 0.05, df = 8), UcCr(R2 = 0.4072, t = 2.344, p < 0.05, df = 8) and Gbps1(R2 = 0.4678, t = 2.652, p < 0.05, df = 8) expression levels, but multiple regression did not yield significant results. This study shows that genes related to glucose metabolism and muscle proteins contribute to the interaction between Aedes aegypti and dengue virus. It was confirmed that SAAG-4, histone H4, endoplasmin, catalase and other genes are involved in the regulation of DENV2 infection in Aedes aegypti. It was revealed that GST and Toll in salivary glands may have antagonistic effects on the regulation of DENV2 load. Fba, UcCr and Gbps1 in the midgut may increase DENV2 load. These study results further condensed the potential target gene range of the Aedes aegypti immune mechanism against DENV2 infection and provided basic information for research on the Aedes aegypti in vivo blockade strategy against DENV2.
Collapse
|
7
|
Reardon RM, Walsh AK, Larsen CI, Schmidberger LH, Morrow LA, Thompson AE, Wellik IM, Thompson JS. An epigenetically inherited UV hyper-resistance phenotype in Saccharomyces cerevisiae. Epigenetics Chromatin 2022; 15:31. [PMID: 35986361 PMCID: PMC9392361 DOI: 10.1186/s13072-022-00464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background Epigenetics refers to inheritable phenotypic changes that occur in the absence of genetic alteration. Such adaptations can provide phenotypic plasticity in reaction to environmental cues. While prior studies suggest that epigenetics plays a role in the response to DNA damage, no direct demonstration of epigenetically inheritable processes have been described in this context. Results Here we report the identification of an epigenetic response to ultraviolet (UV) radiation in the baker’s yeast Saccharomyces cerevisiae. Cells that have been previously exposed to a low dosage of UV exhibit dramatically increased survival following subsequent UV exposure, which we refer to as UV hyper-resistance (UVHR). This phenotypic change persists for multiple mitotic generations, without any indication of an underlying genetic basis. Pre-exposed cells experience a notable reduction in the amount of DNA damage caused by the secondary UV exposure. While the mechanism for the protection is not fully characterized, our results suggest that UV-induced cell size increases and/or cell wall changes are contributing factors. In addition, we have identified two histone modifications, H3K56 acetylation and H3K4 methylation, that are important for UVHR, potentially serving as mediators of UV protective gene expression patterns, as well as epigenetic marks to propagate the phenotype across cell generations. Conclusions Exposure to UV radiation triggers an epigenetically inheritable protective response in baker’s yeast that increases the likelihood of survival in response to subsequent UV exposures. These studies provide the first demonstration of an epigenetically inheritable dimension of the cellular response to DNA damage. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00464-5.
Collapse
|
8
|
Maglioco A, Agüero FA, Valacco MP, Valdez AJ, Paulino M, Fuchs AG. Characterization of the B-Cell Epitopes of Echinococcus granulosus Histones H4 and H2A Recognized by Sera From Patients With Liver Cysts. Front Cell Infect Microbiol 2022; 12:901994. [PMID: 35770070 PMCID: PMC9234146 DOI: 10.3389/fcimb.2022.901994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic echinococcosis (CE) is a zoonotic disease worldwide distributed, caused by the cestode Echinococcus granulosus sensu lato (E. granulosus), with an incidence rate of 50/100,000 person/year and a high prevalence in humans of 5-10%. Serology has variable sensitivity and specificity and low predictive values. Antigens used are from the hydatid fluid and recombinant antigens have not demonstrated superiority over hydatid fluid. A cell line called EGPE was obtained from E. granulosus sensu lato G1 strain from bovine liver. Serum from CE patients recognizes protein extracts from EGPE cells with higher sensitivity than protein extracts from hydatid fluid. In the present study, EGPE cell protein extracts and supernatants from cell colonies were eluted from a protein G affinity column performed with sera from 11 CE patients. LC-MS/MS proteomic analysis of the eluted proteins identified four E. granulosus histones: one histone H4 in the cell extract and supernatant, one histone H2A only in the cell extract, and two histones H2A only in the supernatant. This differential distribution of histones could reflect different parasite viability stages regarding their role in gene transcription and silencing and could interact with host cells. Bioinformatics tools characterized the linear and conformational epitopes involved in antibody recognition. The three-dimensional structure of each histone was obtained by molecular modeling and validated by molecular dynamics simulation and PCR confirmed the presence of the epitopes in the parasite genome. The three histones H2A were very different and had a less conserved sequence than the histone H4. Comparison of the histones of E. granulosus with those of other organisms showed exclusive regions for E. granulosus. Since histones play a role in the host-parasite relationship they could be good candidates to improve the predictive value of serology in CE.
Collapse
Affiliation(s)
- Andrea Maglioco
- Universidad Abierta Interamericana (UAI), Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Facundo A. Agüero
- Universidad Abierta Interamericana (UAI), Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Pía Valacco
- Centro de Estudios Químicos y Biológicos por Espectrometría de Masas (CEQUIBIEM), Instituto de Química Biológica Ciencias Exactas y Naturales- Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Facultad de Ciencias Exactas y Naturales- Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Alejandra Juárez Valdez
- Universidad Abierta Interamericana (UAI), Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Buenos Aires, Argentina
| | - Margot Paulino
- Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones, Facultad de Química, Bioinformatica DETEMA- Udelar, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Margot Paulino, ; Alicia G. Fuchs,
| | - Alicia G. Fuchs
- Universidad Abierta Interamericana (UAI), Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS), Buenos Aires, Argentina
- Instituto Nacional de Parasitología “Dr Mario Fatala- Chaben”, (Administración Nacional de Laboratorios e Institutos de Salud )ANLIS‐Malbrán, Buenos Aires, Argentina
- *Correspondence: Margot Paulino, ; Alicia G. Fuchs,
| |
Collapse
|
9
|
Cheng P, Zhang Z, Yang F, Cai S, Wang L, Wang C, Wang M, Liu Y, Fei C, Zhang L, Xue F, Gu F. FnCas12a/crRNA-Mediated Genome Editing in Eimeria tenella. Front Genet 2021; 12:738746. [PMID: 34630528 PMCID: PMC8494306 DOI: 10.3389/fgene.2021.738746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
Eimeria species are intracellular parasites residing inside the intestinal epithelial cell, which cause poultry coccidiosis and result in significant financial losses in the poultry industry. Genome editing of Eimeria is of immense importance for the development of vaccines and drugs. CRISPR/Cas9 has been utilized for manipulating the genome of Eimeria tenella (E. tenella). Ectopic expression of Cas9, i.e., via plasmids, would introduce transgene, which substantially limits its application, especially for vaccine development. In this study, we initially optimized the condition of the transfection protocol. We demonstrated that with the optimized condition, the transfection of FnCas12a (also known as "FnCpf1") protein and crRNA targeting EtHistone H4 triggered DNA double-strand breaks in vivo. We then used this strategy to knock-in a coding cassette for an enhanced yellow fluorescent protein (EYFP) and dihydrofolate reductase-thymidylate synthase gene (DHFR) as a selection marker to tag endogenous EtActin. The engineered E. tenella parasite possesses EYFP expression in its entire life cycle. Our results demonstrated that FnCas12a could trigger genome editing in E. tenella, which augments the applicability of the dissection of gene function and the development of anticoccidial drugs and vaccines for Eimeria species.
Collapse
Affiliation(s)
- Peipei Cheng
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhihao Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Fayu Yang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shuo Cai
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lina Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chunmei Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingchun Liu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chenzhong Fei
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lifang Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Feiqun Xue
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Feng Gu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
10
|
Sano T, Sun X, Feng Y, Liu S, Hase M, Fan Y, Zha R, Wu D, Aryal UK, Li BY, Sudo A, Yokota H. Inhibition of the Growth of Breast Cancer-Associated Brain Tumors by the Osteocyte-Derived Conditioned Medium. Cancers (Basel) 2021; 13:1061. [PMID: 33802279 PMCID: PMC7959137 DOI: 10.3390/cancers13051061] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
The brain is a common site of metastasis from advanced breast cancer but few effective treatments are available. We examined a therapeutic option with a conditioned medium (CM), focusing on the role of Lrp5 and β-catenin in Wnt signaling, and IL1ra in osteocytes. Osteocytes presented the innate anti-tumor effect and the overexpression of the above genes strengthened their action. In a mouse model, the injection of their CM inhibited mammary tumors and tumor-driven osteolysis. Importantly, Lrp5- and/or IL1ra-overexpressing osteocytes or the local administration of β-catenin-overexpressing CM markedly inhibited brain tumors. In the transport analysis, tumor-suppressing factors in CM were shown to diffuse through the skull. Mechanistically, the CM with overexpression of the above genes downregulated oncogenic genes such as MMP9, Runx2, TGFβ, and Snail in breast cancer cells. Also, the CM with β-catenin overexpression downregulated CXCL1 and CXCL5 and upregulated tumor suppressors such as LIMA1, DSP, p53, and TRAIL in breast cancer cells. Notably, whole-genome proteomics revealed that histone H4 was enriched in CM and acted as an atypical tumor suppressor. Lrp5-overexpressing MSCs were also shown to act as anti-tumor agents. Collectively, this study demonstrated the therapeutic role of engineered CM in brain tumors and the tumor-suppressing action of extracellular histone H4. The result sheds light on the potential CM-based therapy for breast cancer-associated brain metastases in a minimally invasive manner.
Collapse
Affiliation(s)
- Tomohiko Sano
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (T.S.); (X.S.); (Y.F.); (S.L.); (M.H.); (Y.F.); (R.Z.); (D.W.)
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Edobashi Tsu 2-174, Japan;
| | - Xun Sun
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (T.S.); (X.S.); (Y.F.); (S.L.); (M.H.); (Y.F.); (R.Z.); (D.W.)
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China;
| | - Yan Feng
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (T.S.); (X.S.); (Y.F.); (S.L.); (M.H.); (Y.F.); (R.Z.); (D.W.)
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China;
| | - Shengzhi Liu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (T.S.); (X.S.); (Y.F.); (S.L.); (M.H.); (Y.F.); (R.Z.); (D.W.)
| | - Misato Hase
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (T.S.); (X.S.); (Y.F.); (S.L.); (M.H.); (Y.F.); (R.Z.); (D.W.)
- Graduate School of Engineering, Mie University, Edobashi Tsu 2-174, Japan
| | - Yao Fan
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (T.S.); (X.S.); (Y.F.); (S.L.); (M.H.); (Y.F.); (R.Z.); (D.W.)
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China;
| | - Rongrong Zha
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (T.S.); (X.S.); (Y.F.); (S.L.); (M.H.); (Y.F.); (R.Z.); (D.W.)
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China;
| | - Di Wu
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (T.S.); (X.S.); (Y.F.); (S.L.); (M.H.); (Y.F.); (R.Z.); (D.W.)
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China;
| | - Uma K. Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA;
| | - Bai-Yan Li
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China;
| | - Akihiro Sudo
- Department of Orthopedic Surgery, Mie University Graduate School of Medicine, Edobashi Tsu 2-174, Japan;
| | - Hiroki Yokota
- Department of Biomedical Engineering, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA; (T.S.); (X.S.); (Y.F.); (S.L.); (M.H.); (Y.F.); (R.Z.); (D.W.)
- Department of Pharmacology, School of Pharmacy, Harbin Medical University, Harbin 150081, China;
- Simon Cancer Research Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|