1
|
Wei J, Zhang G, Lv H, Wang S, Liu X, Qi Y, Sun Z, Li C. Genome-wide identification of the P4ATPase gene family and its response to biotic and abiotic stress in soybean (Glycine max L.). BMC Genomics 2025; 26:277. [PMID: 40114086 PMCID: PMC11927284 DOI: 10.1186/s12864-025-11468-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Soybean is an important legume crop and has significant agricultural and economic value. P4-ATPases (aminophospholipid ATPases, ALAs), one of the classes of P-type ATPases, can transport or flip phospholipids across membranes, creating and maintaining lipid asymmetry and playing crucial roles in plant growth and development. To date, however, the ALA gene family and its expression patterns under abiotic and biotic stresses have not been studied in the soybean genome. RESULTS A total of 27 GmALA genes were identified in the soybean genome and these genes were unevenly distributed on 15 chromosomes and classified into five groups based on phylogenetic analysis. The GmALAs family had diverse intron-exon patterns and a highly conserved motif distribution. A total of eight domains were found in GmALAs, and all GmALAs had conserved PhoLip_ATPase_C, phosphorylation and transmembrane domains. Cis-acting elements in the promoter demonstrated that GmALAs are associated with cellular development, phytohormones, environmental stress and photoresponsiveness. Analysis of gene duplication events revealed 24 orthologous gene pairs in soybean and synteny analysis revealed that GmALAs had greater collinearity with AtALAs than with OsALAs. Evolutionary constraint analyses suggested that GmALAs have undergone strong selective pressure for purification during the evolution of soybeans. Tissue-specific expression profiles revealed that GmALAs were differentially expressed in roots, stems, seeds, flowers, nodules and leaves. The expression pattern of these genes appeared to be diverse in the different developmental tissues. Combined transcriptome and qRT-PCR data confirmed the differential expression of GmALAs under abiotic (dehydration, saline, low temperature, ozone, light, wounding and phytohormones) and biotic stresses (aphid, fungi, rhizobia and rust pathogen). CONCLUSION In summary, genome-wide identification and evolutionary and expression analyses of the GmALAs gene family in soybean were conducted. Our work provides an important theoretical basis for further understanding GmALAs in biological functional studies.
Collapse
Affiliation(s)
- Jingjing Wei
- School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, P. R. China
| | - Gaoyang Zhang
- School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, P. R. China.
| | - Huanhuan Lv
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
| | - Saidi Wang
- School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, P. R. China
| | - Xingyu Liu
- School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, P. R. China
| | - Yanli Qi
- School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, P. R. China
| | - Zhongke Sun
- School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, P. R. China
| | - Chengwei Li
- School of Biological Engineering, Henan University of Technology, No. 100 Lianhua Street, Zhengzhou High-Tech Development Zone, Zhengzhou, 450001, Henan, P. R. China.
| |
Collapse
|
2
|
Cordovado A, Hérenger Y, Cormier C, López-Martín E, Stamberger H, Faivre L, Denommé-Pichon AS, Vitobello A, Abdallah HH, Barcia G, Courtin T, Martínez-Delgado B, Bermejo-Sánchez E, Barrero MJ, Gasser B, Bezieau S, Küry S, Weckhuysen S, Laumonnier F, Toutain A, Vuillaume ML. Heterozygous Missense Variants in the ATPase Phospholipid Transporting 9A Gene, ATP9A, Alter Dendritic Spine Maturation and Cause Dominantly Inherited Nonsyndromic Intellectual Disability. Hum Mutat 2025; 2025:7085599. [PMID: 40226306 PMCID: PMC11987072 DOI: 10.1155/humu/7085599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 01/27/2025] [Indexed: 04/15/2025]
Abstract
Intellectual disability is a neurodevelopmental disorder, affecting 2%-3% of the population, with a genetic cause in the majority of cases. ATP9A (Online Mendelian Inheritance in Man (OMIM)∗609126, NM_006045.3) has recently been added to the list of candidate genes involved in this disorder with the identification of biallelic truncating variants in patients with a neurodevelopmental disorder. In this study, we propose a novel mode of inheritance for ATP9A-related disorders with the identification of five de novo heterozygous missense variants (p.(Thr393Arg), p.(Glu400Gln), p.(Lys461Glu), p.(Gly552Ala), and p.(His713Asp)), in patients with intellectual disability. In a patient with a similar phenotype, we also identified two truncating variants in ATP9A (p.(Arg145∗), p.(Glu901∗)), adding a novel family to the six already described in the literature with the recessive mode of inheritance. Functional studies were performed to assess the pathogenicity of these variants. Overexpression of four selected missense mutant forms of Atp9a in HeLa cells and in primary neuronal cultures led to a loss of mature dendritic spines. In HeLa cells, the endosomal localization of the protein encoded by three of these missense variants was preserved whereas the fourth remained blocked in the endoplasmic reticulum. To mimic the effect on neuronal morphology and spine density of nonsense variants, small hairpin RNAs (shRNAs) were used. They induced a decreased expression of ATP9A, affecting the neuronal arborization by decreasing the number of dendrites per neuron. Our results therefore demonstrate the pathogenicity of ATP9A heterozygous missense variants and confirm the role of ATP9A in neuronal maturation and in brain wiring during development. They strengthen the association of ATP9A with neurodevelopmental disorders and demonstrate that a double mode of inheritance should be considered for ATP9A-related disorders.
Collapse
Affiliation(s)
- Amélie Cordovado
- Imaging Brain and Neuropsychiatry, iBraiN U1253, INSERM, University of Tours, Tours, France
| | - Yvan Hérenger
- Genetica AG, Human Genetics and Genetic Counselling Unit, Zurich, Switzerland
| | - Coline Cormier
- Genetic Center, Rare Diseases Reference Center On Developmental Anomalies and Malformative Syndromes, FHU TRANSLAD, University Hospital, Dijon, France
| | - Estrella López-Martín
- Institute of Rare Disease Research, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Hannah Stamberger
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Laurence Faivre
- Genetic Center, Rare Diseases Reference Center On Developmental Anomalies and Malformative Syndromes, FHU TRANSLAD, University Hospital, Dijon, France
- INSERM, Unit 1231 GAD Team, Burgundy University, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- Genetic Center, Rare Diseases Reference Center On Developmental Anomalies and Malformative Syndromes, FHU TRANSLAD, University Hospital, Dijon, France
- INSERM, Unit 1231 GAD Team, Burgundy University, Dijon, France
- Medical Genomics Laboratory, FHU TRANSLAD, University Hospital, Dijon, France
| | - Antonio Vitobello
- INSERM, Unit 1231 GAD Team, Burgundy University, Dijon, France
- Medical Genomics Laboratory, FHU TRANSLAD, University Hospital, Dijon, France
| | - Hamza Hadj Abdallah
- Rare Diseases Genomic Medicine Department, Necker-Enfants Malades University Hospital, Paris, France
| | - Giulia Barcia
- Rare Diseases Genomic Medicine Department, Necker-Enfants Malades University Hospital, Paris, France
| | - Thomas Courtin
- Rare Diseases Genomic Medicine Department, Necker-Enfants Malades University Hospital, Paris, France
| | | | - Eva Bermejo-Sánchez
- Institute of Rare Disease Research, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María J. Barrero
- Institute of Rare Disease Research, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | | | - Stéphane Bezieau
- Medical Genetics Department, University Hospital, Nantes, France
- Thorax Institute Research Unit, INSERM, CNRS, Nantes University, Nantes, France
| | - Sébastien Küry
- Medical Genetics Department, University Hospital, Nantes, France
- Thorax Institute Research Unit, INSERM, CNRS, Nantes University, Nantes, France
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Frédéric Laumonnier
- Imaging Brain and Neuropsychiatry, iBraiN U1253, INSERM, University of Tours, Tours, France
- Genetics Department, University Hospital of Tours, Tours, France
| | - Annick Toutain
- Imaging Brain and Neuropsychiatry, iBraiN U1253, INSERM, University of Tours, Tours, France
- Genetics Department, University Hospital of Tours, Tours, France
| | - Marie-Laure Vuillaume
- Imaging Brain and Neuropsychiatry, iBraiN U1253, INSERM, University of Tours, Tours, France
- Genetics Department, University Hospital of Tours, Tours, France
| |
Collapse
|
3
|
Corbalan JJ, Frietze KK, Nickels J, Sturley SL. Arv1; a "Mover and Shaker" of Subcellular Lipids. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2025; 8:25152564251314601. [PMID: 39845563 PMCID: PMC11748065 DOI: 10.1177/25152564251314601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/24/2025]
Abstract
The composition of eukaryotic membranes reflects a varied but precise amalgam of lipids. The genetic underpinning of how such diversity is achieved or maintained is surprisingly obscure, despite its clear metabolic and pathophysiological impact. The Arv1 protein is represented in all eukaryotes and was initially identified in the model eukaryote Sacccharomyces cerevisiae as a candidate transporter of lipids from the endoplasmic reticulum. Human Arv1 has been shown to directly bind cholesterol and fatty acid affinity probes. Murine in vivo studies point to a role for ARV1 in regulating obesity, glucose tolerance, insulin sensitivity and brain function. Multiple human ARV1 variants have been associated with epileptic encephalopathy, cerebellar ataxia, and severe intellectual deficits. We hypothesize that Arv1 acts as an energy independent, lipid scramblase at the endoplasmic reticulum thereby modulating membrane lipid asymmetry and thus the trafficking of sterols and the substituents of glycosyl-phosphatidylinositol and sphingolipid biosynthesis.
Collapse
Affiliation(s)
- J. Jose Corbalan
- Institute of Metabolic Disorders, Genesis Biotechnology Group, 1000 Waterview Drive, Hamilton, NJ 08691, USA
| | - Karla K. Frietze
- Institute of Metabolic Disorders, Genesis Biotechnology Group, 1000 Waterview Drive, Hamilton, NJ 08691, USA
| | - Joseph Nickels
- Institute of Metabolic Disorders, Genesis Biotechnology Group, 1000 Waterview Drive, Hamilton, NJ 08691, USA
- Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Stephen L. Sturley
- Department of Biology, Barnard College at Columbia University, 3009 Broadway, New York, NY 10023, USA
| |
Collapse
|
4
|
Norris AC, Mansueto AJ, Jimenez M, Yazlovitskaya EM, Jain BK, Graham TR. Flipping the script: Advances in understanding how and why P4-ATPases flip lipid across membranes. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119700. [PMID: 38382846 DOI: 10.1016/j.bbamcr.2024.119700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
Type IV P-type ATPases (P4-ATPases) are a family of transmembrane enzymes that translocate lipid substrates from the outer to the inner leaflet of biological membranes and thus create an asymmetrical distribution of lipids within membranes. On the cellular level, this asymmetry is essential for maintaining the integrity and functionality of biological membranes, creating platforms for signaling events and facilitating vesicular trafficking. On the organismal level, this asymmetry has been shown to be important in maintaining blood homeostasis, liver metabolism, neural development, and the immune response. Indeed, dysregulation of P4-ATPases has been linked to several diseases; including anemia, cholestasis, neurological disease, and several cancers. This review will discuss the evolutionary transition of P4-ATPases from cation pumps to lipid flippases, the new lipid substrates that have been discovered, the significant advances that have been achieved in recent years regarding the structural mechanisms underlying the recognition and flipping of specific lipids across biological membranes, and the consequences of P4-ATPase dysfunction on cellular and physiological functions. Additionally, we emphasize the requirement for additional research to comprehensively understand the involvement of flippases in cellular physiology and disease and to explore their potential as targets for therapeutics in treating a variety of illnesses. The discussion in this review will primarily focus on the budding yeast, C. elegans, and mammalian P4-ATPases.
Collapse
Affiliation(s)
- Adriana C Norris
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Mariana Jimenez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Bhawik K Jain
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Villagrana R, López-Marqués RL. Plant P4-ATPase lipid flippases: How are they regulated? BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119599. [PMID: 37741575 DOI: 10.1016/j.bbamcr.2023.119599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
P4 ATPases are active membrane transporters that translocate lipids towards the cytosolic side of the biological membranes in eukaryotic cells. Due to their essential cellular functions, P4 ATPase activity is expected to be tightly controlled, but fundamental aspects of the regulation of plant P4 ATPases remain unstudied. In this mini-review, our knowledge of the regulatory mechanisms of yeast and mammalian P4 ATPases will be summarized, and sequence comparison and structural modelling will be used as a basis to discuss the putative regulation of the corresponding plant lipid transporters.
Collapse
Affiliation(s)
- Richard Villagrana
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Rosa Laura López-Marqués
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|
6
|
Basante-Bedoya MA, Bogliolo S, Garcia-Rodas R, Zaragoza O, Arkowitz RA, Bassilana M. Two distinct lipid transporters together regulate invasive filamentous growth in the human fungal pathogen Candida albicans. PLoS Genet 2022; 18:e1010549. [PMID: 36516161 PMCID: PMC9797089 DOI: 10.1371/journal.pgen.1010549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/28/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Flippases transport lipids across the membrane bilayer to generate and maintain asymmetry. The human fungal pathogen Candida albicans has 5 flippases, including Drs2, which is critical for filamentous growth and phosphatidylserine (PS) distribution. Furthermore, a drs2 deletion mutant is hypersensitive to the antifungal drug fluconazole and copper ions. We show here that such a flippase mutant also has an altered distribution of phosphatidylinositol 4-phosphate [PI(4)P] and ergosterol. Analyses of additional lipid transporters, i.e. the flippases Dnf1-3, and all the oxysterol binding protein (Osh) family lipid transfer proteins, i.e. Osh2-4 and Osh7, indicate that they are not critical for filamentous growth. However, deletion of Osh4 alone, which exchanges PI(4)P for sterol, in a drs2 mutant can bypass the requirement for this flippase in invasive filamentous growth. In addition, deletion of the lipid phosphatase Sac1, which dephosphorylates PI(4)P, in a drs2 mutant results in a synthetic growth defect, suggesting that Drs2 and Sac1 function in parallel pathways. Together, our results indicate that a balance between the activities of two putative lipid transporters regulates invasive filamentous growth, via PI(4)P. In contrast, deletion of OSH4 in drs2 does not restore growth on fluconazole, nor on papuamide A, a toxin that binds PS in the outer leaflet of the plasma membrane, suggesting that Drs2 has additional role(s) in plasma membrane organization, independent of Osh4. As we show that C. albicans Drs2 localizes to different structures, including the Spitzenkörper, we investigated if a specific localization of Drs2 is critical for different functions, using a synthetic physical interaction approach to restrict/stabilize Drs2 at the Spitzenkörper. Our results suggest that the localization of Drs2 at the plasma membrane is critical for C. albicans growth on fluconazole and papuamide A, but not for invasive filamentous growth.
Collapse
Affiliation(s)
| | | | - Rocio Garcia-Rodas
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
- Mycology Reference Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Health Institute Carlos III, Majadahonda, Madrid, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC-CB21/13/00105), Health Institute Carlos III, Madrid, Spain
| | | | - Martine Bassilana
- Université Côte d’Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
- * E-mail:
| |
Collapse
|
7
|
Yang Y, Niu Y, Chen T, Zhang H, Zhang J, Qian D, Bi M, Fan Y, An L, Xiang Y. The phospholipid flippase ALA3 regulates pollen tube growth and guidance in Arabidopsis. THE PLANT CELL 2022; 34:3718-3736. [PMID: 35861414 PMCID: PMC9516151 DOI: 10.1093/plcell/koac208] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Pollen tube guidance regulates the growth direction and ovule targeting of pollen tubes in pistils, which is crucial for the completion of sexual reproduction in flowering plants. The Arabidopsis (Arabidopsis thaliana) pollen-specific receptor kinase (PRK) family members PRK3 and PRK6 are specifically tip-localized and essential for pollen tube growth and guidance. However, the mechanisms controlling the polar localization of PRKs at the pollen tube tip are unclear. The Arabidopsis P4-ATPase ALA3 helps establish the polar localization of apical phosphatidylserine (PS) in pollen tubes. Here, we discovered that loss of ALA3 function caused pollen tube defects in growth and ovule targeting and significantly affected the polar localization pattern of PRK3 and PRK6. Both PRK3 and PRK6 contain two polybasic clusters in the intracellular juxtamembrane domain, and they bound to PS in vitro. PRK3 and PRK6 with polybasic cluster mutations showed reduced or abolished binding to PS and altered polar localization patterns, and they failed to effectively complement the pollen tube-related phenotypes of prk mutants. These results suggest that ALA3 influences the precise localization of PRK3, PRK6, and other PRKs by regulating the distribution of PS, which plays a key role in regulating pollen tube growth and guidance.
Collapse
Affiliation(s)
| | | | - Tao Chen
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongkai Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jingxia Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Mengmeng Bi
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yuemin Fan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | | |
Collapse
|
8
|
Yamazaki Y, Kono K. Clathrin-mediated trafficking of phospholipid flippases is required for local plasma membrane/cell wall damage repair in budding yeast. Biochem Biophys Res Commun 2022; 606:156-162. [DOI: 10.1016/j.bbrc.2022.03.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022]
|