1
|
Basu D, South PF. Design and Analysis of Native Photorespiration Gene Motifs of Promoter Untranslated Region Combinations Under Short Term Abiotic Stress Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:828729. [PMID: 35251099 PMCID: PMC8888687 DOI: 10.3389/fpls.2022.828729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/18/2022] [Indexed: 05/09/2023]
Abstract
Quantitative traits are rarely controlled by a single gene, thereby making multi-gene transformation an indispensable component of modern synthetic biology approaches. However, the shortage of unique gene regulatory elements (GREs) for the robust simultaneous expression of multiple nuclear transgenes is a major bottleneck that impedes the engineering of complex pathways in plants. In this study, we compared the transcriptional efficacies of a comprehensive list of well-documented promoter and untranslated region (UTR) sequences side by side. The strength of GREs was examined by a dual-luciferase assay in conjunction with transient expression in tobacco. In addition, we created suites of new GREs with higher transcriptional efficacies by combining the best performing promoter-UTR sequences. We also tested the impact of elevated temperature and high irradiance on the effectiveness of these GREs. While constitutive promoters ensure robust expression of transgenes, they lack spatiotemporal regulations exhibited by native promoters. Here, we present a proof-of-principle study on the characterization of synthetic promoters based on cis-regulatory elements of three key photorespiratory genes. This conserved biochemical process normally increases under elevated temperature, low CO2, and high irradiance stress conditions and results in ∼25% loss in fixed CO2. To select stress-responsive cis-regulatory elements involved in photorespiration, we analyzed promoters of two chloroplast transporters (AtPLGG1 and AtBASS6) and a key plastidial enzyme, AtPGLP using PlantPAN3.0 and AthaMap. Our results suggest that these motifs play a critical role for PLGG1, BASS6, and PGLP in mediating response to elevated temperature and high-intensity light stress. These findings will not only enable the advancement of metabolic and genetic engineering of photorespiration but will also be instrumental in related synthetic biology approaches.
Collapse
Affiliation(s)
| | - Paul F. South
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
2
|
Ren H, Xu Y, Zhao X, Zhang Y, Hussain J, Cui F, Qi G, Liu S. Optimization of Tissue Culturing and Genetic Transformation Protocol for Casuarina equisetifolia. FRONTIERS IN PLANT SCIENCE 2022; 12:784566. [PMID: 35126414 PMCID: PMC8814579 DOI: 10.3389/fpls.2021.784566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Casuarina equisetifolia is widely used in agroforestry plantations for soil stabilization, ecosystem rehabilitation, reclamation, and coastal protection. Moreover, C. equisetifolia has remarkable resistance to typhoons, desert, low soil fertility, drought, and salinity, but not cold. Therefore, it is significant to breed high-quality Casuarina varieties to improve the tolerance and adaptability to cold weather by molecular techniques. The establishment of a rapid and efficient callus induction and regeneration system via tissue culture is pre-requisite for the genetic transformation of C. equisetifolia, which is so far lacking. In this study, we reported an efficient and rapid regeneration system using stem segment explants, in which callus induction was found to be optimal in a basal medium supplemented with 0.1 mg⋅L-1 TDZ and 0.1 mg⋅L-1 NAA, and proliferation in a basal medium containing 0.1 mg⋅L-1 TDZ and 0.5 mg⋅L-1 6-BA. For bud regeneration and rooting, the preferred plant growth regulator (PGR) in basal medium was 0.5 mg⋅L-1 6-BA, and a combination of 0.02 mg⋅L-1 IBA and 0.4 mg⋅L-1 IAA, respectively. We also optimized genetic a transformation protocol using Agrobacterium tumefaciens harboring the binary vector pCAMBIA1301 with β-glucuronidase (GUS) as a reporter gene. Consequently, 5 mg L-1 hygromycin, 20 mg L-1 acetosyringone (As), and 2 days of co-cultivation duration were optimized to improve the transformation efficiency. With these optimized parameters, transgenic plants were obtained in about 4 months. Besides that, Agrobacterium rhizogenes-mediated transformation involving adventitious root induction was also optimized. Our findings will not only increase the transformation efficiency but also shorten the time for developing transgenic C. equisetifolia plants. Taken together, this pioneer study on tissue culturing and genetic transformation of C. equisetifolia will pave the way for further genetic manipulation and functional genomics of C. equisetifolia.
Collapse
Affiliation(s)
- Huimin Ren
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Yan Xu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Xiaohong Zhao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Yan Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Jamshaid Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
3
|
Enhancing the resilience of transgenic cotton for insect resistance. Mol Biol Rep 2021; 49:5315-5323. [PMID: 34839448 DOI: 10.1007/s11033-021-06972-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND The efficacy of Bt crystal proteins has been compromised due to their extensive utilization in the field. The second-generation Bt vegetative insecticidal proteins could be the best-suited alternative to combat resistance build-up due to their broad range affinity with midgut receptors of insects. MATERIAL AND RESULTS The codon-optimized synthetic vegetative insecticidal proteins (Vip3Aa) gene under the control of CaMV35S promoter was transformed into a locally developed transgenic cotton variety (CKC-01) expressing cry1Ac and cry2A genes. Transformation efficiency of 1.63% was recorded. The highest Vip3Aa expression (51.98-fold) was found in MS3 transgenic cotton plant. Maximum Vip3Aa protein concentration (4.23 µg/mL) was calculated in transgenic cotton plant MS3 through ELISA. The transgenic cotton plant (MS3) showed one copy number on both chromatids in the homozygous form at chromosome 8 at the telophase stage. Almost 99% mortality of H. armigera was recorded in transgenic cotton plants expressing double crystal proteins pyramided with Vip3Aa gene as contrasted to transgenic cotton plant expressing only double crystal protein with 70% mortality. CONCLUSIONS The results obtained during this study suggest that the combination of Bt cry1Ac, cry2A, and Vip3Aa toxins is the best possible alternative approach to combat chewing insects.
Collapse
|
4
|
|
5
|
Pérez Bernal M, Abreu Remedios D, Valdivia Pérez O, Delgado Rigo M, Armas Ramos R. Evaluación de tres promotores constitutivos para la expresión GUS en arroz (Oryza sativa L., cv. J-104). REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2016. [DOI: 10.15446/rev.colomb.biote.v18n1.57716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
<p>Se analizó la expresión constitutiva del gen reportero de la ß-Glucuronidasa (GUS) fusionado a tres promotores: el 35S del virus del mosaico de la coliflor (CaMV), el promotor quimérico A9 que contiene la actina-1 de arroz y el promotor ubiquitina-1 de maíz. La actividad de los promotores fue analizada cualitativa y cuantitativamente en diferentes tejidos y estadíos de crecimiento de plantas de arroz (variedad J-104) transformadas mediante biobalística. Se demostró la expresión constitutiva de GUS bajo los promotores estudiados, con distintos patrones de actividad relativa en hojas, tallos y raíces de plantas in vitro y ex vitro, y en plantas de la progenie T 1. Bajo el promotor quimérico A9 se lograron los mayores niveles de expresión GUS en todos los tejidos y fases de crecimiento de las plantas.</p>
Collapse
|
6
|
Biotechnological strategies for studying actinorhizal symbiosis in Casuarinaceae: transgenesis and beyond. Symbiosis 2016. [DOI: 10.1007/s13199-016-0400-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Bonaldi K, Gherbi H, Franche C, Bastien G, Fardoux J, Barker D, Giraud E, Cartieaux F. The Nod factor-independent symbiotic signaling pathway: development of Agrobacterium rhizogenes-mediated transformation for the legume Aeschynomene indica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1537-44. [PMID: 21039272 DOI: 10.1094/mpmi-06-10-0137] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The nitrogen-fixing symbiosis between Aeschynomene indica and photosynthetic bradyrhizobia is the only legume-rhizobium association described to date that does not require lipochito-oligosaccharide Nod factors (NF). To assist in deciphering the molecular basis of this NF-independent interaction, we have developed a protocol for Agrobacterium rhizogenes-mediated transformation of A. indica. The cotransformation frequency (79%), the nodulation efficiency of transgenic roots (90%), and the expression pattern of the 35S Cauliflower mosaic virus promoter in transgenic nodules were all comparable to those obtained for model legumes. We have made use of this tool to monitor the heterologous spatio-temporal expression of the pMtENOD11-β-glucuronidase fusion, a widely used molecular reporter for rhizobial infection and nodulation in both legumes and actinorhizal plants. While MtENOD11 promoter activation was not observed in A. indica roots prior to nodulation, strong reporter-gene expression was observed in the invaded cells of young nodules and in the cell layers bordering the central zone of older nodules. We conclude that pMtENOD11 expression can be used as an infection-related marker in A. indica and that Agrobacterium rhizogenes-mediated root transformation of Aeschynomene spp. will be an invaluable tool for determining the molecular basis of the NF-independent symbiosis.
Collapse
Affiliation(s)
- Katia Bonaldi
- IRD, Laboratoire des Symbioses Tropicales et Méditerranéennes, UMR IRD/SupAgro/INRA/UM2/CIRAD, F-34398 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Govindarajulu M, Elmore JM, Fester T, Taylor CG. Evaluation of constitutive viral promoters in transgenic soybean roots and nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1027-35. [PMID: 18616399 DOI: 10.1094/mpmi-21-8-1027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The efficiency of beta-glucuronidase (GUS) expression was evaluated with five viral promoters to identify the most suitable promoter or promoters for use in soybean hairy roots, including applications to study the symbiotic interaction with Bradyrhizobium japonicum. Levels of GUS activity were fluorimetrically and histochemically assayed when the GUS (uidA) gene was driven by the Cauliflower mosaic virus (CaMV) 35S promoter and enhanced 35S (E35S) promoter, the Cassava vein mosaic virus (CsVMV) promoter, the Figwort mosaic virus (FMV) promoter, and the Strawberry vein banding virus (SVBV2) promoter. We demonstrate that GUS activity was highest when driven by the FMV promoter and that the promoter activity of 35S and SVBV2 was significantly lower than that of the CsVMV and E35S promoters when tested in soybean hairy roots. In mature soybean root nodules, strong GUS activity was evident when the FMV, 35S, and CsVMV promoters were used. These results indicate that the FMV promoter facilitates the strong expression of target genes in soybean hairy roots and root nodules.
Collapse
|
9
|
Gherbi H, Nambiar-Veetil M, Zhong C, Félix J, Autran D, Girardin R, Vaissayre V, Auguy F, Bogusz D, Franche C. Post-transcriptional gene silencing in the root system of the actinorhizal tree Allocasuarina verticillata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:518-524. [PMID: 18393611 DOI: 10.1094/mpmi-21-5-0518] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In recent years, RNA interference has been exploited as a tool for investigating gene function in plants. We tested the potential of double-stranded RNA interference technology for silencing a transgene in the actinorhizal tree Allocasuarina verticillata. The approach was undertaken using stably transformed shoots expressing the beta-glucuronidase (GUS) gene under the control of the constitutive promoter 35S; the shoots were further transformed with the Agrobacterium rhizogenes A4RS containing hairpin RNA (hpRNA) directed toward the GUS gene, and driven by the 35S promoter. The silencing and control vectors contained the reporter gene of the green fluorescent protein (GFP), thus allowing a screening of GUS-silenced composite plantlets for autofluorescence. With this rapid procedure, histochemical data established that the reporter gene was strongly silenced in both fluorescent roots and actinorhizal nodules. Fluorometric data further established that the level of GUS silencing was usually greater than 90% in the hairy roots containing the hairpin GUS sequences. We found that the silencing process of the reporter gene did not spread to the aerial part of the composite A. verticillata plants. Real-time quantitative polymerase chain reaction showed that GUS mRNAs were substantially reduced in roots and, thereby, confirmed the knock-down of the GUS transgene in the GFP(+) hairy roots. The approach described here will provide a versatile tool for the rapid assessment of symbiotically related host genes in actinorhizal plants of the Casuarinaceae family.
Collapse
Affiliation(s)
- Hassen Gherbi
- Equipe Rhizogenèse, UMR DIA PC, IRD (Institut de Recherche pour le Développement), Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Maekawa T, Kusakabe M, Shimoda Y, Sato S, Tabata S, Murooka Y, Hayashi M. Polyubiquitin promoter-based binary vectors for overexpression and gene silencing in Lotus japonicus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:375-382. [PMID: 18321183 DOI: 10.1094/mpmi-21-4-0375] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this study, we compared the transcriptional activities between Cauliflower mosaic virus (CaMV)35S promoter and polyubiquitin (Ljubq1) promoter from Lotus japonicus using beta-glucuronidase (gus) reporter gene in transgenic plants of L. japonicus. The promoter analysis demonstrated that the Ljubq1 promoter possessed higher activity than the CaMV35S promoter in leaves, stems, roots, nodules, and pollen. Finally, we created GATEWAY conversion technology-compatible binary vectors for over-expression and RNA interference under the Ljubq1 promoter. These materials could provide alternative choice for studies in L. japonicus.
Collapse
Affiliation(s)
- Takaki Maekawa
- Institut für Genetik, Ludwig-Maximilians-Universität München, Maria-Ward-Str. 1a, 80638 München, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Auriac MC, Timmers ACJ. Nodulation studies in the model legume Medicago truncatula: advantages of using the constitutive EF1alpha promoter and limitations in detecting fluorescent reporter proteins in nodule tissues. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1040-7. [PMID: 17849706 DOI: 10.1094/mpmi-20-9-1040] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Cauliflower mosaic virus 35S promoter currently is being used in RNAi-based approaches for attenuating host gene expression during legume root nodule development and also for the expression of fluorescent reporters in nodule tissues. In this study, we have evaluated the expression of this promoter in the indeterminate nodules of the model plant Medicago truncatula. Our results clearly show that the 35S promoter is inactive in both the nodule meristem and in bacteroid-containing cells of the nodules. On the other hand, the Arabidopsis thaliana EF1alpha promoter was found to be strongly expressed both in the nodule meristem and in all nodule-invaded cells. Therefore, we conclude that the constitutive EF1alpha promoter is far superior for mRNAi or overexpression studies in nodule tissues compared with the commonly used 35S promoter. In addition, our experiments have revealed that the intensity of fluorescent markers such as green fluorescent protein is severely attenuated within invaded cells in the nitrogen-fixation zone of the nodule, most likely by fluorescence quenching. This phenomenon may hinder the use of these tools for live-cell imaging in nodule tissue.
Collapse
Affiliation(s)
- Marie-Christine Auriac
- Laboratory of Plant Microorganism Interactions, CNRS/INRA, UMR2594, Castanet-Tolosan, France
| | | |
Collapse
|
12
|
Péret B, Swarup R, Jansen L, Devos G, Auguy F, Collin M, Santi C, Hocher V, Franche C, Bogusz D, Bennett M, Laplaze L. Auxin influx activity is associated with Frankia infection during actinorhizal nodule formation in Casuarina glauca. PLANT PHYSIOLOGY 2007; 144:1852-62. [PMID: 17556507 PMCID: PMC1949887 DOI: 10.1104/pp.107.101337] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Plants from the Casuarinaceae family enter symbiosis with the actinomycete Frankia leading to the formation of nitrogen-fixing root nodules. We observed that application of the auxin influx inhibitor 1-naphtoxyacetic acid perturbs actinorhizal nodule formation. This suggests a potential role for auxin influx carriers in the infection process. We therefore isolated and characterized homologs of the auxin influx carrier (AUX1-LAX) genes in Casuarina glauca. Two members of this family were found to share high levels of deduced protein sequence identity with Arabidopsis (Arabidopsis thaliana) AUX-LAX proteins. Complementation of the Arabidopsis aux1 mutant revealed that one of them is functionally equivalent to AUX1 and was named CgAUX1. The spatial and temporal expression pattern of CgAUX1 promoter:beta-glucuronidase reporter was analyzed in Casuarinaceae. We observed that CgAUX1 was expressed in plant cells infected by Frankia throughout the course of actinorhizal nodule formation. Our data suggest that auxin plays an important role during plant cell infection in actinorhizal symbioses.
Collapse
Affiliation(s)
- Benjamin Péret
- Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées , Equipe Rhizogenèse, 34394 Montpellier cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|