1
|
Shikanai Y, Takahashi S, Enomoto Y, Yamagami M, Yamaguchi K, Shigenobu S, Kamiya T, Fujiwara T. Arabidopsis Glucan Synthase-Like1 (GSL1) Is Required for Tolerance to Low-Calcium Conditions and Exhibits a Function Comparable to GSL10. PLANT & CELL PHYSIOLOGY 2022; 63:1474-1484. [PMID: 35876020 DOI: 10.1093/pcp/pcac106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/16/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Crops that exhibit symptoms of calcium (Ca) deficiency constitute a major agricultural problem. Molecular breeding of resistant cultivars is a promising method for overcoming this problem. However, the involved genes must first be identified. Here, we show that the glucan synthase-like (GSL) 1 gene is essential for low-Ca tolerance in Arabidopsis thaliana. GSL1 is homologous to GSL10, which we previously showed was essential for low-Ca tolerance. Under low-Ca conditions, gsl1 mutants exhibit reduced growth and the onset of necrosis in new leaves. These symptoms are typical of Ca-deficient crops. A grafting experiment suggested that the shoot genotype, but not the root genotype, was important for the suppression of shoot necrosis. The ectopic accumulation of callose under low-Ca conditions was significantly reduced in gsl1 mutants compared with wild-type plants. Because the corresponding single-mutant phenotypes are similar, we investigated the interaction between GSL1 and GSL10 by testing the gsl1 gsl10 double mutant for sensitivity to low-Ca conditions. The double mutant exhibited a more severe phenotype than did the single mutants, indicating that the effects of GSL1 and GSL10 on low-Ca tolerance are additive. Because GSL genes are highly conserved within the plant kingdom, the GSL loci may be useful for breeding low-Ca tolerant crops.
Collapse
Affiliation(s)
- Yusuke Shikanai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Satomi Takahashi
- Faculty of Agriculture, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Yusuke Enomoto
- Department of Radioecology, Institute of Environmental Sciences, Aomori, 039-3212 Japan
- Showa Gakuin Junior & Senior High School, Higashisugano, Ichikawa, Chiba, 272-0823 Japan
| | - Mutsumi Yamagami
- Department of Radioecology, Institute of Environmental Sciences, Aomori, 039-3212 Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, Aichi, 444-8585 Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Aichi, 444-8585 Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| |
Collapse
|
2
|
Arabidopsis LBP/BPI related-1 and -2 bind to LPS directly and regulate PR1 expression. Sci Rep 2016; 6:27527. [PMID: 27273538 PMCID: PMC4897604 DOI: 10.1038/srep27527] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/20/2016] [Indexed: 12/30/2022] Open
Abstract
Lipopolysaccharide (LPS) is a major constituent of the outer membrane of Gram-negative bacteria and acts as a pathogen-associated molecular pattern that triggers immune responses in both plants and animals. LPS-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI), which bind to LPS and play important roles in immunity of mammals, have been well studied. However, the molecule contributing to LPS binding in plants is mostly unknown. The Arabidopsis genome carries two genes encoding LBP/BPI-related proteins which we designated as AtLBP/BPI related-1 (AtLBR-1) and AtLBP/BPI related-2 (AtLBR-2). We found that their N-terminal domains were co-purified with cell wall-derived LPS when expressed in E. coli. Since this finding implied the direct binding of AtLBRs to LPS, we also confirmed binding by using LPS-free AtLBRs and purified LPS. AtLBRs directly bind to both rough and smooth types of LPS. We also demonstrated that LPS-treated atlbr mutant Arabidopsis exhibit a significant delay of induction of defence-related gene pathogenesis-related 1 (PR1) but no other PR genes. Furthermore, LPS-treated atlbr mutants showed defects in reactive oxygen species (ROS) generation. These results demonstrate that, as well as LBP and BPI of mammals, AtLBRs also play an important role in the LPS-induced immune response of plants.
Collapse
|
3
|
Mizutani K. High-throughput plasmid construction using homologous recombination in yeast: its mechanisms and application to protein production for X-ray crystallography. Biosci Biotechnol Biochem 2015; 79:1-10. [DOI: 10.1080/09168451.2014.952614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Homologous recombination is a system for repairing the broken genomes of living organisms by connecting two DNA strands at their homologous sequences. Today, homologous recombination in yeast is used for plasmid construction as a substitute for traditional methods using restriction enzymes and ligases. This method has various advantages over the traditional method, including flexibility in the position of DNA insertion and ease of manipulation. Recently, the author of this review reported the construction of plasmids by homologous recombination in the methanol-utilizing yeast Pichia pastoris, which is known to be an excellent expression host for secretory proteins and membrane proteins. The method enabled high-throughput construction of expression systems of proteins using P. pastoris; the constructed expression systems were used to investigate the expression conditions of membrane proteins and to perform X-ray crystallography of secretory proteins. This review discusses the mechanisms and applications of homologous recombination, including the production of proteins for X-ray crystallography.
Collapse
Affiliation(s)
- Kimihiko Mizutani
- Laboratory of Applied Structural Biology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Ali S, Bakkeren G. Conversion of BAC clones into binary BAC (BIBAC) vectors and their delivery into basidiomycete fungal cells using Agrobacterium tumefaciens. Methods Mol Biol 2015; 1227:199-215. [PMID: 25239747 DOI: 10.1007/978-1-4939-1652-8_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The genetic transformation of certain organisms, required for gene function analysis or complementation, is often not very efficient, especially when dealing with large gene constructs or genomic fragments. We have adapted the natural DNA transfer mechanism from the soil pathogenic bacterium Agrobacterium tumefaciens, to deliver intact large DNA constructs to basidiomycete fungi of the genus Ustilago where they stably integrated into their genome. To this end, Bacterial Artificial Chromosome (BAC) clones containing large fungal genomic DNA fragments were converted via a Lambda phage-based recombineering step to Agrobacterium transfer-competent binary vectors (BIBACs) with a Ustilago-specific selection marker. The fungal genomic DNA fragment was subsequently successfully delivered as T-DNA through Agrobacterium-mediated transformation into Ustilago species where an intact copy stably integrated into the genome. By modifying the recombineering vector, this method can theoretically be adapted for many different fungi.
Collapse
Affiliation(s)
- Shawkat Ali
- Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, 4200 Highway 97, 5000, Summerland, BC, Canada, V0H 1Z0
| | | |
Collapse
|
5
|
Hoshino T, Watanabe S, Takagi Y, Anai T. A novel GmFAD3-2a mutant allele developed through TILLING reduces α-linolenic acid content in soybean seed oil. BREEDING SCIENCE 2014; 64:371-7. [PMID: 25914592 PMCID: PMC4267312 DOI: 10.1270/jsbbs.64.371] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/05/2014] [Indexed: 05/14/2023]
Abstract
Soybean (Glycine max (L.) Merr.) oil typically contains 8% α-linolenic acid that is highly unstable and easily oxidized. This property is undesirable in many food and industrial applications. Genetic strategies for reducing α-linolenic acid content would enhance the commercial value. However, genetic resources for low α-linolenic acid content are limited among natural soybean variations. Microsomal omega-3-fatty acid desaturase (FAD3) is responsible for the synthesis of α-linolenic acid in the polyunsaturated fatty acid pathway. There are four FAD3 homologs (Glyma02g39230, Glyma11g27190, Glyma14g37350 and Glyma18g06950) in the soybean genome. While non-functional alleles have been reported for Glyma02g39230 (GmFAD3-1a) and Glyma14g37350 (GmFAD3-1b), little variation is seen in Glyma18g06950 (GmFAD3-2a). We isolated seven mutant GmFAD3-2a alleles, each containing a single-nucleotide substitution, from 39,100 independent mutant lines by using targeting induced local lesions in genomes (TILLING). Analysis of GmFAD3-2a transcripts and enzyme activities revealed that one missense mutant, 'P1-A9', contains a non-functional allele of GmFAD3-2a. By combining three non-functional alleles (GmFAD3-1a, GmFAD3-1b, and GmFAD3-2a), we generated soybean lines containing <2% α-linolenic acid in their seeds. The reverse-genetics-based development of novel mutant alleles in the fatty acid metabolic pathway will allow the improvement of soybean with better oil quality through conventional breeding.
Collapse
Affiliation(s)
- Tomoki Hoshino
- Laboratory of Plant Genetics and Breeding, Faculty of Agriculture, Saga University,
Honjyo-machi 1, Saga 840-8502,
Japan
- Laboratory of Plant Genetics and Breeding, Faculty of Agriculture, Yamagata University,
Wakaba-machi 1, Tsuruoka, Yamagata 997-8555,
Japan
| | - Satoshi Watanabe
- Laboratory of Plant Genetics and Breeding, Faculty of Agriculture, Saga University,
Honjyo-machi 1, Saga 840-8502,
Japan
| | - Yutaka Takagi
- Laboratory of Plant Genetics and Breeding, Faculty of Agriculture, Saga University,
Honjyo-machi 1, Saga 840-8502,
Japan
| | - Toyoaki Anai
- Laboratory of Plant Genetics and Breeding, Faculty of Agriculture, Saga University,
Honjyo-machi 1, Saga 840-8502,
Japan
- Corresponding author (e-mail: )
| |
Collapse
|
6
|
Chanroj S, Padmanaban S, Czerny DD, Jauh GY, Sze H. K+ transporter AtCHX17 with its hydrophilic C tail localizes to membranes of the secretory/endocytic system: role in reproduction and seed set. MOLECULAR PLANT 2013; 6:1226-46. [PMID: 23430044 DOI: 10.1093/mp/sst032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The importance of sorting proteins and wall materials to their destination is critical for plant growth and development, though the machinery orchestrating membrane trafficking is poorly understood. Transporters that alter the environment across endomembrane compartments are thought to be important players. Using Escherichia coli and yeast, we previously showed that several Arabidopsis Cation/H(+) eXchanger (AtCHX) members were K(+) transporters with a role in pH homeostasis, though their subcellular location and biological roles in plants are unclear. Co-expression of markers with CHX16, CHX17, CHX18, or CHX19 tagged with a fluorescent protein indicated these transporters associated with plasma membrane (PM) and post-Golgi compartments. Under its native promoter, AtCHX17(1-820)-GFP localized to prevacuolar compartment (PVC) and to PM in roots. Brefeldin A diminished AtCHX17-GFP fluorescence at PM, whereas wortmannin caused formation of GFP-labeled ring-like structures, suggesting AtCHX17 trafficked among PVC, vacuole and PM. AtCHX17(1-472) lacking its carboxylic tail did not associate with PVC or PM in plant cells. Single chx17 mutant or higher-order mutants showed normal root growth and vegetative development. However, quadruple (chx16chx17chx18chx19) mutants were reduced in frequency and produced 50%-70% fewer seeds, indicating overlapping roles of several AtCHX17-related transporters in reproduction and/or seed development. Together, our results suggest that successful reproduction and seed development depend on the ability to regulate cation and pH homeostasis by AtCHX17-like transporters on membranes that traffic in the endocytic and/or secretory pathways.
Collapse
Affiliation(s)
- Salil Chanroj
- Department of Cell Biology and Molecular Genetics, and Maryland Agricultural Experiment Station, University of Maryland, College Park, MD, USA
| | | | | | | | | |
Collapse
|
7
|
Abstract
Yeast-based in vivo cloning is useful for cloning DNA fragments into plasmid vectors and is based on the ability of yeast to recombine the DNA fragments by homologous recombination. Although this method is efficient, it produces some by-products. We have developed an “ultra-low background DNA cloning system” on the basis of yeast-based in vivo cloning, by almost completely eliminating the generation of by-products and applying the method to commonly used Escherichia coli vectors, particularly those lacking yeast replication origins and carrying an ampicillin resistance gene (Ampr). First, we constructed a conversion cassette containing the DNA sequences in the following order: an Ampr 5′ UTR (untranslated region) and coding region, an autonomous replication sequence and a centromere sequence from yeast, a TRP1 yeast selectable marker, and an Ampr 3′ UTR. This cassette allowed conversion of the Ampr-containing vector into the yeast/E. coli shuttle vector through use of the Ampr sequence by homologous recombination. Furthermore, simultaneous transformation of the desired DNA fragment into yeast allowed cloning of this DNA fragment into the same vector. We rescued the plasmid vectors from all yeast transformants, and by-products containing the E. coli replication origin disappeared. Next, the rescued vectors were transformed into E. coli and the by-products containing the yeast replication origin disappeared. Thus, our method used yeast- and E. coli-specific “origins of replication” to eliminate the generation of by-products. Finally, we successfully cloned the DNA fragment into the vector with almost 100% efficiency.
Collapse
Affiliation(s)
- Kenta Goto
- Analytical Research Center for Experimental Sciences, Saga University, Honjo, Saga, Japan.
| | | |
Collapse
|
8
|
Mizutani K, Toyoda M, Otake Y, Yoshioka S, Takahashi N, Mikami B. Structural and functional characterization of recombinant medaka fish alpha-amylase expressed in yeast Pichia pastoris. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:954-62. [DOI: 10.1016/j.bbapap.2012.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 01/18/2023]
|
9
|
Kallifidas D, Brady SF. Reassembly of functionally intact environmental DNA-derived biosynthetic gene clusters. Methods Enzymol 2012; 517:225-39. [PMID: 23084941 DOI: 10.1016/b978-0-12-404634-4.00011-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Only a small fraction of the bacterial diversity present in natural microbial communities is regularly cultured in the laboratory. Those bacteria that remain recalcitrant to culturing cannot be examined for the production of bioactive secondary metabolites using standard pure-culture approaches. The screening of genomic DNA libraries containing DNA isolated directly from environmental samples (environmental DNA (eDNA)) provides an alternative approach for studying the biosynthetic capacities of these organisms. One drawback of this approach has been that most eDNA isolation procedures do not permit the cloning of DNA fragments of sufficient length to capture large natural product biosynthetic gene clusters in their entirety. Although the construction of eDNA libraries with inserts big enough to capture biosynthetic gene clusters larger than ∼40kb remains challenging, it is possible to access large gene clusters by reassembling them from sets of smaller overlapping fragments using transformation-associated recombination in Saccharomyces cerevisiae. Here, we outline a method for the reassembly of large biosynthetic gene clusters from captured sets of overlapping soil eDNA cosmid clones. Natural product biosynthetic gene clusters reassembled using this approach can then be used directly for functional heterologous expression studies.
Collapse
Affiliation(s)
- Dimitris Kallifidas
- Laboratory of Genetically Encoded Small Molecules, Howard Hughes Medical Institute, The Rockefeller University, New York, USA
| | | |
Collapse
|
10
|
Mizutani K, Yoshioka S, Mizutani Y, Iwata S, Mikami B. High-throughput construction of expression system using yeast Pichia pastoris, and its application to membrane proteins. Protein Expr Purif 2011; 77:1-8. [DOI: 10.1016/j.pep.2010.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/14/2010] [Accepted: 12/14/2010] [Indexed: 12/01/2022]
|
11
|
Bitrián M, Roodbarkelari F, Horváth M, Koncz C. BAC-recombineering for studying plant gene regulation: developmental control and cellular localization of SnRK1 kinase subunits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:829-42. [PMID: 21235649 DOI: 10.1111/j.1365-313x.2010.04462.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Recombineering, permitting precise modification of genes within bacterial artificial chromosomes (BACs) through homologous recombination mediated by lambda phage-encoded Red proteins, is a widely used powerful tool in mouse, Caenorhabditis and Drosophila genetics. As Agrobacterium-mediated transfer of large DNA inserts from binary BACs and TACs into plants occurs at low frequency, recombineering is so far seldom exploited in the analysis of plant gene functions. We have constructed binary plant transformation vectors, which are suitable for gap-repair cloning of genes from BACs using recombineering methods previously developed for other organisms. Here we show that recombineering facilitates PCR-based generation of precise translational fusions between coding sequences of fluorescent reporter and plant proteins using galK-based exchange recombination. The modified target genes alone or as part of a larger gene cluster can be transferred by high-frequency gap-repair into plant transformation vectors, stably maintained in Agrobacterium and transformed without alteration into plants. Versatile application of plant BAC-recombineering is illustrated by the analysis of developmental regulation and cellular localization of interacting AKIN10 catalytic and SNF4 activating subunits of Arabidopsis Snf1-related (SnRK1) protein kinase using in vivo imaging. To validate full functionality and in vivo interaction of tagged SnRK1 subunits, it is demonstrated that immunoprecipitated SNF4-YFP is bound to a kinase that phosphorylates SnRK1 candidate substrates, and that the GFP- and YFP-tagged kinase subunits co-immunoprecipitate with endogenous wild type AKIN10 and SNF4.
Collapse
Affiliation(s)
- Marta Bitrián
- Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | | | | | | |
Collapse
|
12
|
Introduction of large DNA inserts into the barley pathogenic fungus, Ustilago hordei, via recombined binary BAC vectors and Agrobacterium-mediated transformation. Curr Genet 2010; 57:63-73. [PMID: 20936474 DOI: 10.1007/s00294-010-0324-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
Genetic transformation of organisms with large genome fragments containing complete genes, with regulatory elements or clusters of genes, can contribute to the functional analysis of such genes. However, large inserts, such as those found on bacterial artificial chromosome (BAC) clones, are often not easy to transfer. We exploited an existing technique to convert BAC clones, containing genomic DNA fragments from the barley-covered smut fungus Ustilago hordei to binary BACs (BIBACs) to make them transferable by the Agrobacterium tumefaciens T-DNA transfer machinery. Genetic transformation of U. hordei with BAC clones using polyethylene glycol or electroporation is difficult. As a proof of concept, two BAC clones were successfully converted into BIBAC vectors and transferred by A. tumefaciens into U. hordei and U. maydis, the related corn smut fungi. Molecular analysis of the transformants showed that the T-DNA containing the BAC clones with their inserts was stably integrated into the U. hordei genome. A transformation frequency of approximately 10⁻⁴ was achieved both for U. hordei sporidia and protoplasts; the efficiencies were 25-30 times higher for U. maydis. The combination of in vivo recombineering technology for BAC clones and A. tumefaciens-mediated transformation of Ustilago species should pave the way for functional genomics studies.
Collapse
|
13
|
Bleys A, Karimi M, Hilson P. Clone-based functional genomics. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2009; 553:141-77. [PMID: 19588105 DOI: 10.1007/978-1-60327-563-7_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Annotated genomes have provided a wealth of information about gene structure and gene catalogs in a wide range of species. Taking advantage of these developments, novel techniques have been implemented to investigate systematically diverse aspects of gene and protein functions underpinning biology processes. Here, we review functional genomics applications that require the mass production of cloned sequence repertoires, including ORFeomes and silencing tag collections. We discuss the techniques employed in large-scale cloning projects and we provide an up-to-date overview of the clone resources available for model plant species and of the current applications that may be scaled up for systematic plant gene studies.
Collapse
Affiliation(s)
- Annick Bleys
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Gent, Belgium
| | | | | |
Collapse
|