1
|
Gong ZH, Chen SH, Li XY, Lv WW, Li MR, Jin XM, Gao YF, Rong LP. Anthocyanin metabolites and related regulatory genes analysis in leaves of Acer Pseudosieboldianum mutant during different periods of color change. BMC Genomics 2025; 26:182. [PMID: 39987037 PMCID: PMC11847387 DOI: 10.1186/s12864-025-11378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 02/18/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Acer pseudosieboldianum (Pax) Komarov, is a colorful leaf species belonging to the family Aceraceae, mainly distributed in Northeast China, Russia, and northern Korea. The leaves of Acer pseudosieboldianum are green in spring and summer, and turning red in autumn, which is of high ornamental value. In previous study, a mutant maple was selected with alternating red-green leaf color in spring and summer. However, the reason for the color mutation was not clear. Therefore, UPLC /LC-MS and RNA-seq were used to analyze the anthocyanin components and related differentially expressed genes in the spring leaf color changes of A. pseudosieboldianum mutant, which can provide broader insights into the complex coloration process of leaf color. RESULTS The results showed that the mutant leaves contained a total of 50 anthocyanin metabolites. In all differential metabolites of anthocyanins, Cyanidin-3,5-O-diglucoside, Cyanidin-3-O-glucoside, Cyanidin-3-O-sambubioside not only had higher content, but also showed significant changes at different stages. Especially, the consistent high content of anthocyanins in Cyanidin-3-O-glucoside, which are the main pigments for leaf color. In addition, 11,522 genes were found to be significantly differentially with 5,477 genes up-regulated, and 6,045 genes down-regulated. We identified relevant information for differentially expressed genes (DEGs) associated with leaf color, including 20 structural genes involved in anthocyanin biosynthesis, 12 transcription factors, and eight genes related to anthocyanin transport. CONCLUSIONS Among all anthocyanins of A. pseudosieboldianum mutant leaf, Cyanidin-3-O-glucoside remained high in all three stages of leaves, which is main substances for the leaf color. Additionally, 20 structure gene, 12 transcription factors and some genes associated with anthocyanin synthesis and transport were screened and there was a complex metabolic network in mutant leaves. This study provided a basis for resource innovation and landscaping applications of Acer plants by analyzing the anthocyanin metabolites and expression of DEGs in the leaf coloring process.
Collapse
Affiliation(s)
- Zi-Han Gong
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Shu-Han Chen
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Xin-Yu Li
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Wei-Wei Lv
- Jinlin City Forestry Academy, Jilin, 132013, China
| | - Ming-Rui Li
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Xin-Mei Jin
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Yu-Fu Gao
- College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Li-Ping Rong
- College of Agriculture, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
2
|
Wu L, Ma T, Zang C, Xu Z, Sun W, Luo H, Yang M, Song J, Chen S, Yao H. Glycyrrhiza, a commonly used medicinal herb: Review of species classification, pharmacology, active ingredient biosynthesis, and synthetic biology. J Adv Res 2024:S2090-1232(24)00538-1. [PMID: 39551128 DOI: 10.1016/j.jare.2024.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Licorice is extensively and globally utilized as a medicinal herb and is one of the traditional Chinese herbal medicines with valuable pharmacological effects. Its therapeutic components primarily reside within its roots and rhizomes, classifying it as a tonifying herb. As more active ingredients in licorice are unearthed and characterized, licorice germplasm resources are gaining more and more recognition. However, due to the excessive exploitation of wild licorice resources, the degrading germplasm reserves fail to meet the requirements of chemical extraction and clinical application. AIM OF REVIEW This article presents a comprehensive review of the classification and phylogenetic relationships of species in genus Glycyrrhiza, types of active components and their pharmacological activities, licorice omics, biosynthetic pathways of active compounds in licorice, and metabolic engineering. It aims to offer a unique and comprehensive perspective on Glycyrrhiza, integrating knowledge from diverse fields to offer a comprehensive understanding of this genus. It will serve as a valuable resource and provide a solid foundation for future research and development in the molecular breeding and synthetic biology fields of Glycyrrhiza. KEY SCIENTIFIC CONCEPTS OF REVIEW Licorice has an abundance of active constituents, primarily triterpenoids, flavonoids, and polysaccharides. Modern pharmacological research unveiled its multifaceted effects encompassing anti-inflammatory, analgesic, anticancer, antiviral, antioxidant, and hepatoprotective activities. Many resources of Glycyrrhiza species remain largely untapped, and multiomic studies of the Glycyrrhiza lineage are expected to facilitate new discoveries in the fields of medicine and human health. Therefore, strategies for breeding high-yield licorice plants and developing effective biosynthesis methods for bioactive compounds will provide valuable insights into resource conservation and drug development. Metabolic engineering and microorganism-based green production provide alternative strategies to improve the production efficiency of natural products.
Collapse
Affiliation(s)
- Liwei Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Tingyu Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chenxi Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongmei Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Yao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; Engineering Research Center of Chinese Medicine Resources, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
3
|
Zhang C, Zhang K, Zhang M, Zhang D, Ye Q, Wang X, Akagi T, Duan Y. SWATH-MS based proteomics reveals the role of photosynthesis related proteins and secondary metabolic pathways in the colored leaves of sweet olive (Osmanthus fragrans). BMC Genomics 2024; 25:1026. [PMID: 39487388 PMCID: PMC11529170 DOI: 10.1186/s12864-024-10867-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024] Open
Abstract
Colored leaves, a notable horticultural trait, have high research and ornamental value. The evergreen sweet olive (Osmanthus fragrans), one of the top ten traditional flowers in China, has been cultivated for more than two thousand years. However, in recent years, an increasing number of O. fragrans cultivars with colored leaves have been cultivated for their ornamental value. To study the molecular mechanism underlying the observed changes in leaf color, we selected O. fragrans 'Yinbi Shuanghui' (Y), which has yellow-white leaves, and O. fragrans 'Sijigui' (S), which has green leaves, as materials. Pigment content measurement showed that the chlorophyll, carotenoid and anthocyanin contents in Y were lower than in S. According to the SWATH-MS sequencing results, a total of 3,959 proteins were quantitatively identified, 1,300 of which were differentially expressed proteins (DEPs), including 782 up-regulated and 518 down-regulated proteins in Y compared to S. Functional enrichment analysis of DEPs revealed that down-regulated expression of photosynthesis related proteins may lead to the inhibition of chlorophyll synthesis in Y, this may be the main cause of leaf color change. Moreover, a protein interaction prediction model also showed that proteins such as PetC, PsbO, PsbP, and PsbQ were key proteins in the interaction network, and the up-regulated proteins participating in the anthocyanin and carotenoid pathways may be related to the formation of yellow-white leaves. Taken together, our findings represent the first SWATH-MS-based proteomic report on colored leaf O. fragrans and reveal that chlorophyll synthesis and secondary metabolism pathways contribute to the changes in leaf color.
Collapse
Affiliation(s)
- Cheng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Kailu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Min Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Daowu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Qi Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Xianrong Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi-shi, Japan.
| | - Yifan Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
4
|
Lewis JA, Jacobo EP, Palmer N, Vermerris W, Sattler SE, Brozik JA, Sarath G, Kang C. Structural and Interactional Analysis of the Flavonoid Pathway Proteins: Chalcone Synthase, Chalcone Isomerase and Chalcone Isomerase-like Protein. Int J Mol Sci 2024; 25:5651. [PMID: 38891840 PMCID: PMC11172311 DOI: 10.3390/ijms25115651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Chalcone synthase (CHS) and chalcone isomerase (CHI) catalyze the first two committed steps of the flavonoid pathway that plays a pivotal role in the growth and reproduction of land plants, including UV protection, pigmentation, symbiotic nitrogen fixation, and pathogen resistance. Based on the obtained X-ray crystal structures of CHS, CHI, and chalcone isomerase-like protein (CHIL) from the same monocotyledon, Panicum virgatum, along with the results of the steady-state kinetics, spectroscopic/thermodynamic analyses, intermolecular interactions, and their effect on each catalytic step are proposed. In addition, PvCHI's unique activity for both naringenin chalcone and isoliquiritigenin was analyzed, and the observed hierarchical activity for those type-I and -II substrates was explained with the intrinsic characteristics of the enzyme and two substrates. The structure of PvCHS complexed with naringenin supports uncompetitive inhibition. PvCHS displays intrinsic catalytic promiscuity, evident from the formation of p-coumaroyltriacetic acid lactone (CTAL) in addition to naringenin chalcone. In the presence of PvCHIL, conversion of p-coumaroyl-CoA to naringenin through PvCHS and PvCHI displayed ~400-fold increased Vmax with reduced formation of CTAL by 70%. Supporting this model, molecular docking, ITC (Isothermal Titration Calorimetry), and FRET (Fluorescence Resonance Energy Transfer) indicated that both PvCHI and PvCHIL interact with PvCHS in a non-competitive manner, indicating the plausible allosteric effect of naringenin on CHS. Significantly, the presence of naringenin increased the affinity between PvCHS and PvCHIL, whereas naringenin chalcone decreased the affinity, indicating a plausible feedback mechanism to minimize spontaneous incorrect stereoisomers. These are the first findings from a three-body system from the same species, indicating the importance of the macromolecular assembly of CHS-CHI-CHIL in determining the amount and type of flavonoids produced in plant cells.
Collapse
Affiliation(s)
- Jacob A. Lewis
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (E.P.J.); (J.A.B.)
| | - Eric P. Jacobo
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (E.P.J.); (J.A.B.)
| | - Nathan Palmer
- Department of Agriculture—Agricultural Research Service, Wheat, Sorghum, and Forage Research Unit, Lincoln, NE 68583, USA; (N.P.); (S.E.S.); (G.S.)
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science and UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA;
| | - Scott E. Sattler
- Department of Agriculture—Agricultural Research Service, Wheat, Sorghum, and Forage Research Unit, Lincoln, NE 68583, USA; (N.P.); (S.E.S.); (G.S.)
| | - James A Brozik
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (E.P.J.); (J.A.B.)
| | - Gautam Sarath
- Department of Agriculture—Agricultural Research Service, Wheat, Sorghum, and Forage Research Unit, Lincoln, NE 68583, USA; (N.P.); (S.E.S.); (G.S.)
| | - ChulHee Kang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (J.A.L.); (E.P.J.); (J.A.B.)
| |
Collapse
|
5
|
Adolfo LM, Burks D, Rao X, Alvarez‐Hernandez A, Dixon RA. Evaluation of pathways to the C-glycosyl isoflavone puerarin in roots of kudzu ( Pueraria montana lobata). PLANT DIRECT 2022; 6:e442. [PMID: 36091880 PMCID: PMC9438399 DOI: 10.1002/pld3.442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/21/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Kudzu (Pueraria montana lobata) is used as a traditional medicine in China and Southeast Asia but is a noxious weed in the Southeastern United States. It produces both O- and C-glycosylated isoflavones, with puerarin (C-glucosyl daidzein) as an important bioactive compound. Currently, the stage of the isoflavone pathway at which the C-glycosyl unit is added remains unclear, with a recent report of direct C-glycosylation of daidzein contradicting earlier labeling studies supporting C-glycosylation at the level of chalcone. We have employed comparative mRNA sequencing of the roots from two Pueraria species, one of which produces puerarin (field collected P. montana lobata) and one of which does not (commercial Pueraria phaseoloides), to identify candidate uridine diphosphate glycosyltransferase (UGT) enzymes involved in puerarin biosynthesis. Expression of recombinant UGTs in Escherichia coli and candidate C-glycosyltransferases in Medicago truncatula were used to explore substrate specificities, and gene silencing of UGT and key isoflavone biosynthetic genes in kudzu hairy roots employed to test hypotheses concerning the substrate(s) for C-glycosylation. Our results confirm UGT71T5 as a C-glycosyltransferase of isoflavone biosynthesis in kudzu. Enzymatic, isotope labeling, and genetic analyses suggest that puerarin arises both from the direct action of UGT71T5 on daidzein and via a second route in which the C-glycosidic linkage is introduced to the chalcone isoliquiritigenin.
Collapse
Affiliation(s)
- Laci M. Adolfo
- BioDiscovery Institute and Department of Biological SciencesUniversity of North TexasDentonTexasUSA
| | - David Burks
- BioDiscovery Institute and Department of Biological SciencesUniversity of North TexasDentonTexasUSA
| | - Xiaolan Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life SciencesHubei UniversityWuhanHubei ProvinceChina
| | | | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological SciencesUniversity of North TexasDentonTexasUSA
| |
Collapse
|
6
|
Li JL, Weng Z, Li XY, Xu B, Gao YF, Rong LP. De novo transcriptome revealed genes involved in anthocyanin biosynthesis, transport, and regulation in a mutant of Acer pseudosieboldianum. BMC Genomics 2022; 23:567. [PMID: 35941547 PMCID: PMC9361605 DOI: 10.1186/s12864-022-08815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acer pseudosieboldianum is a kind of excellent color-leafed plants, and well known for its red leaves in autumn. At the same time, A. pseudosieboldianum is one of the native tree species in the northeast of China, and it plays an important role in improving the lack of color-leafed plants in the north. In previous study, we found a mutant of the A. pseudosieboldianum that leaves intersect red and green in spring and summer. However, it is unclear which genes cause the color change of mutant leaves. RESULTS In order to study the molecular mechanism of leaf color formation, we analyzed the leaves of the mutant group and the control group from A. pseudosieboldianum by RNA deep sequencing in this study. Using an Illumina sequencing platform, we obtained approximately 276,071,634 clean reads. After the sequences were filtered and assembled, the transcriptome data generated a total of 70,014 transcripts and 54,776 unigenes, of which 34,486 (62.96%) were successfully annotated in seven public databases. There were 8,609 significant DEGs identified between the control and mutant groups, including 4,897 upregulated and 3,712 downregulated genes. We identified 13 genes of DEGs for leaf color synthesis that was involved in the flavonoid pathway, 26 genes that encoded transcription factors, and eight genes associated with flavonoid transport. CONCLUSION Our results provided comprehensive gene expression information about A. pseudosieboldianum transcriptome, and directed the further study of accumulation of anthocyanin in A. pseudosieboldianum, aiming to provide insights into leaf coloring of it through transcriptome sequencing and analysis.
Collapse
Affiliation(s)
- Jia-Lin Li
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Zhuo Weng
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Xin-Yu Li
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Bo Xu
- College of Agriculture, Yanbian University, Yanji, 133002, China
| | - Yu-Fu Gao
- College of Agriculture, Yanbian University, Yanji, 133002, China.
| | - Li-Ping Rong
- College of Agriculture, Yanbian University, Yanji, 133002, China.
| |
Collapse
|
7
|
Hairy Root Cultures as a Source of Polyphenolic Antioxidants: Flavonoids, Stilbenoids and Hydrolyzable Tannins. PLANTS 2022; 11:plants11151950. [PMID: 35956428 PMCID: PMC9370385 DOI: 10.3390/plants11151950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022]
Abstract
Due to their chemical properties and biological activity, antioxidants of plant origin have gained interest as valuable components of the human diet, potential food preservatives and additives, ingredients of cosmetics and factors implicated in tolerance mechanisms against environmental stress. Plant polyphenols are the most prominent and extensively studied, albeit not only group of, secondary plant (specialized) metabolites manifesting antioxidative activity. Because of their potential economic importance, the productive and renewable sources of the compounds are desirable. Over thirty years of research on hairy root cultures, as both producers of secondary plant metabolites and experimental systems to investigate plant biosynthetic pathways, brought about several spectacular achievements. The present review focuses on the Rhizobium rhizogenes-transformed roots that either may be efficient sources of plant-derived antioxidants or were used to elucidate some regulatory mechanisms responsible for the enhanced accumulation of antioxidants in plant tissues.
Collapse
|
8
|
Chen C, Zhong C, Gao X, Tan C, Bai H, Ning K. Glycyrrhiza uralensis Fisch. Root-associated microbiota: the multifaceted hubs associated with environmental factors, growth status and accumulation of secondary metabolites. ENVIRONMENTAL MICROBIOME 2022; 17:23. [PMID: 35526053 PMCID: PMC9080174 DOI: 10.1186/s40793-022-00418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Glycyrrhiza uralensis Fisch. is an important, perennial medicinal plant whose root microbiome is considered to play an important role in promoting accumulation of effective medicinal ingredients (liquiritin and glycrrhizic acid). Here, we report a comprehensive analysis of the microbial community structural composition and metabolite-plant-microbes association of G. uralensis Fisch. We collected both soil and rhizosphere samples of G. uralensis from different environmental conditions (cultivated and wild) and growth years (grown for one year and three years). Our data revealed higher species diversity in the wild group than in the cultivated group. The core rhizosphere microbiome of G. uralensis comprised 78 genera, including Bacillus, Pseudomonas, Rhizobium, some of which were potential plant beneficial microbes. Our results suggest that the growth of G. uralensis has a correlation with the root-associated microbiota assemblage. Integrated analysis among rhizosphere microbial taxa, plant gene expressions, and liquiritin and glycrrhizic acid accumulation showed that the liquiritin and glycrrhizic acid accumulation exhibited associations with the rhizosphere microbial composition at the genus level. The results provide valuable information to guide cultivation of G. uralensis, and potentially to harness the power of the root-associated microbiota to improve medicinal plant production.
Collapse
Affiliation(s)
- Chaoyun Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Chaofang Zhong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Xi Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Chongyang Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Hong Bai
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| |
Collapse
|
9
|
Wan Q, Bai T, Liu M, Liu Y, Xie Y, Zhang T, Huang M, Zhang J. Comparative Analysis of the Chalcone-Flavanone Isomerase Genes in Six Citrus Species and Their Expression Analysis in Sweet Orange (Citrus sinensis). Front Genet 2022; 13:848141. [PMID: 35495138 PMCID: PMC9039136 DOI: 10.3389/fgene.2022.848141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Citrus fruit contains rich nutrients which is edible and of officinal value. Citrus flavanones are widely used in the treatment of cardiovascular and other diseases, and they are a foundational material of Chinese medicine. The chalcone-flavanone isomerase (CHI) plays a key role in flavanone synthesis. Therefore, we comprehensively analyzed CHI genes in Citrus species. Here, thirty CHI genes were identified for the first time in six Citrus species, which were divided into CHI and FAP groups. Evolutionary analysis showed that CHI gene members were highly conserved and were an ancient family. All CsCHI genes showed the highest expression level after the second physiological fruit-falling period in C. sinensis. CsCHI1 and CsCHI3 were highly expressed at 50 days after the flowering (DAF) stage in albedo. The expression of CsFAP2 and CsCHI3 genes at the 50 DAF stage was 16.5 and 24.3 times higher than that at the 220 DAF stage, respectively. The expression of CsCHI1, CsCHI3, and CsFAP2 genes in the peel was higher than that in the pulp, especially in common sweet orange. The CsCHI3 gene maintained a high expression level in the epicarp and juice sac at all periods. The members of CHIs interacted with chalcone synthase (CHS), flavonol synthase/flavanone 3-hydroxylase (FLS) and naringenin, and 2-oxoglutarate 3-dioxygenase (F3H) to form heterodimers, which might together play a regulatory role and participate in the flavonoid pathway. This study will provide the basis for the selection of flavonoids in plant tissues and periods and fundamental information for further functional studies.
Collapse
Affiliation(s)
- Quan Wan
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Affiliated Hospital of Inner Mongolia Minzu University, Inner Mongolia Minzu University, Tongliao, China
- *Correspondence: Quan Wan, ; Jinlian Zhang,
| | - Tingting Bai
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Minmin Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ying Liu
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yating Xie
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Tao Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Min Huang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jinlian Zhang
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- *Correspondence: Quan Wan, ; Jinlian Zhang,
| |
Collapse
|
10
|
Bohdanovych TA, Shakhovsky AM, Duplij VP, Ratushnyak YI, Kuchuk MV, Poyedinok NL, Matvieieva NA. Effects of Genetic Transformation on the Antioxidant Activity of “Hairy” Roots of Althaea officinalis L., Artemisia vulgaris L., and Artemisia tilesii Ledeb. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721060037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Ullah MA, Gul FZ, Khan T, Bajwa MN, Drouet S, Tungmunnithum D, Giglioli-Guivarc'h N, Liu C, Hano C, Abbasi BH. Differential induction of antioxidant and anti-inflammatory phytochemicals in agitated micro-shoot cultures of Ajuga integrifolia Buch. Ham. ex D.Don with biotic elicitors. AMB Express 2021; 11:137. [PMID: 34661766 PMCID: PMC8523646 DOI: 10.1186/s13568-021-01297-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 11/14/2022] Open
Abstract
Ajuga integrifolia Buch. Ham. ex D.Don, a member of Lamiaceae family is pharmaceutically an active perennial herb widely spread in China, Afghanistan and Pakistan Himalayan region. The application of biotic elicitors is a promising approach to cover limitations of in vitro cell technology and challenges faced by pharmaceuticals industry for bulk up production. The current study involved the induction of agitated micro-shoot cultures with the aim to investigate the growth-promoting as well as phytochemicals enhancement role of yeast extract (YE) and pectin (PE). The results showed that both elicitors induced a considerable physiological response. Biomass accumulation was observed maximum (DW: 18.3 g/L) against PE (10 mg/L) compared to YE and control. Eleven secondary phytocompounds were quantified using high-performance liquid chromatography. PE (50 mg/L) was found to be effective in elicitation of rosmarinic acid (680.20 µg/g), chlorogenic acid (294.12 µg/g), apigenin (579.61 µg/g) and quercetin (596.89 µg/g). However, maximum caffeic acid (359.52 µg/g) and luteolin (546.12 µg/g accumulation was noted in PE (1 mg/L) treatment. Harpagide, aucubin, harpagoside and 8-O-acetyl-harpagoside production was suppressed by both elicitors except for YE (100 mg/L). Catalpol accumulation in micro-shoot cultures was also downregulated except in response to YE (50 and 100 mg/L). Antioxidant activity and anti-inflammatory activity remained higher under PE (50 mg/L) and YE (100 mg/L) respectively. Therefore, results suggested that Ajuga integrifolia micro-shoot cultures treated with yeast extract and pectin might be an efficient bio-factory to produce commercially potent specific secondary metabolites.
Collapse
Affiliation(s)
- Muhammad Asad Ullah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- School of Agriculture and Food Sciences, The University of Queensland, Gatton Campus, Brisbane, 4343, Australia
| | - Faiza Zareen Gul
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Taimoor Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Natural and Medical Sciences Research Centre, University of Nizwa, 616, Nizwa, Sultanate of Oman
| | - Muhammad Naeem Bajwa
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067, Orléans Cedex 2, France
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067, Orléans Cedex 2, France
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067, Orléans Cedex 2, France
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067, Orléans Cedex 2, France
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | | | - Chunzhao Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Institute of Biochemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, 45067, Orléans Cedex 2, France.
- COSM'ACTIFS, Bioactifs et Cosmétiques, CNRS GDR3711, 45067, Orléans Cedex 2, France.
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
12
|
Smetanska I, Tonkha O, Patyka T, Hunaefi D, Mamdouh D, Patyka M, Bukin A, Mushtruk M, Slobodyanyuk N, Omelian A. The influence of yeast extract and jasmonic acid on phenolic acids content of in vitro hairy root cultures of Orthosiphon aristatus. POTRAVINARSTVO 2021. [DOI: 10.5219/1508] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phenolic acids represent a big group of plant secondary metabolites that can be used as food additives, nutraceuticals, and pharmaceuticals. Obtaining phenolic acids from the plant in vitro cultures provide an attractive alternative to produce high-value plant-derived products. The impact of yeast extract and jasmonic acid on the induction of defense responses and consequently the production of phenolic acids in vitro hairy root cultures of O. aristatus have been investigated. Treatment of O. aristatus cultures with jasmonic acid caused accumulation of 12.98 mg.g-1 DW of phenolic acids, elicitation with yeast extract resulted in the highest amount of phenolic acids, particularly in 17.99 mg.g-1 DW as compared to 4.03 mg.g-1 DW for the non-treated cultures. Individual phenolic acids showed a different response to elicitation. Particularly rosmarinic acid content on the control plot reached 2.89 mg.g-1 DW, while after the treatment with jasmonic acid is increased to 10.84 mg.g-1 DW and after yeast application, it was 14.31 mg.g-1 DW. Also, caffeic acid content increased until 0.75 and 2.01 mg.g-1 DW after application of jasmonic acid and yeast extract, while at the control plot its concentration was 0.58 mg.g-1 DW. Application of yeast extract influenced synthesis of phenolic acids in vitro cultures of O. aristatus stronger as jasmonic acid treatment.
Collapse
|
13
|
Badihi L, Gerami M, Akbarinodeh D, Shokrzadeh M, Ramezani M. Physio-chemical responses of exogenous calcium nanoparticle and putrescine polyamine in Saffron ( Crocus sativus L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:119-133. [PMID: 33627967 PMCID: PMC7873192 DOI: 10.1007/s12298-020-00923-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/07/2020] [Accepted: 12/28/2020] [Indexed: 06/01/2023]
Abstract
The aim of this study was to investigate the effect of calcium nanoparticles (CaNP) and putrescine polyamine on some physiological and biochemical properties of saffron (Crocus sativus L.) under the control condition. Saffron corm was treated by different concentrations of putrescine (0, 0.25, 0.5, 1, 2 mM) and CaNP (0, 0.25, 0.5, 1, 1.5 g/l). The treatment of corm with putrescine and CaNP separately caused a significant increase in morphological parameters. Changes in biochemical parameters were also significant. Compared to other concentrations, the highest concentration of putrescine (1 mM) and CaNP (1 g/l) treatment in the plant showed the greatest effect. The combined effect of putrescine and CaNP treatment on morphological parameters was significant. The results of HPLC analysis showed that CaNP treatment alone is more effective on crocin, picrocrocin, and safranal content than the combined effect of CaNP and putrescine. The present study reported the functional potential of CaNP and putrescine combination to increase growth and phytochemical properties in Crocus sativus.
Collapse
Affiliation(s)
- Leyla Badihi
- Horticultural Sciences (Medicinal Plants), Sana Higher Education Institute, Sari, Iran
| | - Mahyar Gerami
- Faculty Member of Sana Higher Education Institute, Sari, Iran
| | - Davood Akbarinodeh
- Department of Water Engineering, Islamic Azad University, Qaemshahr Branch, Qaemshahr, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Mazandaran University of Medical Sciences, Sari, Iran
| | | |
Collapse
|
14
|
Kumar A, Sharma M, Chaubey SN, Kumar A. Homology modeling and molecular dynamics based insights into Chalcone synthase and Chalcone isomerase in Phyllanthus emblica L. 3 Biotech 2020; 10:373. [PMID: 32832333 DOI: 10.1007/s13205-020-02367-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Chalcone synthase (CHS) and chalcone isomerase (CHI) plays a major role in the biosynthesis of flavonoid in plants. In this study, we made extensive bioinformatics analysis to gain functional and structural insight into PeCHS and PeCHI proteins. The phylogenetic distribution of PeCHS and PeCHI genes encoding proteins demonstrated the close evolutionary relationship with different CHS and CHI proteins of other dicot plants. MicroRNA target analysis showed miR169n and 3p miR5053 targeting PeCHS gene while miR169c-3p and miR4248 are targeting PeCHI gene, respectively. Three-dimensional structural models of PeCHS and PeCHI proteins were elucidated by homology modeling with Ramachandran plots showing the excellent geometry of the proteins structure. Molecular docking revealed that cinnamoyl-coa and naringenin chalcone substrates are strongly bound to PeCHS and PeCHI proteins, respectively. Finally, molecular dynamics (MD) simulation for 30 ns, further yielded stability checks of ligands in the binding pocket and behavior of protein complexes. Thus MD simulation and interaction fraction analysis showed the stable conformation of PeCHS and PeCHI proteins with their respective substrates during theee simulation. Our study provides first-hand structural prospective of PeCHS and PeCHI proteins towards understanding the mechanism of flavonoid biosynthetic pathway in P. emblica.
Collapse
Affiliation(s)
- Anuj Kumar
- Advance Centre for Computational and Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Dehradun, 248007 India
| | - Mansi Sharma
- Bioclues.Org, Kukatpally, Hyderabad, 500072 India
| | - Swaroopa Nand Chaubey
- Department of Bioinformatics, Biotech Park, Sector G, Jankipuram, Lucknow, UP 226021 India
| | - Avneesh Kumar
- Department of Botany, Akal University, Talwandi Sabo, Bathinda, 151302 India
| |
Collapse
|
15
|
Establishment of in vitro genetically engineered cultures in Scutellaria orientalis and S. araxensis. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00540-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
In vitro production and distribution of flavonoids in Glycyrrhiza uralensis Fisch. Journal of Food Science and Technology 2020; 57:1553-1564. [PMID: 32180652 DOI: 10.1007/s13197-019-04191-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
Glycyrrhiza uralensis Fisch. is known as a common Chinese medicinal herb used to harmonize the effects of other ingredients in most Chinese herbal prescriptions. The rapid production of flavonoids in vitro remains unknown in G. uralensis Fisch. To investigate the in vitro adventitious root regeneration and flavonoid accumulation characteristics in G. uralensis for restrictions on collecting wild plants, suspension cultural and freezing microtomy with histochemical assays were carried out. We reported that multiple adventitious roots were initiated from hypocotyls and stems of G. uralensis. Indole-3-butyric acid (IBA) was more conducive than NAA (1-naphthaleneacetic acid) in inducing G. uralensis adventitious roots, but the addition of 6-BA (6-benzylaminopurine) and KT (kinetin) suppressed the formation of adventitious roots. While the concentration of IBA was 1.0 mg L-1, the flavonoid content and yield were the highest at 19.96 mg g-1 and 1.23 mg g-1, respectively. The optimum medium for adventitious root induction was 1/4-strength Murashige and Skoog's medium containing 0.1 mg L-1 IBA. The content of flavonoids in adventitious roots and apicals cultured in vitro was higher than that in suspension callus, reaching 3.87 times the callus flavonoid content. The histochemical localization of flavonoids showed that G. uralensis flavonoids mainly distributed in the epidermal parenchyma cells of the callus outer layers and gradually accumulated in cell wall and cell gaps of the epidermis and endodermis of adventitious roots along with the primary growth of adventitious roots, indicating that there were no flavonoids in the roots at the early stage of adventitious roots formation. The results showed that calli inducing adventitious roots and apicals for 30 days obtained the highest yield of flavonoid, indicating effective production for flavonoids instead of wild culture. AlCl3 ethanol solution was better than NaOH aqueous solution in terms of chromogenic and localization effects. We concluded that the highest yield of flavonoid and effective production for flavonoid instead of wild culture could be obtained from calli inducing adventitious roots and apicals.
Collapse
|
17
|
Arbuscular Mycorrhizal Fungi Can Compensate for the Loss of Indigenous Microbial Communities to Support the Growth of Liquorice ( Glycyrrhiza uralensis Fisch.). PLANTS 2019; 9:plants9010007. [PMID: 31861523 PMCID: PMC7020511 DOI: 10.3390/plants9010007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/09/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023]
Abstract
Soil microorganisms play important roles in nutrient mobilization and uptake of mineral nutrition in plants. Agricultural management, such as soil sterilization, can have adverse effects on plant growth because of the elimination of indigenous microorganisms. Arbuscular mycorrhizal (AM) fungi are one of the most important beneficial soil microorganisms for plant growth. However, whether AM fungi can compensate for the loss of indigenous microbial communities to support plant growth and metabolism is largely unknown. In this study, a pot experiment was conducted to investigate the effects of AM fungi on plant growth and secondary metabolism in sterilized and unsterilized soil. We used liquorice (Glycyrrhiza uralensis Fisch.), an important medicinal plant as the host, which was inoculated with the AM fungus Rhizophagus irregularis or not and grown in unsterilized or sterilized soil. Plant photosynthesis traits, plant growth and nutrition level, concentrations of the secondary metabolites, and expression levels of biosynthesis genes were determined. The results showed that soil sterilization decreased plant growth, photosynthesis, and glycyrrhizin and liquiritin accumulation, and moreover, downregulated the expression of related biosynthesis genes. Inoculation with R. irregularis in sterilized soil offset the loss of indigenous microbial communities, resulting in plant growth and glycyrrhizin and liquiritin concentrations similar to those of plants grown in unsterilized soil. Thus, AM fungi could compensate for the loss of indigenous microbial communities by soil sterilization to support plant growth and secondary metabolism.
Collapse
|
18
|
Meng D, Yang Q, Dong B, Song Z, Niu L, Wang L, Cao H, Li H, Fu Y. Development of an efficient root transgenic system for pigeon pea and its application to other important economically plants. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1804-1813. [PMID: 30803117 PMCID: PMC6686128 DOI: 10.1111/pbi.13101] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 05/30/2023]
Abstract
For non-model plants, functional characterization of genes is still hampered by lack of efficient stable transformation procedures. Here, we report a simple, fast and efficient transformation technique with Agrobacterium rhizogenes for generating stable transgenic roots in living plants to facilitate functional studies in vivo. We showed that injection of A. rhizogenes into stems of various plant species lead to stable transgenic root generation, which can sustain plant growth after the original, non-transgenic roots were cut off. A transformation system was established for pigeon pea, a major woody food crop, after optimizing the selection of A. rhizogenes strains, bacterium concentration, injection position and seedling age. RT-PCR and fluorescence observation indicated a transgenic root induction efficiency of about 39% in pigeon pea. Furthermore, induction of hairy roots was achieved in nine out of twelve tested economically important plants at an efficiency of 15-39%. As proof of concept, bimolecular fluorescence complementation (BiFC) assay was applied to test the interaction between CcCIPK14 and CcCBL1/2 in pigeon pea. Additionally, ectopic expression of the bZIP transcription factor MdHY5 from apple confirmed the utility of the transformation technique for engineering anthocyanin synthesis in roots. Taken together, we show that this method allows fast in vivo studies of gene function in a wide range of plant species.
Collapse
Affiliation(s)
- Dong Meng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- The College of ForestryBeijing Forestry UniversityBeijingChina
| | - Qing Yang
- The College of ForestryBeijing Forestry UniversityBeijingChina
| | - Biying Dong
- The College of ForestryBeijing Forestry UniversityBeijingChina
| | - Zhihua Song
- The College of ForestryBeijing Forestry UniversityBeijingChina
| | - Lili Niu
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
| | - Litao Wang
- The College of ForestryBeijing Forestry UniversityBeijingChina
| | - Hongyan Cao
- The College of ForestryBeijing Forestry UniversityBeijingChina
| | - Hanghang Li
- The College of ForestryBeijing Forestry UniversityBeijingChina
| | - Yujie Fu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijingChina
- The College of ForestryBeijing Forestry UniversityBeijingChina
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
| |
Collapse
|
19
|
Liu X, Ahmad N, Yang L, Fu T, Kong J, Yao N, Dong Y, Wang N, Li X, Wang F, Liu X, Liu W, Li H. Molecular cloning and functional characterization of chalcone isomerase from Carthamus tinctorius. AMB Express 2019; 9:132. [PMID: 31435742 PMCID: PMC6704227 DOI: 10.1186/s13568-019-0854-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
Flavonoid is one of the widespread groups of plant secondary metabolites that provide several health benefits. However, the explicit mechanism of flavonoid biosynthesis in plants largely remains unclear. Chalcone isomerase an important class of enzyme presents crucial role during flavonoid metabolism in many plants. Here, we isolated the full-length cDNA (1161 bp) of a novel Chalcone Isomerase from safflower encoding 217 amino acid polypeptide using oligos from 5′ and 3′ ends. The result of Sanger sequencing and phylogenetic analysis revealed that CtCHI is highly homologous to other plants, including typical polyadenylation signals AATAA and Poly A tail. The transient expression in tobacco mesophyll cells using Green Fluorescent Protein tagging determined the subcellular localization of CtCHI in cell membrane and nucleus. The CtCHI ectopic expression in different safflower varieties at different flowering stages showed that CtCHI were found in abundance at the bud stage of Jihong No. 1. Further correlation analysis between CtCHI expression and flavonoid accumulation at various flowering phases suggested that CtCHI might play a potential role during flavonoid biosynthesis in safflower. In addition, the overexpression of pBASTA-CtCHI in transgenic Arabidopsis infiltrated with floral dip transformation showed relatively higher expression level and increased flavonoid accumulation than wild type. Moreover, the in vitro enzymatic activity and HPLC analysis of transgenic Arabidopsis confirmed the de novo biosynthesis of Rutin. Taken together, our findings laid the foundation of identifying an important gene that might influence flavonoid metabolism in safflower.
Collapse
|
20
|
Chen C, Zhang H, Dong C, Ji H, Zhang X, Li L, Ban Z, Zhang N, Xue W. Effect of ozone treatment on the phenylpropanoid biosynthesis of postharvest strawberries. RSC Adv 2019; 9:25429-25438. [PMID: 35530059 PMCID: PMC9070013 DOI: 10.1039/c9ra03988k] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/02/2019] [Indexed: 12/19/2022] Open
Abstract
Ozone treatment at a suitable concentration can improve the antioxidant capacity of postharvest fruits. However, few studies have examined the antioxidant bioactive compounds in ozone-treated postharvest strawberries, especially in relation to proteomics. In this study, the total phenol content (TPC), total flavonoid content (TFC), and total anthocyanin content (TAC) were used as the main antioxidant compound indicators and unlabeled proteomics was used to study the metabolism of phenylpropanoids in postharvest strawberries (Jingtaoxiang) treated with different concentrations of ozone (0, 1, 3, and 5 ppm) throughout the duration of storage. The results showed that the postharvest strawberries treated with 5 ppm ozone concentration exhibited improved accumulation of total phenols, flavonoids and anthocyanins in the antioxidant bioactive compounds, which was beneficial to the expression of phenylpropanoid metabolism-related proteins over the whole storage period compared with the other three groups. The results of proteomics were consistent with the changes in the key metabolites of phenylpropanoids, which indicated that ozone treatment at a suitable concentration aids the accumulation of TPC, TAC and TFC by promoting the key proteins associated with phenylpropanoid metabolism.
Collapse
Affiliation(s)
- Cunkun Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University Beijing China
- College of Food Science and Nutritional Engineering, China Agriculture University Beijing China
| | - Huijie Zhang
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology Tianjin China
| | - Chenghu Dong
- National Engineering Technology Research Center for Preservation of Agricultural Products, China, Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture of China, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products Tianjin China
| | - Haipeng Ji
- National Engineering Technology Research Center for Preservation of Agricultural Products, China, Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture of China, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products Tianjin China
| | - Xiaojun Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University Beijing China
- College of Food Science and Nutritional Engineering, China Agriculture University Beijing China
| | - Li Li
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University Hangzhou China
| | - Zhaojun Ban
- Zhejiang Provincial Key Laboratory of Chemical and Biological Processing Technology of Farm Products, Zhejiang University of Science and Technology Hangzhou China
| | - Na Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products, China, Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Ministry of Agriculture of China, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products Tianjin China
| | - Wentong Xue
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University Beijing China
- College of Food Science and Nutritional Engineering, China Agriculture University Beijing China
| |
Collapse
|
21
|
Halder M, Sarkar S, Jha S. Elicitation: A biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng Life Sci 2019; 19:880-895. [PMID: 32624980 DOI: 10.1002/elsc.201900058] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/07/2019] [Accepted: 07/15/2019] [Indexed: 11/10/2022] Open
Abstract
Elicitation is a possible aid to overcome various difficulties associated with the large-scale production of most commercially important bioactive secondary metabolites from wild and cultivated plants, undifferentiated or differentiated cultures. Secondary metabolite accumulation in vitro or their efflux in culture medium has been elicited in the undifferentiated or differentiated tissue cultures of several plant species by the application of a low concentration of biotic and abiotic elicitors in the last three decades. Hairy root cultures are preferred for the application of elicitation due to their genetic and biosynthetic stability, high growth rate in growth regulator-free media, and production consistence in response to elicitor treatment. Elicitors act as signal, recognized by elicitor-specific receptors on the plant cell membrane and stimulate defense responses during elicitation resulting in increased synthesis and accumulation of secondary metabolites. Optimization of various parameters, such as elicitor type, concentration, duration of exposure, and treatment schedule is essential for the effectiveness of the elicitation strategies. Combined application of different elicitors, integration of precursor feeding, or replenishment of medium or in situ product recovery from the roots/liquid medium with the elicitor treatment have showed improved accumulation of secondary metabolites due to their synergistic effect. This is a comprehensive review about the progress in the elicitation approach to hairy root cultures from 2010 to 2019 and the information provided is valuable and will be of interest for scientists working in this area of plant biotechnology.
Collapse
Affiliation(s)
- Mihir Halder
- Department of Botany Barasat Government College Kolkata India
| | | | - Sumita Jha
- Department of Botany Calcutta University Kolkata India
| |
Collapse
|
22
|
Yin YC, Zhang XD, Gao ZQ, Hu T, Yang L, Zhang ZX, Li WD, Liu Y. Over-expressing root-specific β-amyrin synthase gene increases glycyrrhizic acid content in hairy roots of glycyrrhiza uralensis. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
23
|
Rothenberg DO, Yang H, Chen M, Zhang W, Zhang L. Metabolome and Transcriptome Sequencing Analysis Reveals Anthocyanin Metabolism in Pink Flowers of Anthocyanin-Rich Tea ( Camellia sinensis). Molecules 2019; 24:molecules24061064. [PMID: 30889908 PMCID: PMC6471635 DOI: 10.3390/molecules24061064] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 11/23/2022] Open
Abstract
Almost all flowers of the tea plant (Camellia sinensis) are white, which has caused few researchers to pay attention to anthocyanin accumulation and color changing in tea flowers. A new purple-leaf cultivar, Baitang purple tea (BTP) was discovered in the Baitang Mountains of Guangdong, whose flowers are naturally pink, and can provide an opportunity to understand anthocyanin metabolic networks and flower color development in tea flowers. In the present study, twelve anthocyanin components were identified in the pink tea flowers, namely cyanidin O-syringic acid, petunidin 3-O-glucoside, pelargonidin 3-O-beta-d-glucoside, which marks the first time these compounds have been found in the tea flowers. The presence of these anthocyanins seem most likely to be the reason for the pink coloration of the flowers. Twenty-one differentially expressed genes (DEGs) involved in anthocyanin pathway were identified using KEGG pathway functional enrichment, and ten of these DEG’s screened using venn and KEGG functional enrichment analysis during five subsequent stages of flower development. By comparing DEGs and their expression levels across multiple flower development stages, we found that anthocyanin biosynthesis and accumulation in BTP flowers mainly occurred between the third and fourth stages (BTP3 to BTP4). Particularly, during the period of peak anthocyanin synthesis 17 structural genes were upregulated, and four structural genes were downregulated only. Ultimately, eight critical genes were identified using weighted gene co-expression network analysis (WGCNA), which were found to have direct impact on biosynthesis and accumulation of three flavonoid compounds, namely cyanidin 3-O-glucoside, petunidin 3-O-glucoside and epicatechin gallate. These results provide useful information about the molecular mechanisms of coloration in rare pink tea flower of anthocyanin-rich tea, enriching the gene resource and guiding further research on anthocyanin accumulation in purple tea.
Collapse
Affiliation(s)
| | - Haijun Yang
- Center of Experimental Teaching for Common Basic Courses, South China Agricultural University, Guangzhou 510640, China.
| | - Meiban Chen
- College of Horticulture Science, South China Agricultural University, Guangzhou 510640, China.
| | - Wenting Zhang
- College of Horticulture Science, South China Agricultural University, Guangzhou 510640, China.
| | - Lingyun Zhang
- College of Horticulture Science, South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
24
|
Yin YC, Zhang XD, Gao ZQ, Hu T, Liu Y. The Research Progress of Chalcone Isomerase (CHI) in Plants. Mol Biotechnol 2019; 61:32-52. [PMID: 30324542 DOI: 10.1007/s12033-018-0130-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chalcone isomerase (CHI) is the second rate-limiting and the first reported enzyme involved in the biosynthetic pathway of flavonoids. It catalyzes the intramolecular cyclization reaction, converting the bicyclic chalcone into tricyclic (2S)-flavanone. In this paper, we obtained and analyzed 916 DNA sequences, 1310 mRNA sequences, and 2403 amino acid sequences of CHI registered in NCBI by Jan 2018. The full length of CHI DNA sequences ranges from 218 to 3758 bp, CHI mRNA sequences ranges from 265 to 1436 bp, and CHI amino acid sequences ranges from 35 to 465 amino acid residues. Forty representative species were selected from each family to construct the maximum likelihood tree and analyze the evolutionary relationship. According to the medicinal and agricultural use, 13 specific species were selected, and their physicochemical properties were analyzed. The molecular weight of CHI ranges from 23 to 26 kD, and the isoelectric point of CHI ranges from 4.93 to 5.85. All the half-life periods of CHI are 30 h in mammalian reticulocytes in vitro, 20 h in yeast, and 10 h in E. coli in vivo, theoretically. The consistency of the 13 CHI amino acid sequences is 63.55%. According to the similarity between each sequence, we selected four CHI sequences of Paeonia suffruticosa, Paeonia lactiflora, Taxus wallichiana, and Tradescantia hirsutiflora for secondary structure, three-dimensional protein models, conserved domains, transmembrane structure, and signal peptide prediction analysis. It was found that CHI sequences of Paeonia suffruticosa and Paeonia lactiflora owned a higher similarity; they both share the template 4doi.1.A. The four CHI all have no signal peptides, and they exert their activities in cytoplasm. Then, PubMed, Web of Science, Science Direct, and Research Gate were used as information sources through the search terms 'chalcone isomerase', 'biosynthesis', 'expression', and their combinations to get the latest and comprehensive information of CHI, mainly from the year 2010 to 2018. More than 300 papers were searched and 116 papers were reviewed in the present work. We summarized the classification of CHI, catalytic reaction mechanism of CHI, and progress of genetic engineering regarding CHI clone, expression, and exogenous stimulator regulation. This paper will lay a foundation for further studies of CHI and other functional genes involved in flavonoids biosynthetic pathway.
Collapse
Affiliation(s)
- Yan-Chao Yin
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Xiao-Dong Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Zhi-Qiang Gao
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Ting Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China
| | - Ying Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Yangguang South Street, Fangshan District, Beijing, 102401, China.
| |
Collapse
|
25
|
Lu J, Liang W, Wei K, Li J, Li J, Wang J, Gao W. Induction of signal molecules and expression of functional genes after Pichia pastoris stimulation in Glycyrrhiza uralensis Fisch adventitious roots. J Food Biochem 2019; 43:e12798. [PMID: 31353580 DOI: 10.1111/jfbc.12798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/01/2022]
Abstract
Glycyrrhiza uralensis Fisch is threatened by over-development and consumption, and therefore, in urgent need of protection. Elicitation is considered to be an effective strategy to enhance the secondary metabolites in plant cell and organ cultures. Secondary metabolite, signal molecules, and gene expression in adventitious roots were studied by HPLC-ESI-MSn , commercially available kits and qRT-PCR method, respectively. In the present study, with the addition of linolenic acid, linoleic acid, and Pichia pastoris, the highest concentration of metabolites was achieved by P. pastoris treatment. The contents of total flavonoids (7.16 mg/g) and polysaccharide (149.76 mg/g) peaked at 100 mg/L of P. pastoris, which increased by 3.09-fold and 3.28-fold compared with the control, respectively. However, the highest concentration of glycyrrhizic acid (0.62 mg/g) and glycyrrhetinic acid (0.29 mg/g) were obtained in 200 mg/L of P. pastoris and which were 3.89-fold and 2.42-fold more than the control group, respectively. ESI-MSn analysis indicated that licoricesaponine B2, licoricesapoine G2, licoricesaponine J2, ononin, uralenin, gancaonin C were only identified in the P. pastoris treatment group. Furthermore, P. pastoris also enhanced accumulation of salicylic acid, jasmonic acid, nitric oxide and activities of antioxidant enzymes involved in the plant defense response. In addition, the transcriptional activity of genes involved in glycyrrhizic acid biosynthesis was significantly increased under the treatment of P. pastoris. The results provided a scientific evidence for the further exploitation of G. uralensis adventitious roots and clinical medication. PRACTICAL APPLICATIONS: This study provided an effective strategy to enhance metabolites by Pichia pastoris treatment in adventitious roots of G. uralensis. The data provide a scientific evidence for the further exploitation of G. uralensis adventitious roots and clinical medication.
Collapse
Affiliation(s)
- Jun Lu
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
| | - Wenxia Liang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Conservation and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, People's Republic of China
| | - Jianli Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Jing Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
| | - Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People's Republic of China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, People's Republic of China
| |
Collapse
|
26
|
Tuan PA, Kim YS, Kim Y, Thwe AA, Li X, Park CH, Lee SY, Park SU. Molecular characterization of flavonoid biosynthetic genes and accumulation of baicalin, baicalein, and wogonin in plant and hairy root of Scutellaria lateriflora. Saudi J Biol Sci 2018; 25:1639-1647. [PMID: 30591781 PMCID: PMC6303135 DOI: 10.1016/j.sjbs.2016.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 12/30/2022] Open
Abstract
Scutellaria lateriflora is well known for its medical applications because of the presence of flavanoids and alkaloids. The present study aimed to explore the molecular aspects and regulations of flavanoids. Five partial cDNAs encoding genes that are involved in the flavonoid biosynthetic pathway: phenylalanine ammonia lyase (SlPAL), cinnamate 4-hydroxylase (SlC4H), 4-coumaroyl CoA ligase (Sl4CL), chalcone synthase (SlCHS), and chalcone isomerase (SlCHI) were isolated from S. lateriflora. Organ expression analysis showed that these genes were expressed in all organs analyzed with the highest levels correlating with the richest accumulation of wogonin in the roots. Baicalin and baicalein differentially accumulated in S. lateriflora plants, with the highest concentration of baicalin and baicalein detected in the leaves and stems, respectively. Exogenous methyl jasmonate (MeJA) significantly enhanced the expression of SlCHS and SlCHI, and accumulation of baicalin (22.54 mg/g), baicalein (1.24 mg/g), and wogonin (5.39 mg/g) in S. lateriflora hairy roots. In addition, maximum production of baicalin, baicalein, and wogonin in hairy roots treated with MeJA was approximately 7.44-, 2.38-, and 2.12-fold, respectively. Light condition increased the expression level of SlCHS, the first committed step in flavonoid biosynthesis in hairy roots of S. lateriflora after 3 and 4 weeks of development compared to the dark condition. Dark-grown hairy roots contained a higher content of baicalin and baicalein than light-grown hairy roots, while light-grown hairy roots accumulated more wogonin than dark-grown hairy roots. These results may helpful for the metabolic engineering of flavonoids biosynthesis in S. lateriflora.
Collapse
Affiliation(s)
- Pham Anh Tuan
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 305-764, South Korea
| | - Young Seon Kim
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 305-764, South Korea
| | - Yeji Kim
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 305-764, South Korea
| | - Aye Aye Thwe
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 305-764, South Korea
| | - Xiaohua Li
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 305-764, South Korea
| | - Chang Ha Park
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 305-764, South Korea
| | - Sook Young Lee
- Regional Innovation Center for Dental Science & Engineering, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 501-759, South Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon 305-764, South Korea
| |
Collapse
|
27
|
Jeong YJ, An CH, Park SC, Pyun JW, Lee J, Kim SW, Kim HS, Kim H, Jeong JC, Kim CY. Methyl Jasmonate Increases Isoflavone Production in Soybean Cell Cultures by Activating Structural Genes Involved in Isoflavonoid Biosynthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4099-4105. [PMID: 29630360 DOI: 10.1021/acs.jafc.8b00350] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Isoflavonoids are a class of biologically active natural products that accumulate in soybean ( Glycine max L.) seeds during development, play vital roles in plant defense, and act as phytoestrogens with important human health benefits. Plant cell suspension cultures represent an excellent source of biologically important secondary metabolites. We found that methyl jasmonate (MJ) treatment increased isoflavone production in soybean suspension cell cultures. To investigate the underlying mechanism, we examined the expression of structural genes ( CHS6, CHS7, CHI1, IFS1, IFS2, IFMaT, and HID) in the isoflavonoid biosynthesis pathways in soybean suspension cells under various abiotic stress conditions. MJ treatment had the most significant effect on gene expression and increased the production of three glycosidic isoflavones (daidzin, malonyldaidzin, and malonylgenistin), with the maximum total isoflavone production (∼10-fold increase) obtained on day 9 after MJ application. MJ treatment significantly increased total phenolic contents and upregulated isoflavonoid biosynthesis genes, shedding light on the underlying mechanism.
Collapse
Affiliation(s)
- Yu Jeong Jeong
- Biological Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup 56212 , Republic of Korea
| | - Chul Han An
- Biological Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup 56212 , Republic of Korea
| | - Sung-Chul Park
- Biological Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup 56212 , Republic of Korea
| | - Jang Won Pyun
- Biological Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup 56212 , Republic of Korea
| | - Jiyoung Lee
- Biological Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup 56212 , Republic of Korea
| | - Suk Weon Kim
- Biological Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup 56212 , Republic of Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon 34141 , Republic of Korea
| | - HyeRan Kim
- Plant Systems Engineering Research Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon 34141 , Republic of Korea
| | - Jae Cheol Jeong
- Biological Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup 56212 , Republic of Korea
| | - Cha Young Kim
- Biological Resource Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Jeongeup 56212 , Republic of Korea
| |
Collapse
|
28
|
Zhang X, Ding X, Ji Y, Wang S, Chen Y, Luo J, Shen Y, Peng L. Measurement of metabolite variations and analysis of related gene expression in Chinese liquorice (Glycyrrhiza uralensis) plants under UV-B irradiation. Sci Rep 2018; 8:6144. [PMID: 29670187 PMCID: PMC5906665 DOI: 10.1038/s41598-018-24284-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/28/2018] [Indexed: 12/13/2022] Open
Abstract
Plants respond to UV-B irradiation (280–315 nm wavelength) via elaborate metabolic regulatory mechanisms that help them adapt to this stress. To investigate the metabolic response of the medicinal herb Chinese liquorice (Glycyrrhiza uralensis) to UV-B irradiation, we performed liquid chromatography tandem mass spectrometry (LC-MS/MS)-based metabolomic analysis, combined with analysis of differentially expressed genes in the leaves of plants exposed to UV-B irradiation at various time points. Fifty-four metabolites, primarily amino acids and flavonoids, exhibited changes in levels after the UV-B treatment. The amino acid metabolism was altered by UV-B irradiation: the Asp family pathway was activated and closely correlated to Glu. Some amino acids appeared to be converted into antioxidants such as γ-aminobutyric acid and glutathione. Hierarchical clustering analysis revealed that various flavonoids with characteristic groups were induced by UV-B. In particular, the levels of some ortho-dihydroxylated B-ring flavonoids, which might function as scavengers of reactive oxygen species, increased in response to UV-B treatment. In general, unigenes encoding key enzymes involved in amino acid metabolism and flavonoid biosynthesis were upregulated by UV-B irradiation. These findings lay the foundation for further analysis of the mechanism underlying the response of G. uralensis to UV-B irradiation.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoli Ding
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia, 750021, China.,School of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China
| | - Yaxi Ji
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Shouchuang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yingying Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yingbai Shen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China. .,National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, 100083, China.
| | - Li Peng
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, Ningxia, 750021, China. .,School of Life Science, Ningxia University, Yinchuan, Ningxia, 750021, China.
| |
Collapse
|
29
|
Xie W, Hao Z, Zhou X, Jiang X, Xu L, Wu S, Zhao A, Zhang X, Chen B. Arbuscular mycorrhiza facilitates the accumulation of glycyrrhizin and liquiritin in Glycyrrhiza uralensis under drought stress. MYCORRHIZA 2018; 28:285-300. [PMID: 29455337 DOI: 10.1007/s00572-018-0827-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/07/2018] [Indexed: 05/27/2023]
Abstract
Liquorice (Glycyrrhiza uralensis) is an important medicinal plant for which there is a huge market demand. It has been reported that arbuscular mycorrhizal (AM) symbiosis and drought stress can stimulate the accumulation of the active ingredients, glycyrrhizin and liquiritin, in liquorice plants, but the potential interactions of AM symbiosis and drought stress remain largely unknown. In the present work, we investigated mycorrhizal effects on plant growth and accumulation of glycyrrhizin and liquiritin in liquorice plants under different water regimes. The results indicated that AM plants generally exhibited better growth and physiological status including stomatal conductance, photosynthesis rate, and water use efficiency compared with non-AM plants. AM inoculation up-regulated the expression of an aquaporin gene PIP and decreased root abscisic acid (ABA) concentrations under drought stress. In general, AM plants displayed lower root carbon (C) and nitrogen (N) concentrations, higher phosphorus (P) concentrations, and therefore, lower C:P and N:P ratios but higher C:N ratio than non-AM plants. On the other hand, AM inoculation increased root glycyrrhizin and liquiritin concentrations, and the mycorrhizal effects were more pronounced under moderate drought stress than under well-watered condition or severe drought stress for glycyrrhizin accumulation. The accumulation of glycyrrhizin and liquiritin in AM plants was consistent with the C:N ratio changes in support of the carbon-nutrient balance hypothesis. Moreover, the glycyrrhizin accumulation was positively correlated with the expression of glycyrrhizin biosynthesis genes SQS1, β-AS, CYP88D6, and CYP72A154. By contrast, no significant interaction of AM inoculation with water treatment was observed for liquiritin accumulation, while we similarly observed a positive correlation between liquiritin accumulation and the expression of a liquiritin biosynthesis gene CHS. These results suggested that AM inoculation in combination with proper water management potentially could improve glycyrrhizin and liquiritin accumulation in liquorice roots and may be practiced to promote liquorice cultivation.
Collapse
Affiliation(s)
- Wei Xie
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, 136000, China
| | - Xuelian Jiang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Lijiao Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songlin Wu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- Environment Centres (CMLR), Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Aihua Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Sun Y, Wang J, Qiu Y, Liu T, Song J, Li X. Identification of 'Xinlimei' radish candidate genes associated with anthocyanin biosynthesis based on a transcriptome analysis. Gene 2018. [PMID: 29518548 DOI: 10.1016/j.gene.2018.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Radish is an economically important vegetable crop belonging to the family Brassicaceae. The high anthocyanin content of the 'Xinlimei' radish roots has been associated with diverse health benefits. However, there is a lack of transcript-level information regarding anthocyanin biosynthesis. In the present study, the 'Xinlimei' radish root transcriptome was analyzed by RNA sequencing at five developmental stages. A total of 222,384,034 clean reads were obtained and 32,253 unigenes were annotated. Expression profiles revealed 10,890 differentially expressed genes (DEGs) among the five analyzed libraries. The DEGs were predominantly involved in KEGG pathways related to the biosynthesis of phenylpropanoids, flavonoids, flavone, and flavonol. The transcriptome data revealed 44 structural and 182 transcription factor genes (TFs) associated with the anthocyanin biosynthetic pathway. Ten structural genes (i.e., 4CL3, CHSB2, CHS1, CHS3, F3H1, F3'H, DFR, DFR1, ANS, and UFGT) and two MYB genes, which were highly and differentially expressed during root development, may be critical for anthocyanin biosynthesis. Additionally, the co-expression of TFs and structural genes was analyzed. Three structural genes (i.e., DFR, ANS, and UFGT) were validated by molecular cloning. The qRT-PCR results indicated that the expression profiles of DEGs were generally consistent with the high-throughput sequencing results. These findings helped identify candidate genes involved in anthocyanin biosynthesis and may be useful for clarifying the molecular mechanism underlying the accumulation of anthocyanins in radish roots.
Collapse
Affiliation(s)
- Yuyan Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinglei Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Qiu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tongjin Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiangping Song
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xixiang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
31
|
Crystal structure and enzymatic properties of chalcone isomerase from the Antarctic vascular plant Deschampsia antarctica Desv. PLoS One 2018; 13:e0192415. [PMID: 29394293 PMCID: PMC5796730 DOI: 10.1371/journal.pone.0192415] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/23/2018] [Indexed: 02/06/2023] Open
Abstract
Chalcone isomerase (CHI) is an important enzyme for flavonoid biosynthesis that catalyzes the intramolecular cyclization of chalcones into (S)-flavanones. CHIs have been classified into two types based on their substrate specificity. Type I CHIs use naringenin chalcone as a substrate and are found in most of plants besides legumes, whereas type II CHIs in leguminous plants can also utilize isoliquiritigenin. In this study, we found that the CHI from the Antarctic plant Deschampsia antarctica (DaCHI1) is of type I based on sequence homology but can use type II CHI substrates. To clarify the enzymatic mechanism of DaCHI1 at the molecular level, the crystal structures of unliganded DaCHI1 and isoliquiritigenin-bound DaCHI1 were determined at 2.7 and 2.1 Å resolutions, respectively. The structures revealed that isoliquiritigenin binds to the active site of DaCHI1 and induces conformational changes. Additionally, the activity assay showed that while DaCHI1 exhibits substrate preference for naringenin chalcone, it can also utilize isoliquiritigenin although the catalytic activity was relatively low. Based on these results, we propose that DaCHI1 uses various substrates to produce antioxidant flavonoids as an adaptation to oxidative stresses associated with harsh environmental conditions.
Collapse
|
32
|
Jiao J, Gai QY, Wang W, Zang YP, Niu LL, Fu YJ, Wang X. Remarkable enhancement of flavonoid production in a co-cultivation system of Isatis tinctoria L. hairy root cultures and immobilized Aspergillus niger. INDUSTRIAL CROPS AND PRODUCTS 2018; 112:252-261. [PMID: 32288265 PMCID: PMC7125528 DOI: 10.1016/j.indcrop.2017.12.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/29/2017] [Accepted: 12/06/2017] [Indexed: 05/08/2023]
Abstract
The dried roots of Isatis tinctoria L. are highly traded in the pharmaceutical industry due to their notable anti-influenza efficacy. For the first time, I. tinctoria hairy root cultures (ITHRCs) were co-cultured with two immobilized live GRAS (Generally Recognized as Safe) fungi, i.e. Aspergillus niger and Aspergillus niger, for the elevated production of pharmacologically active flavonoids. Immobilized A. niger (IAN) was exhibited as the superior elicitor in the plant-fungus co-cultivation system. The highest flavonoid production (3018.31 ± 48.66 μg/g DW) were achieved in IAN-treated ITHRCs under the optimal conditions of IAN spore concentration ca.104 spores/mL, temperature 30 °C, initial pH value of media 7.0 and time 72 h, which remarkably increased 6.83-fold relative to non-treated control (441.91 ± 7.35 μg/g DW). Also, this study revealed that IAN elicitation could trigger the sequentially transient accumulation of signal molecules and intensify the oxidative stress in ITHRCs, which both contributed to the up-regulated expression of associated genes involved in flavonoid biosynthetic pathway. Moreover, IAN could be reused at least five cycles with satisfactory performance. Overall, the coupled culture of IAN and ITHRCs is a promising and effective approach for the enhanced production of flavonoids, which allows for the improved applicability of these valuable compounds in pharmaceutical fields.
Collapse
Affiliation(s)
- Jiao Jiao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Qing-Yan Gai
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Wei Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yu-Ping Zang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Li-Li Niu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yu-Jie Fu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, PR China
| | - Xin Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| |
Collapse
|
33
|
Smetanska I. Sustainable Production of Polyphenols and Antioxidants by Plant In Vitro Cultures. REFERENCE SERIES IN PHYTOCHEMISTRY 2018. [DOI: 10.1007/978-3-319-54600-1_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Yang M, Li J, Ye C, Liang H. Characterization and expression analysis of a chalcone isomerase-like gene in relation to petal color of Actinidia chrysantha. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Wang L, Liu X, Meng X, Wu G, Xu F. Cloning and Expression Analysis of a Chalcone isomerase (CnCHI) Gene from Chamaemelum nobile. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/biotech.2018.19.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
|
37
|
Li J, Liu S, Wang J, Li J, Li J, Gao W. Gene expression of glycyrrhizin acid and accumulation of endogenous signaling molecule inGlycyrrhiza uralensisFisch adventitious roots afterSaccharomyces cerevisiaeandMeyerozyma guilliermondiiapplications. Biotechnol Appl Biochem 2017; 64:700-711. [DOI: 10.1002/bab.1534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 07/15/2016] [Accepted: 07/24/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Jianli Li
- Key Laboratory of Industrial Fermentation Microbiology; Ministry of Education; Tianjin University of Science and Technology; Tianjin People's Republic of China
| | - Shujie Liu
- Key Laboratory of Industrial Fermentation Microbiology; Ministry of Education; Tianjin University of Science and Technology; Tianjin People's Republic of China
| | - Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin People's Republic of China
| | - Jing Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin People's Republic of China
| | - Jinxin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin People's Republic of China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin People's Republic of China
| |
Collapse
|
38
|
Drobot KO, Matvieieva NA, Ostapchuk AM, Kharkhota MA, Duplij VP. Study of artemisinin and sugar accumulation in Artemisia vulgaris and Artemisia dracunculus "hairy" root cultures. Prep Biochem Biotechnol 2017. [PMID: 28644710 DOI: 10.1080/10826068.2017.1342262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We studied the effect of genetic transformation on biologically active compound (artemisinin and its co-products (ART) as well as sugars) accumulation in Artemisia vulgaris and Artemisia dracunculus "hairy" root cultures. Glucose, fructose, sucrose, and mannitol were accumulated in A. vulgaris and A. dracunculus "hairy" root lines. Genetic transformation has led in some cases to the sugar content increasing or appearing of nonrelevant for the control plant carbohydrates. Sucrose content was 1.6 times higher in A. vulgaris "hairy" root lines. Fructose content was found to be 3.4 times higher in A. dracunculus "hairy" root cultures than in the control roots. The accumulation of mannitol was a special feature of the leaves of A. vulgaris and A. dracunculus control roots. A. vulgaris "hairy" root lines differed also in ART accumulation level. The increase of ART content up to 1.02 mg/g DW in comparison with the nontransformed roots (up to 0.687 mg/g DW) was observed. Thus, Agrobacterium rhizogenes-mediated genetic transformation can be used for obtaining of A. vulgaris and A. dracunculus "hairy" root culture produced ART and sugars in a higher amount than mother plants.
Collapse
Affiliation(s)
- Kateryna O Drobot
- a Institute of Cell Biology and Genetic Engineering , National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Nadiia A Matvieieva
- a Institute of Cell Biology and Genetic Engineering , National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Andriy M Ostapchuk
- b D.K. Zabolotny Institute of Microbiology and Virology , National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Maxim A Kharkhota
- b D.K. Zabolotny Institute of Microbiology and Virology , National Academy of Sciences of Ukraine , Kyiv , Ukraine
| | - Volodymyr P Duplij
- a Institute of Cell Biology and Genetic Engineering , National Academy of Sciences of Ukraine , Kyiv , Ukraine
| |
Collapse
|
39
|
Wang J, Li J, Li J, Li J, Liu S, Gao W. LSP1, a responsive protein from Meyerozyma guilliermondii, elicits defence response and improves glycyrrhizic acid biosynthesis in Glycyrrhiza uralensis Fisch adventitious roots. J Cell Physiol 2017; 232:3510-3519. [PMID: 28105652 DOI: 10.1002/jcp.25811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 01/14/2023]
Abstract
This research explored the effects of protein and polysaccharide in Meyerozyma guilliermondii on active compounds in Glycyrrhiza uralensis Fisch adventitious roots. In this study, a responsive protein LSP1 was purified from the Meyerozyma guilliermondii since the excellent induction. The contents of total flavonoids (3.46 mg · g-1 ), glycyrrhizic acid (0.41 mg · g-1 ), glycyrrhetinic acid (0.41 mg · g-1 ), and polysaccharide (94.49 mg · g-1 ) in adventitious root peaked at LSP1 group, which were 1.6, 3.4, 2.4, 2.0-fold that of control, respectively. Besides, the responsive protein LSP1 significantly activated the defense signaling, mitogen-activated protein kinases and extremely up-regulated the expression of defense-related genes and functional genes involved in glycyrrhizic acid biosynthesis.
Collapse
Affiliation(s)
- Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Jianli Li
- Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Jing Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Jinxin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Shujie Liu
- Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
40
|
Malik S. Enhancement of Medicinally Important Bioactive Compounds in Hairy Root Cultures of Glycyrrhiza, Rauwolfia, and Solanum Through In Vitro Stress Application. PRODUCTION OF PLANT DERIVED NATURAL COMPOUNDS THROUGH HAIRY ROOT CULTURE 2017. [PMCID: PMC7121597 DOI: 10.1007/978-3-319-69769-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Enhancement of secondary metabolites through elicitation in hairy root culture is a very effective method which is broadly used to simulate the stress responses in plants. Elicitors are compounds that induce plants to produce secondary metabolites at elevated levels and reduce the processing time required to achieve high product concentrations. Hairy root cultures are considered as an excellent alternative for the supply of pharmaceutically important secondary metabolites/bioactives, due to their inherent genetic and biochemical stability. Plant-based secondary metabolites are well accepted in India as well as other countries to cure even the serious medical problems. In this chapter, three medicinally important plants are discussed in which stress-based elicitation of secondary metabolites has been achieved in hairy root cultures. These three plants contain important secondary metabolites in their different parts. Glycyrrhizin found in Glycyrrhiza glabra plant is used as antiulcer, immunomodulatory, antiallergic, and anti-inflammatory. Glycyrrhizin is also effective against HIV and severe acute respiratory syndrome (SARS)-like viruses. In Solanum plant, steroidal glycoalkaloids contain pharmaceutically important secondary metabolites. Solasodine, a major alkaloid of Solanum plant, is used as a contraceptive in different parts of the world. Ajmaline and ajmalicine are important root-specific indole alkaloids of Rauwolfia serpentina. Ajmalicine is useful in circulatory disorders, while ajmaline is principally known for its antiarrhythmic and antihypertensive activities. The main objective of this chapter is to provide knowledge in these plants regarding elicitation-based enhancement of valuable secondary metabolites in the form of research studies conducted till date (as per author’s knowledge).
Collapse
Affiliation(s)
- Sonia Malik
- Biological and Health Sciences Center, Federal University of Maranhao, Sao Luis, Maranhão Brazil
| |
Collapse
|
41
|
Wang J, Li J, Wu X, Liu S, Li H, Gao W. Assessment of genetic fidelity and composition: Mixed elicitors enhance triterpenoid and flavonoid biosynthesis of Glycyrrhiza uralensis
Fisch. tissue cultures. Biotechnol Appl Biochem 2016; 64:211-217. [DOI: 10.1002/bab.1485] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 02/04/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin People's Republic of China
| | - Jing Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin People's Republic of China
| | - Xiaolei Wu
- Tianjin ZhongXin Pharmaceuticals R&D Center; Tianjin People's Republic of China
| | - Shujie Liu
- Key Laboratory of Industrial Fermentation Microbiology; Ministry of Education; Tianjin University of Science and Technology; Tianjin People's Republic of China
| | - Hongfa Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin People's Republic of China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin People's Republic of China
| |
Collapse
|
42
|
Gai QY, Jiao J, Luo M, Wang W, Gu CB, Fu YJ, Ma W. Tremendous enhancements of isoflavonoid biosynthesis, associated gene expression and antioxidant capacity in Astragalus membranaceus hairy root cultures elicited by methyl jasmonate. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Enhancing ergosterol production in Pichia pastoris GS115 by overexpressing squalene synthase gene from Glycyrrhiza uralensis. Chin J Nat Med 2016; 13:338-45. [PMID: 25986282 PMCID: PMC7128851 DOI: 10.1016/s1875-5364(15)30024-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present study was designed to determine the effects of copy number variations (CNVs) of squalene synthase 1(SQS1) gene on the mevalonate (MVA) pathway. SQS1 gene from G. uralensis (GuSQS1) was cloned and over-expressed in Pichia pastoris GS115. Six recombinant P. pastoris strains containing different copy number of GuSQS1 were constructed. HPLC was used to assay the level of ergosterol in all transgenic P. pastoris strains containing GuSQS1. HPLC analysis showed that the contents of ergosterol in all of the transgenic P. pastoris containing GuSQS1 were higher than that in the negative control. And with the increase of copy number of GuSQS1, the content of ergosterol showed an increasing-decreasing-increasing pattern. The contents of ergosterol in 10-copy-GuSQS1 P. pastoris and 47-copy-GuSQS1 P. pastoris were significantly higher than that in the rest recombinant P. pastoris strains. In conclusion, the CNVs of GuSQS1 influence the content of secondary metabolites in the MVA pathway. The present study provides a basis for over-expressing GuSQS1 and increasing the content of glycyrrhizin in G. uralensis cultivars.
Collapse
|
44
|
Rusanov K, Atanassov A, Atanassov I. Engineering Cell and Organ Cultures from Medicinal and Aromatic Plants Toward Commercial Production of Bioactive Metabolites. REFERENCE SERIES IN PHYTOCHEMISTRY 2016. [DOI: 10.1007/978-3-319-32004-5_8-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Li Y, Meng T, Wang Y, Zhang X. Study on enzymatic browning in suspension cultures of licorice cells. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1114906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Bhalkar BN, Bedekar PA, Patil SM, Patil SA, Govindwar SP. Production of camptothecine using whey by an endophytic fungus: standardization using response surface methodology. RSC Adv 2015. [DOI: 10.1039/c5ra12212k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Fusarium oxysporum kolhapuriensis, a novel endophytic fungi isolated from Nothapodytes nimmoniana Mabb. Grahm, was found to produce camptothecine (CPT) using whey as a complex medium. The highest production of CPT was (283 ± 0.27 mg l−1).
Collapse
|
47
|
Tian L. Using Hairy Roots for Production of Valuable Plant Secondary Metabolites. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 149:275-324. [PMID: 25583225 DOI: 10.1007/10_2014_298] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Plants synthesize a wide variety of natural products, which are traditionally termed secondary metabolites and, more recently, coined specialized metabolites. While these chemical compounds are employed by plants for interactions with their environment, humans have long since explored and exploited plant secondary metabolites for medicinal and practical uses. Due to the tissue-specific and low-abundance accumulation of these metabolites, alternative means of production in systems other than intact plants are sought after. To this end, hairy root culture presents an excellent platform for producing valuable secondary metabolites. This chapter will focus on several major groups of secondary metabolites that are manufactured by hairy roots established from different plant species. Additionally, the methods for preservations of hairy roots will also be reviewed.
Collapse
Affiliation(s)
- Li Tian
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA,
| |
Collapse
|
48
|
Li YL, Yang Y, Fu CH, Yu LJ. Production of Glycyrrhizin in Cell Suspension ofGlycyrrhiza InflataBatalin Cultured in Bioreactor. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0083] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
49
|
Li M, Zhao M, Wu H, Wu W, Xu Y. Cloning, characterization and functional analysis of two type 1 diacylglycerol acyltransferases (DGAT1s) from Tetraena mongolica. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:490-503. [PMID: 23480422 DOI: 10.1111/jipb.12046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/09/2013] [Indexed: 06/01/2023]
Abstract
Two cDNAs encoding putative type 1 acyl-CoA: diacylglycerol acyltransferases (DGAT1, EC 2.3.1.20), were cloned from Tetraena mongolica, an extreme xerophyte with high oil content in the stems. The 1 488-bp and 1 485-bp of the open reading frame (ORF) of the two cDNAs, designated as TmDGAT1a and TmDGAT1b, were both predicted to encode proteins of 495 and 494 amino acids, respectively. Southern blot analysis revealed that TmDGAT1a and TmDGAT1b both had low copy numbers in the T. mongolica genome. In addition to ubiquitous expression with different intensity in different tissues, including stems, leaves and roots, TmDGAT1a and TmDGAT1b, were found to be strongly induced by high salinity, drought and osmotic stress, resulting in a remarkable increase of triacylglycerol (TAG) accumulation in T. mongolica plantlets. TmDGAT1a and TmDGAT1b activities were confirmed in the yeast H1246 quadruple mutant (DGA1, LRO1, ARE1, ARE2) by restoring DGAT activity of the mutant host to produce TAG. Overexpression of TmDGAT1a and TmDGAT1b in soybean hairy roots as well as in T. mongolica calli both resulted in an increase in oil content (ranging from 37% to 108%), accompanied by altered fatty acid profiles.
Collapse
Affiliation(s)
- Minchun Li
- Key Laboratory of Photobiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | |
Collapse
|
50
|
Sharafi A, Hashemi Sohi H, Mousavi A, Azadi P, Dehsara B, Hosseini Khalifani B. Enhanced morphinan alkaloid production in hairy root cultures of Papaver bracteatum by over-expression of salutaridinol 7-o-acetyltransferase gene via Agrobacterium rhizogenes mediated transformation. World J Microbiol Biotechnol 2013; 29:2125-31. [PMID: 23681746 DOI: 10.1007/s11274-013-1377-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
Abstract
Papaver bracteatum is an important medicinal plant valued for its high content of thebaine and an alternative to P. somniferum for benzylisoquinoline alkaloid production. Salutaridinol 7-o-acetyltransferase (SalAT) is a key gene in morphinan alkaloids biosynthesis pathway. Over expression of SalAT gene was used for metabolic engineering in P. bracteatum hairy root cultures. Transcript level of the salutaridinol 7-o-acetyltransferase gene in transgenic hairy root lines increased up to 154 and 128 % in comparison with hairy roots without SalAT over expression and wild type roots, respectively. High performance liquid chromatography analysis showed that the transgenic hairy roots relatively improved levels of thebaine (1.28 % dry weight), codeine (0.02 % dry weight) and morphine (0.03 % dry weight) compared to those hairy roots without SalAT over expression. This suggests that P. bracteatum hairy roots expressing the SalAT gene could be potentially used for the production of valuable morphinan alkaloids.
Collapse
Affiliation(s)
- Ali Sharafi
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | | | | | | | | | | |
Collapse
|