1
|
Sharma S, Kapoor S, Ansari A, Tyagi AK. The general transcription factors (GTFs) of RNA polymerase II and their roles in plant development and stress responses. Crit Rev Biochem Mol Biol 2024; 59:267-309. [PMID: 39361782 PMCID: PMC12051360 DOI: 10.1080/10409238.2024.2408562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/03/2024] [Accepted: 09/21/2024] [Indexed: 10/05/2024]
Abstract
In eukaryotes, general transcription factors (GTFs) enable recruitment of RNA polymerase II (RNA Pol II) to core promoters to facilitate initiation of transcription. Extensive research in mammals and yeast has unveiled their significance in basal transcription as well as in diverse biological processes. Unlike mammals and yeast, plant GTFs exhibit remarkable degree of variability and flexibility. This is because plant GTFs and GTF subunits are often encoded by multigene families, introducing complexity to transcriptional regulation at both cellular and biological levels. This review provides insights into the general transcription mechanism, GTF composition, and their cellular functions. It further highlights the involvement of RNA Pol II-related GTFs in plant development and stress responses. Studies reveal that GTFs act as important regulators of gene expression in specific developmental processes and help equip plants with resilience against adverse environmental conditions. Their functions may be direct or mediated through their cofactor nature. The versatility of GTFs in controlling gene expression, and thereby influencing specific traits, adds to the intricate complexity inherent in the plant system.
Collapse
Affiliation(s)
- Shivam Sharma
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Sanjay Kapoor
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| | - Athar Ansari
- Department of Biological Science, Wayne State University, Detroit, MI, USA
| | - Akhilesh Kumar Tyagi
- Inter-disciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
2
|
Chen L, Li Y, Zhu J, Li Z, Wang W, Qi Z, Li D, Yao P, Bi Z, Sun C, Liu Y, Liu Z. Comprehensive Characterization of the C3HC4 RING Finger Gene Family in Potato ( Solanum tuberosum L.): Insights into Their Involvement in Anthocyanin Biosynthesis. Int J Mol Sci 2024; 25:2082. [PMID: 38396758 PMCID: PMC10889778 DOI: 10.3390/ijms25042082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The C3HC4 RING finger gene (RING-HC) family is a zinc finger protein crucial to plant growth. However, there have been no studies on the RING-HC gene family in potato. In this study, 77 putative StRING-HCs were identified in the potato genome and grouped into three clusters based on phylogenetic relationships, the chromosome distribution, gene structure, conserved motif, gene duplication events, and synteny relationships, and cis-acting elements were systematically analyzed. By analyzing RNA-seq data of potato cultivars, the candidate StRING-HC genes that might participate in tissue development, abiotic stress, especially drought stress, and anthocyanin biosynthesis were further determined. Finally, a StRING-HC gene (Soltu.DM.09G017280 annotated as StRNF4-like), which was highly expressed in pigmented potato tubers was focused on. StRNF4-like localized in the nucleus, and Y2H assays showed that it could interact with the anthocyanin-regulating transcription factors (TFs) StbHLH1 of potato tubers, which is localized in the nucleus and membrane. Transient assays showed that StRNF4-like repressed anthocyanin accumulation in the leaves of Nicotiana tabacum and Nicotiana benthamiana by directly suppressing the activity of the dihydroflavonol reductase (DFR) promoter activated by StAN1 and StbHLH1. The results suggest that StRNF4-like might repress anthocyanin accumulation in potato tubers by interacting with StbHLH1. Our comprehensive analysis of the potato StRING-HCs family contributes valuable knowledge to the understanding of their functions in potato development, abiotic stress, hormone signaling, and anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Limin Chen
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Yuanming Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jinyong Zhu
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Zhitao Li
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Weilu Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Zheying Qi
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Dechen Li
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Panfeng Yao
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Zhenzhen Bi
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
| | - Chao Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
| | - Yuhui Liu
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Zhen Liu
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| |
Collapse
|
3
|
Tang X, Wang X, Huang Y, Ma L, Jiang X, Rao MJ, Xu Y, Yin P, Yuan M, Deng X, Xu Q. Natural variations of TFIIAγ gene and LOB1 promoter contribute to citrus canker disease resistance in Atalantia buxifolia. PLoS Genet 2021; 17:e1009316. [PMID: 33493197 PMCID: PMC7861543 DOI: 10.1371/journal.pgen.1009316] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 02/04/2021] [Accepted: 12/19/2020] [Indexed: 12/01/2022] Open
Abstract
Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating diseases in citrus industry worldwide. Most citrus cultivars such as sweet orange are susceptible to canker disease. Here, we utilized wild citrus to identify canker-resistant germplasms, and found that Atalantia buxifolia, a primitive (distant-wild) citrus, exhibited remarkable resistance to canker disease. Although the susceptibility gene LATERAL ORGAN BOUNDARIES 1 (LOB1) could also be induced in Atalantia after canker infection, the induction extent was far lower than that in sweet orange. In addition, three of amino acids encoded by transcription factor TFIIAγ in Atalantia (AbTFIIAγ) exhibited difference from those in sweet orange (CsTFIIAγ) which could stabilize the interaction between effector PthA4 and effector binding element (EBE) of LOB1 promoter. The mutation of AbTFIIAγ did not change its interaction with transcription factor binding motifs (TFBs). However, the AbTFIIAγ could hardly support the LOB1 expression induced by the PthA4. In addition, the activity of AbLOB1 promoter was significantly lower than that of CsLOB1 under the induction by PthA4. Our results demonstrate that natural variations of AbTFIIAγ and effector binding element (EBE) in the AbLOB1 promoter are crucial for the canker disease resistance of Atalantia. The natural mutations of AbTFIIAγ gene and AbLOB1 promoter in Atalantia provide candidate targets for improving the resistance to citrus canker disease. It has been well documented that most citrus cultivars are susceptible to canker disease, while little is known about the resistance or susceptibility of primitive or wild citrus to canker disease. This study reveals that primitive citrus (Atalantia buxifolia) is highly resistant to citrus canker. Transcriptome data demonstrated that Atalantia had an active resistance response to the infection of Xcc, compared with susceptible sweet orange. Our results indicated that natural variations of AbTFIIAγ gene and AbLOB1 promoter contributed to the resistance. Hence, we propose that the natural mutations of AbTFIIAγ gene and AbLOB1 promoter could provide candidate targets for breeding canker resistant citrus.
Collapse
Affiliation(s)
- Xiaomei Tang
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Xia Wang
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Yue Huang
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Ling Ma
- Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Xiaolin Jiang
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Muhammad Junaid Rao
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Yuantao Xu
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Ping Yin
- Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Meng Yuan
- Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, the People's Republic of China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology Ministry of Education, Huazhong Agricultural University, Wuhan, the People's Republic of China
- * E-mail:
| |
Collapse
|