1
|
Tian M, Zhao Y, Jiang Y, Jiang X, Gai Y. LkERF6 enhances drought and salt tolerance in transgenic tobacco by regulating ROS homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109098. [PMID: 39260261 DOI: 10.1016/j.plaphy.2024.109098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
The transcription factor Ethylene Responsive Factor (ERF) is crucial for responding to various environmental stressors. Proteins containing the ERF-associated amphiphilic repression (EAR) motif often inhibit gene expression. However, the functions of LkERF, an EAR motif-containing protein from Larix kaempferi, especially in reactive oxygen species (ROS) homeostasis, are not well understood. In the present research, we introduce a novel transcription factor, LkERF6, which contains an EAR motif and positively regulates gene expression, thereby enhancing drought and salt tolerance in tobacco. LkERF6 is classified within the ERF-B1 subfamily due to its conserved AP2/ERF domain and EAR motif. Subcellular localization assays demonstrated LkERF6 is primarily localized in the nucleus. Further analysis revealed that LkERF6 interacts with GCC and DRE elements and is significantly induced by NaCl and PEG6000. Moreover, LkERF6 transgenic tobacco plants exhibit lower ROS accumulation and higher levels of antioxidant enzyme activities. Additionally, correlation analysis identified a strong association between LkERF6 and three genes: LkSOD, LkCCS, and LkCAT. Y1H, EMAS, and DLR assays confirmed that LkERF6 directly interacts with the promoters of these genes through GCC-box and DRE-box to activate their expression. These findings shed new light on the function of EAR motif-containing transcription factors and highlight LkERF6's crucial role in enhancing abiotic stress resistance by activating multiple ROS clearance genes.
Collapse
Affiliation(s)
- Ming Tian
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing, 100083, China.
| | - Yibo Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing, 100083, China.
| | - Yan Jiang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing, 100083, China.
| | - Xiangning Jiang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing, 100083, China.
| | - Ying Gai
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China; The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing, 100083, China.
| |
Collapse
|
2
|
Lend Me Your EARs: A Systematic Review of the Broad Functions of EAR Motif-Containing Transcriptional Repressors in Plants. Genes (Basel) 2023; 14:genes14020270. [PMID: 36833197 PMCID: PMC9956375 DOI: 10.3390/genes14020270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif, defined by the consensus sequence patterns LxLxL or DLNx(x)P, is found in a diverse range of plant species. It is the most predominant form of active transcriptional repression motif identified so far in plants. Despite its small size (5 to 6 amino acids), the EAR motif is primarily involved in the negative regulation of developmental, physiological and metabolic functions in response to abiotic and biotic stresses. Through an extensive literature review, we identified 119 genes belonging to 23 different plant species that contain an EAR motif and function as negative regulators of gene expression in various biological processes, including plant growth and morphology, metabolism and homeostasis, abiotic stress response, biotic stress response, hormonal pathways and signalling, fertility, and ripening. Positive gene regulation and transcriptional activation are studied extensively, but there remains much more to be discovered about negative gene regulation and the role it plays in plant development, health, and reproduction. This review aims to fill the knowledge gap and provide insights into the role that the EAR motif plays in negative gene regulation, and provoke further research on other protein motifs specific to repressors.
Collapse
|
3
|
Qi Y, Yang Z, Sun X, He H, Guo L, Zhou J, Xu M, Luo M, Chen H, Tian Z. Heterologous overexpression of StERF3 triggers cell death in Nicotiana benthamiana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111149. [PMID: 35067312 DOI: 10.1016/j.plantsci.2021.111149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Programmed cell death plays a crucial role in plant development and disease defense. Here, we report that the expression of StERF3, a potato EAR motif-containing transcription factor, promotes Phytophthora infestans colonization in Nicotiana benthamiana. Transient overexpression of StERF3 induces cell death in N. benthamiana leaves. The substitution of two key amino acids (14th and 19th) in its ERF domain (the DNA binding domain) dramatically altered its cell death-inducing ability. In addition, StERF3△EAR EAR motif-deletion or StERF3AAA mutation abolished the cell death-inducing ability. StERF3 interacted with the co-repressors Topless-related protein 1 (StTPL1) and Topless-related protein 3 (StTPL3) via the EAR motif. Moreover, cell death induced by StERF3 was facilitated by co-expression with StTPL1 or StTPL3. Virus-induced gene silencing (VIGS) of NbTPL1 and NbTPL3 in N. benthamiana compromised the cell death-inducing ability of StERF3. Furthermore, StERF3-induced cell death accompanied with ROS bursts and the upregulation of the respiratory burst oxidase homolog (Rboh) genes NbRbohA and NbRbohC. In addition, several cell death regulator genes, including NbCRTD, NbNCBP, and NbBCPL, and a hypersensitive cell death marker gene Hin1 were upregulated. StERF3 may positively regulate cell death through its EAR motif-mediated transcriptional repressor activity by inhibiting the expression of genes potentially coding the repressor of cell death (CD).
Collapse
Affiliation(s)
- Yetong Qi
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, China; Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, China; Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan, Hubei 430070, China
| | - Zhu Yang
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, China; Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, China; Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan, Hubei 430070, China
| | - Xinyuan Sun
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, China; Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, China; Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan, Hubei 430070, China
| | - Huan He
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, China; Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, China; Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan, Hubei 430070, China
| | - Lei Guo
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, China; College of Agronomy, Northeast Agricultural University, Harbin, 150030, China
| | - Jing Zhou
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, China; Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, China; Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan, Hubei 430070, China
| | - Meng Xu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, China; Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, China; Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan, Hubei 430070, China
| | - Ming Luo
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, China; Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, China; Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan, Hubei 430070, China
| | - Huilan Chen
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, China; Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, China; Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan, Hubei 430070, China
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, China; Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China; Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, China; Potato Engineering and Technology Research Center of Hubei Province (HZAU), Huazhong Agricultural University (HZAU), Wuhan, Hubei 430070, China.
| |
Collapse
|
4
|
A celery transcriptional repressor AgERF8 negatively modulates abscisic acid and salt tolerance. Mol Genet Genomics 2020; 296:179-192. [PMID: 33130909 DOI: 10.1007/s00438-020-01738-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022]
Abstract
Ethylene response factors (ERFs) widely exist in plants and have been reported to be an important regulator of plant abiotic stress. Celery, a common economic vegetable of Apiaceae, contains lots of ERF transcription factors (TFs) with various functions. AP2/ERF TFs play positive or negative roles in plant growth and stress response. Here, AgERF8, a gene encoding EAR-type AP2/ERF TF, was identified. The AgERF8 mRNA accumulated in response to both abscisic acid (ABA) signaling and salt treatment. AgERF8 was proving to be a nucleus-located protein and could bind to GCC-box. The overexpression of AgERF8 in Arabidopsis repressed the transcription of downstream genes, AtBGL and AtBCH. Arabidopsis overexpressing AgERF8 gene showed inhibited root growth under ABA and NaCl treatments. AgERF8 transgenic lines showed low tolerance to ABA and salt stress than wild-type plants. Low increment in SOD and POD activities, increased accumulation of MDA, and significantly decreased plant fresh weights and chlorophyll levels were detected in AgERF8 hosting lines after treated with ABA and NaCl. Furthermore, the overexpression of AgERF8 also inhibited the levels of ascorbic acid and antioxidant-related genes (AtCAT1, AtSOD1, AtPOD, AtSOS1, AtAPX1, and AtP5CS1) expression in transgenic Arabidopsis. This finding indicated that AgERF8 negatively affected the resistance of transgenic Arabidopsis to ABA and salt stress through regulating downstream genes expression and relevant physiological changes. It will provide a potential sight to further understand the functions of ERF TFs in celery.
Collapse
|
5
|
Zang Z, Lv Y, Liu S, Yang W, Ci J, Ren X, Wang Z, Wu H, Ma W, Jiang L, Yang W. A Novel ERF Transcription Factor, ZmERF105, Positively Regulates Maize Resistance to Exserohilum turcicum. FRONTIERS IN PLANT SCIENCE 2020; 11:850. [PMID: 32612628 PMCID: PMC7308562 DOI: 10.3389/fpls.2020.00850] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/27/2020] [Indexed: 05/18/2023]
Abstract
The ethylene response factor (ERF) plays a crucial role in plant innate immunity. However, the molecular function of ERF in response to Exserohilum turcicum (E. turcicum) remains unknown in maize. In this study, a novel ERF gene, designated as ZmERF105, was firstly isolated and characterized. The ZmERF105 protein contains an APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) domain and a conserved LSPLSPHP motif in its C-terminal region. ZmERF105 protein was exclusively localized to the nucleus. ZmERF105 expression responded to E. turcicum treatment. Yeast one-hybrid and transcription activity assays revealed that ZmERF105 is an activator of transcription and binds to GCC-box elements. Over-expression of ZmERF105 was shown to increase maize resistance against E. turcicum, and erf105 mutant lines displayed opposite phenotype. Moreover, the activities of superoxide dismutase (SOD) and peroxidase (POD) in the ZmERF105 over-expression lines were markedly higher than in the wild-type maize lines (WT) after infection with E. turcicum, and were compromised in the erf105 mutant lines. Simultaneously, ZmERF105 over-expression lines enhanced the expression of several pathogenesis-related (PR) genes, including ZmPR1a, ZmPR2, ZmPR5, ZmPR10.1, and ZmPR10.2 after infection with E. turcicum. In contrast, the expression of PR genes was reduced in erf105 mutant lines. Our work reveals that ZmERF105 as a novel player of the ERF network and positively regulates the maize resistance response to E. turcicum.
Collapse
Affiliation(s)
- Zhenyuan Zang
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Ying Lv
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Shuang Liu
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Wei Yang
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Jiabin Ci
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Xuejiao Ren
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Zhen Wang
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Hao Wu
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Wenyu Ma
- College of Agriculture, Jilin Agricultural University, Changchun, China
| | - Liangyu Jiang
- College of Agriculture, Jilin Agricultural University, Changchun, China
- Crop Science Post-doctoral Station, Jilin Agricultural University, Changchun, China
- *Correspondence: Liangyu Jiang, ; Weiguang Yang,
| | - Weiguang Yang
- College of Agriculture, Jilin Agricultural University, Changchun, China
- *Correspondence: Liangyu Jiang, ; Weiguang Yang,
| |
Collapse
|
6
|
Yang J, Wang GQ, Zhou Q, Lu W, Ma JQ, Huang JH. Transcriptomic and proteomic response of Manihot esculenta to Tetranychus urticae infestation at different densities. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 78:273-293. [PMID: 31168751 DOI: 10.1007/s10493-019-00387-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/30/2019] [Indexed: 05/24/2023]
Abstract
Tetranychus urticae (Acari: Tetranychidae) is an extremely serious cassava (Manihot esculenta) pest. Building a genomic resource to investigate the molecular mechanisms of cassava responses to T. urticae is vital for characterizing cassava resistance to mites. Based on the tolerance of cassava varieties to mite infestation (focusing on mite development rate, fecundity and physiology), cassava variety SC8 was selected to analyze transcriptomic and proteomic changes after 5 days of T. urticae feeding. Transcriptomic analysis revealed 698 and 2140 genes with significant expression changes under low and high mite infestation, respectively. More defense-related genes were found in the enrichment pathways at high mite density than at low density. In addition, iTRAQ-labeled proteomic analysis revealed 191 proteins with significant expression changes under low mite infestation. Differentially expressed genes and proteins were mainly found in the following defense-related pathways: flavonoid biosynthesis, phenylpropanoid biosynthesis, and glutathione metabolism under low-density mite feeding and plant hormone signal transduction and plant-pathogen interaction pathways under high-density mite feeding. The plant hormone signal transduction network, involving ethylene, jasmonic acid, and salicylic acid transduction pathways, was explored in relation to the M. esculenta response to T. urticae. Correlation analysis of the transcriptome and proteome generated a Pearson correlation coefficients of R = 0.2953 (P < 0.01), which might have been due to post-transcriptional or post-translational regulation resulting in many genes being inconsistently expressed at both the transcript and protein levels. In summary, the M. esculenta transcriptome and proteome changed in response to T. urticae, providing insight into the general activation of plant defense pathways in response to mite infestation.
Collapse
Affiliation(s)
- Juan Yang
- College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, 530004, Guangxi, China
| | - Guo-Quan Wang
- College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, 530004, Guangxi, China
| | - Qiong Zhou
- College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Wen Lu
- College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jun-Qing Ma
- College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jing-Hua Huang
- College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
7
|
Aranzana MJ, Decroocq V, Dirlewanger E, Eduardo I, Gao ZS, Gasic K, Iezzoni A, Jung S, Peace C, Prieto H, Tao R, Verde I, Abbott AG, Arús P. Prunus genetics and applications after de novo genome sequencing: achievements and prospects. HORTICULTURE RESEARCH 2019; 6:58. [PMID: 30962943 PMCID: PMC6450939 DOI: 10.1038/s41438-019-0140-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 05/04/2023]
Abstract
Prior to the availability of whole-genome sequences, our understanding of the structural and functional aspects of Prunus tree genomes was limited mostly to molecular genetic mapping of important traits and development of EST resources. With public release of the peach genome and others that followed, significant advances in our knowledge of Prunus genomes and the genetic underpinnings of important traits ensued. In this review, we highlight key achievements in Prunus genetics and breeding driven by the availability of these whole-genome sequences. Within the structural and evolutionary contexts, we summarize: (1) the current status of Prunus whole-genome sequences; (2) preliminary and ongoing work on the sequence structure and diversity of the genomes; (3) the analyses of Prunus genome evolution driven by natural and man-made selection; and (4) provide insight into haploblocking genomes as a means to define genome-scale patterns of evolution that can be leveraged for trait selection in pedigree-based Prunus tree breeding programs worldwide. Functionally, we summarize recent and ongoing work that leverages whole-genome sequences to identify and characterize genes controlling 22 agronomically important Prunus traits. These include phenology, fruit quality, allergens, disease resistance, tree architecture, and self-incompatibility. Translationally, we explore the application of sequence-based marker-assisted breeding technologies and other sequence-guided biotechnological approaches for Prunus crop improvement. Finally, we present the current status of publically available Prunus genomics and genetics data housed mainly in the Genome Database for Rosaceae (GDR) and its updated functionalities for future bioinformatics-based Prunus genetics and genomics inquiry.
Collapse
Affiliation(s)
- Maria José Aranzana
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Véronique Decroocq
- UMR 1332 BFP, INRA, University of Bordeaux, A3C and Virology Teams, 33882 Villenave-d’Ornon Cedex, France
| | - Elisabeth Dirlewanger
- UMR 1332 BFP, INRA, University of Bordeaux, A3C and Virology Teams, 33882 Villenave-d’Ornon Cedex, France
| | - Iban Eduardo
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Zhong Shan Gao
- Allergy Research Center, Zhejiang University, 310058 Hangzhou, China
| | | | - Amy Iezzoni
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824-1325 USA
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414 USA
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414 USA
| | - Humberto Prieto
- Biotechnology Laboratory, La Platina Research Station, Instituto de Investigaciones Agropecuarias, Santa Rosa, 11610 La Pintana, Santiago Chile
| | - Ryutaro Tao
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Ignazio Verde
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA) – Centro di ricerca Olivicoltura, Frutticoltura e Agrumicoltura (CREA-OFA), Rome, Italy
| | - Albert G. Abbott
- University of Kentucky, 106 T. P. Cooper Hall, Lexington, KY 40546-0073 USA
| | - Pere Arús
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| |
Collapse
|
8
|
Kulkarni M, Soolanayakanahally R, Ogawa S, Uga Y, Selvaraj MG, Kagale S. Drought Response in Wheat: Key Genes and Regulatory Mechanisms Controlling Root System Architecture and Transpiration Efficiency. Front Chem 2017; 5:106. [PMID: 29259968 PMCID: PMC5723305 DOI: 10.3389/fchem.2017.00106] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/07/2017] [Indexed: 12/24/2022] Open
Abstract
Abiotic stresses such as, drought, heat, salinity, and flooding threaten global food security. Crop genetic improvement with increased resilience to abiotic stresses is a critical component of crop breeding strategies. Wheat is an important cereal crop and a staple food source globally. Enhanced drought tolerance in wheat is critical for sustainable food production and global food security. Recent advances in drought tolerance research have uncovered many key genes and transcription regulators governing morpho-physiological traits. Genes controlling root architecture and stomatal development play an important role in soil moisture extraction and its retention, and therefore have been targets of molecular breeding strategies for improving drought tolerance. In this systematic review, we have summarized evidence of beneficial contributions of root and stomatal traits to plant adaptation to drought stress. Specifically, we discuss a few key genes such as, DRO1 in rice and ERECTA in Arabidopsis and rice that were identified to be the enhancers of drought tolerance via regulation of root traits and transpiration efficiency. Additionally, we highlight several transcription factor families, such as, ERF (ethylene response factors), DREB (dehydration responsive element binding), ZFP (zinc finger proteins), WRKY, and MYB that were identified to be both positive and negative regulators of drought responses in wheat, rice, maize, and/or Arabidopsis. The overall aim of this review is to provide an overview of candidate genes that have been identified as regulators of drought response in plants. The lack of a reference genome sequence for wheat and non-transgenic approaches for manipulation of gene functions in wheat in the past had impeded high-resolution interrogation of functional elements, including genes and QTLs, and their application in cultivar improvement. The recent developments in wheat genomics and reverse genetics, including the availability of a gold-standard reference genome sequence and advent of genome editing technologies, are expected to aid in deciphering of the functional roles of genes and regulatory networks underlying adaptive phenological traits, and utilizing the outcomes of such studies in developing drought tolerant cultivars.
Collapse
Affiliation(s)
- Manoj Kulkarni
- Canadian Wheat Improvement Flagship Program, National Research Council Canada (NRC-CNRC), Saskatoon, SK, Canada
| | - Raju Soolanayakanahally
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Satoshi Ogawa
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yusaku Uga
- Institute of Crop Science (NICS), National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Michael G. Selvaraj
- Agrobioversity Research Area, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Sateesh Kagale
- Canadian Wheat Improvement Flagship Program, National Research Council Canada (NRC-CNRC), Saskatoon, SK, Canada
| |
Collapse
|
9
|
Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922. PLoS One 2016; 11:e0154027. [PMID: 27116122 PMCID: PMC4846023 DOI: 10.1371/journal.pone.0154027] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/07/2016] [Indexed: 12/13/2022] Open
Abstract
Rice blast is one of the most destructive diseases affecting rice worldwide. The adoption of host resistance has proven to be the most economical and effective approach to control rice blast. In recent years, sequence-specific nucleases (SSNs) have been demonstrated to be powerful tools for the improvement of crops via gene-specific genome editing, and CRISPR/Cas9 is thought to be the most effective SSN. Here, we report the improvement of rice blast resistance by engineering a CRISPR/Cas9 SSN (C-ERF922) targeting the OsERF922 gene in rice. Twenty-one C-ERF922-induced mutant plants (42.0%) were identified from 50 T0 transgenic plants. Sanger sequencing revealed that these plants harbored various insertion or deletion (InDel) mutations at the target site. We showed that all of the C-ERF922-induced allele mutations were transmitted to subsequent generations. Mutant plants harboring the desired gene modification but not containing the transferred DNA were obtained by segregation in the T1 and T2 generations. Six T2 homozygous mutant lines were further examined for a blast resistance phenotype and agronomic traits, such as plant height, flag leaf length and width, number of productive panicles, panicle length, number of grains per panicle, seed setting percentage and thousand seed weight. The results revealed that the number of blast lesions formed following pathogen infection was significantly decreased in all 6 mutant lines compared with wild-type plants at both the seedling and tillering stages. Furthermore, there were no significant differences between any of the 6 T2 mutant lines and the wild-type plants with regard to the agronomic traits tested. We also simultaneously targeted multiple sites within OsERF922 by using Cas9/Multi-target-sgRNAs (C-ERF922S1S2 and C-ERF922S1S2S3) to obtain plants harboring mutations at two or three sites. Our results indicate that gene modification via CRISPR/Cas9 is a useful approach for enhancing blast resistance in rice.
Collapse
|
10
|
Huang PY, Catinot J, Zimmerli L. Ethylene response factors in Arabidopsis immunity. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1231-41. [PMID: 26663391 DOI: 10.1093/jxb/erv518] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pathogen attack leads to transcriptional changes and metabolic modifications allowing the establishment of appropriate plant defences. Transcription factors (TFs) are key players in plant innate immunity. Notably, ethylene response factor (ERF) TFs are integrators of hormonal pathways and are directly responsible for the transcriptional regulation of several jasmonate (JA)/ethylene (ET)-responsive defence genes. Transcriptional activation or repression by ERFs is achieved through the binding to JA/ET-responsive gene promoters. In this review, we describe the regulation and mode of action at a molecular level of ERFs involved in Arabidopsis thaliana immunity. In particular, we focus on defence activators such as ERF1, ORA59, ERF6, and the recently described ERF96.
Collapse
|
11
|
Bianchi VJ, Rubio M, Trainotti L, Verde I, Bonghi C, Martínez-Gómez P. Prunus transcription factors: breeding perspectives. FRONTIERS IN PLANT SCIENCE 2015; 6:443. [PMID: 26124770 PMCID: PMC4464204 DOI: 10.3389/fpls.2015.00443] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/29/2015] [Indexed: 05/18/2023]
Abstract
Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs). In peach, 1533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA, and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq) and RNA sequencing (RNA-Seq). New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing) may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci) map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome.
Collapse
Affiliation(s)
- Valmor J. Bianchi
- Department of Plant Physiology, Instituto de Biologia, Universidade Federal de PelotasPelotas-RS, Brazil
| | - Manuel Rubio
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | | | - Ignazio Verde
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA) - Centro di ricerca per la frutticolturaRoma, Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, and Environment (DAFNAE). University of PaduaPadova, Italy
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| |
Collapse
|
12
|
Tian Z, He Q, Wang H, Liu Y, Zhang Y, Shao F, Xie C. The Potato ERF Transcription Factor StERF3 Negatively Regulates Resistance to Phytophthora infestans and Salt Tolerance in Potato. PLANT & CELL PHYSIOLOGY 2015; 56:992-1005. [PMID: 25681825 DOI: 10.1093/pcp/pcv025] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/07/2015] [Indexed: 05/07/2023]
Abstract
Ethylene response factors (ERFs) are unique to the plant kingdom and play crucial roles in plant response to various biotic and abiotic stresses. We show here that a potato StERF3, which contains an ERF-associated amphiphilic repression (EAR) motif in its C-terminal region, negatively regulates resistance to Phytophthora infestans and salt tolerance in potato. The StERF3 promoter responds to induction by salicylic acid, ABA ethylene and NaCl, as well as P. infestans, the causal agent of potato late blight disease. StERF3 could bind to the GCC box element of the HIS3 promoter and activate transcription of HIS3 in yeast cells. Importantly, silencing of StERF3 in potato produced an enhanced foliage resistance to P. infestans and elevated plant tolerance to NaCl stress accompanied by the activation of defense-related genes (PR1, NPR1 and WRKY1). In contrast, StERF3-overexpressing plants showed reduced expression of these defense-related genes and enhanced susceptibility to P. infestans, suggesting that StERF3 functions as a negative regulator of downstream defense- and/or stress-related genes in potato. StERF3 is localized to the nucleus. Interestingly, yeast two-hybrid assay and a bimolecular fluorescence complementation (BiFC) test clarified that StERF3 could interact with other proteins in the cytoplasm which may lead to its re-localization between the nucleus and cytoplasm, revealing a novel means of StERF3 regulation. Taken together, these data provide new insights into the mechanism underlying how StERF3 negatively regulates late blight resistance and abiotic tolerance in potato and may have a potential use in engineering late blight resistance in potato.
Collapse
Affiliation(s)
- Zhendong Tian
- Key Laboratory of Horticultural Plant Biology (HAU), Ministry of Education, National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qin He
- Key Laboratory of Horticultural Plant Biology (HAU), Ministry of Education, National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Haixia Wang
- Key Laboratory of Horticultural Plant Biology (HAU), Ministry of Education, National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ying Liu
- Key Laboratory of Horticultural Plant Biology (HAU), Ministry of Education, National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China Present address: Science and Technology School of Shiyan City, Danjiangkou, Shiyan City, Hubei Province, 442701, China
| | - Ying Zhang
- Key Laboratory of Horticultural Plant Biology (HAU), Ministry of Education, National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China Present address: Shanghai ChemPartner Co., LTD., Shanghai, 201203, China
| | - Fang Shao
- Key Laboratory of Horticultural Plant Biology (HAU), Ministry of Education, National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China Present address: Agricultural Bureau of the Laiwu City, Shandong Province, 271100, China
| | - Conghua Xie
- Key Laboratory of Horticultural Plant Biology (HAU), Ministry of Education, National Center for Vegetable Improvement (Central China), Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|