1
|
Levengood H, Zhou Y, Zhang C. Advancements in plant transformation: from traditional methods to cutting-edge techniques and emerging model species. PLANT CELL REPORTS 2024; 43:273. [PMID: 39467894 DOI: 10.1007/s00299-024-03359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
The ability to efficiently genetically modify plant species is crucial, driving the need for innovative technologies in plant biotechnology. Existing plant genetic transformation systems include Agrobacterium-mediated transformation, biolistics, protoplast-based methods, and nanoparticle techniques. Despite these diverse methods, many species exhibit resistance to transformation, limiting the applicability of most published methods to specific species or genotypes. Tissue culture remains a significant barrier for most species, although other barriers exist. These include the infection and regeneration stages in Agrobacterium, cell death and genomic instability in biolistics, the creation and regeneration of protoplasts for protoplast-based methods, and the difficulty of achieving stable transformation with nanoparticles. To develop species-independent transformation methods, it is essential to address these transformation bottlenecks. This review examines recent advancements in plant biotechnology, highlighting both new and existing techniques that have improved the success rates of plant transformations. Additionally, several newly emerged plant model systems that have benefited from these technological advancements are also discussed.
Collapse
Affiliation(s)
- Hannah Levengood
- Department of Agronomy, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yun Zhou
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cankui Zhang
- Department of Agronomy, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Mei G, Chen A, Wang Y, Li S, Wu M, Hu Y, Liu X, Hou X. A simple and efficient in planta transformation method based on the active regeneration capacity of plants. PLANT COMMUNICATIONS 2024; 5:100822. [PMID: 38243598 PMCID: PMC11009361 DOI: 10.1016/j.xplc.2024.100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/18/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Plant genetic transformation strategies serve as essential tools for the genetic engineering and advanced molecular breeding of plants. However, the complicated operational protocols and low efficiency of current transformation strategies restrict the genetic modification of most plant species. This paper describes the development of the regenerative activity-dependent in planta injection delivery (RAPID) method based on the active regeneration capacity of plants. In this method, Agrobacterium tumefaciens is delivered to plant meristems via injection to induce transfected nascent tissues. Stable transgenic plants can be obtained by subsequent vegetative propagation of the positive nascent tissues. The method was successfully used for transformation of plants with strong regeneration capacity, including different genotypes of sweet potato (Ipomoea batatas), potato (Solanum tuberosum), and bayhops (Ipomoea pes-caprae). Compared with traditional transformation methods, RAPID has a much higher transformation efficiency and shorter duration, and it does not require tissue culture procedures. The RAPID method therefore overcomes the limitations of traditional methods to enable rapid in planta transformation and can be potentially applied to a wide range of plant species that are capable of active regeneration.
Collapse
Affiliation(s)
- Guoguo Mei
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Chen
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaru Wang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuquan Li
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minyi Wu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilong Hu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Liu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Sultan EAA, Tawfik MS. Stable In-Planta Transformation System For Egyptian Sesame ( Sesamum indicum L.) cv. Sohag 1. GM CROPS & FOOD 2023; 14:21-31. [PMID: 36635971 PMCID: PMC9851244 DOI: 10.1080/21645698.2022.2150041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Sesame (Sesamum indicum L.) is an important oil crop and one of the oldest-known oil crops to humankind. Sesame has excellent nutritional and therapeutic properties; it is rich in important fatty acids, protein, fiber, and vital minerals. Oil percentage varies among different genotypes but generally accounts for more than 50% of the seed's dry weight. To meet the increasing demand for vegetable oil production worldwide, expanding the cultivation of oil crops in newly reclaimed areas worldwide is essential. Molecular breeding is an expeditious approach for varietal improvement but requires efficient transgenesis. Published sesame transformation methods are highly genus-specific, tedious, and involve preparing and testing different media and explants. We produced transgenic sesame plants using a stable, noninvasive, and robust Agrobacterium tumefaciens transformation method. Leaves and flowers excised from the T0 plants at different developmental stages were PCR screened, and 61/93 seedlings were found to be PCR positive. T1 seeds resulting from two lines were germinated in a biocontainment greenhouse facility and screened using PCR, basta leaf painting, and spraying fully matured plants with basta herbicide (0.02 mg/l); non-transgenic segregants and control non-transgenic plants were severely damaged, and eventually died, while transgenic plants were not affected by the Basta spraying. RT-PCR on T1 plants indicated the presence of Bar transcripts in T1 progeny. Furthermore, RT-PCR using NPTII primers did not result in any amplification in transgenic sesame plants (NPTII is present in the vector but not in the T-DNA region) indicating that the transgenic sesame plants were not an Agrobacterium-contaminant.
Collapse
Affiliation(s)
- Esraa A. A. Sultan
- Dept. of Gene transfer, Oil Crops Biotechnology Lab, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza12619, Egypt
| | - Mohamed S. Tawfik
- Dept. of Gene transfer, Oil Crops Biotechnology Lab, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza12619, Egypt,CONTACT Mohamed S. Tawfik Oil Crops Biotechnology Lab, Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza12619, Egypt
| |
Collapse
|
4
|
Saifi SK, Passricha N, Tuteja R, Nath M, Gill R, Gill SS, Tuteja N. OsRuvBL1a DNA helicase boost salinity and drought tolerance in transgenic indica rice raised by in planta transformation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111786. [PMID: 37419328 DOI: 10.1016/j.plantsci.2023.111786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
RuvBL, is a member of SF6 superfamily of helicases and is conserved among the various model systems. Recently, rice (Oryza sativa L.) homolog of RuvBL has been biochemically characterized for its ATPase and DNA helicase activities; however its involvement in stress has not been studied so far. Present investigation reports the detailed functional characterization of OsRuvBL under abiotic stresses through genetic engineering. An efficient Agrobacterium-mediated in planta transformation protocol was developed in indica rice to generate the transgenic lines and study was focused on optimization of factors to achieve maximum transformation efficiency. Overexpressing OsRuvBL1a transgenic lines showed enhanced tolerance under in vivo salinity stress as compared to WT plants. The physiological and biochemical analysis of the OsRuvBL1a transgenic lines showed better performance under salinity and drought stresses. Several stress responsive interacting partners of OsRuvBL1a were identified using Y2H system revealed to its role in stress tolerance. Functional mechanism for boosting stress tolerance by OsRuvBL1a has been proposed in this study. This integration of OsRuvBL1a gene in rice genome using in planta transformation method helped to achieve the abiotic stress resilient smart crop. This study is the first direct evidence to show the novel function of RuvBL in boosting abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Shabnam K Saifi
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nishat Passricha
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Renu Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Manoj Nath
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; ICAR-Directorate of Mushroom Research, Chambaghat, Solan, Himachal Pradesh 173213, India
| | - Ritu Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124 001, Haryana, India
| | - Sarvajeet Singh Gill
- Stress Physiology and Molecular Biology Lab, Centre for Biotechnology, Maharshi Dayanand University, Rohtak 124 001, Haryana, India.
| | - Narendra Tuteja
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
5
|
Surya Krishna S, Harish Chandar SR, Ravi M, Valarmathi R, Lakshmi K, Prathima PT, Manimekalai R, Viswanathan R, Hemaprabha G, Appunu C. Transgene-Free Genome Editing for Biotic and Abiotic Stress Resistance in Sugarcane: Prospects and Challenges. AGRONOMY 2023; 13:1000. [DOI: 10.3390/agronomy13041000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Sugarcane (Saccharum spp.) is one of the most valuable food and industrial crops. Its production is constrained due to major biotic (fungi, bacteria, viruses and insect pests) and abiotic (drought, salt, cold/heat, water logging and heavy metals) stresses. The ever-increasing demand for sugar and biofuel and the rise of new pest and disease variants call for the use of innovative technologies to speed up the sugarcane genetic improvement process. Developing new cultivars through conventional breeding techniques requires much time and resources. The advent of CRISPR/Cas genome editing technology enables the creation of new cultivars with improved resistance/tolerance to various biotic and abiotic stresses. The presence of genome editing cassette inside the genome of genome-edited plants hinders commercial exploitation due to regulatory issues. However, this limitation can be overcome by using transgene-free genome editing techniques. Transgene-free genome editing approaches, such as delivery of the RNPs through biolistics or protoplast fusion, virus-induced genome editing (VIGE), transient expression of CRISPR/Cas reagents through Agrobacterium-mediated transformation and other approaches, are discussed. A well-established PCR-based assay and advanced screening systems such as visual marker system and Transgene killer CRISPR system (TKC) rapidly identify transgene-free genome edits. These advancements in CRISPR/Cas technology speed up the creation of genome-edited climate-smart cultivars that combat various biotic and abiotic stresses and produce good yields under ever-changing conditions.
Collapse
Affiliation(s)
- Sakthivel Surya Krishna
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| | - S R Harish Chandar
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| | - Maruthachalam Ravi
- Indian Institute of Science Education and Research (IISER), Thiruvananthapuram 695551, Kerala, India
| | - Ramanathan Valarmathi
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| | - Kasirajan Lakshmi
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| | | | - Ramaswamy Manimekalai
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| | - Rasappa Viswanathan
- ICAR—Indian Institute of Sugarcane Research, Lucknow 226002, Uttar Pradesh, India
| | - Govindkurup Hemaprabha
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| | - Chinnaswamy Appunu
- Division of Crop Improvement, Indian Council of Agricultural Research-Sugarcane Breeding Institute, Coimbatore 641007, Tamil Nadu, India
| |
Collapse
|
6
|
Duan S, Xin R, Guan S, Li X, Fei R, Cheng W, Pan Q, Sun X. Optimization of callus induction and proliferation of Paeonia lactiflora Pall. and Agrobacterium-mediated genetic transformation. FRONTIERS IN PLANT SCIENCE 2022; 13:996690. [PMID: 36589115 PMCID: PMC9800923 DOI: 10.3389/fpls.2022.996690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Paeonia lactiflora Pall. is an important ornamental plant with high economic and medicinal value, which has considerable development prospects worldwide. The lack of efficient tissue culture techniques and genetic transformation systems has become a master obstacle for P. lactiflora research. The purpose of the present study focuses on obtaining an efficient and stable genetic transformation method using callus as the receptor and exploring an efficient protocol for callus induction and proliferation associated with P. lactiflora. Callus induction and proliferation were performed using MS medium with various concentrations of 2,4-Dichlorophenoxyacetic acid (2,4-D), 1-Naphthaleneacetic acid (NAA), 6-Benzylaminopurine (6-BA) and thidiazuron (TDZ). The sensitivity of callus to kanamycin and cefotaxime was determined. Several parameters such as Agrobacterium cell density, infection time and co-culture duration were studied to optimize transformation efficiency. Agrobacterium strains EHA105 and pBI121 binary vector harboring the β-glucuronidase (GUS) gene were used for transformation. Expression of the GUS reporter gene was detected by GUS assay, polymerase chain reaction (PCR) and Quantitative Real-time PCR (RT-qPCR). The MS medium containing 1.0 mg·L-1 NAA, 0.5 mg·L-1 2,4-D and 0.5 mg·L-1 TDZ was optimal for callus induction and MS medium containing 0.5 mg·L-1 NAA, 1.0 mg·L-1 2,4-D and 0.5 mg·L-1 TDZ was the best for callus proliferation. The concentrations of kanamycin and cefotaxime used for screening positive callus were 125 mg·L-1 and 200 mg·L-1, respectively. Among various combinations analyzed, the best transformation result was obtained via the 25 min of infection of Agrobacterium at 0.6 OD600 and 3 d of co-culture. Overall, this study provided technical support and theoretical guidance for improving the callus induction and proliferation efficiency and the study of gene function in P. lactiflora.
Collapse
Affiliation(s)
- Siyang Duan
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Rujie Xin
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Shixin Guan
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xueting Li
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Riwen Fei
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Wan Cheng
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Qing Pan
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xiaomei Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
7
|
Huynh J, Hotton SK, Chan R, Syed Y, Thomson J. Evaluation of novel surfactants for plant transformation. BMC Res Notes 2022; 15:360. [PMID: 36482477 PMCID: PMC9733262 DOI: 10.1186/s13104-022-06251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Assess the efficiency of seven novel surfactants, relative to the typical Silwet® L-77, for floral dip transformation of Arabidopsis. RESULTS Floral dip transformation of Arabidopsis has been used consistently for 20 years with little change in the protocol. Here we directly compare seven novel surfactants (BREAK-THRU®-OE446, S200, S233, S240, S279, S301 and SP133) to the standard Silwet® L-77 for efficiency of Arabidopsis transformation providing an example of how the surfactants can help other plant transformation protocols. Relative transformation efficiencies ranged from - 44 to + 45% compared to Silwet® L-77. Surfactants S200, S240, and S279 demonstrated the greatest enhancement in transformation.
Collapse
Affiliation(s)
- Jennie Huynh
- grid.507310.0Crop Improvement and Genetics, Western Regional Research Center, USDA-ARS, Albany, CA USA
| | - Sara K. Hotton
- grid.507310.0Crop Improvement and Genetics, Western Regional Research Center, USDA-ARS, Albany, CA USA
| | - Ron Chan
- grid.507310.0Crop Improvement and Genetics, Western Regional Research Center, USDA-ARS, Albany, CA USA
| | - Yasra Syed
- grid.507310.0Crop Improvement and Genetics, Western Regional Research Center, USDA-ARS, Albany, CA USA
| | - James Thomson
- grid.507310.0Crop Improvement and Genetics, Western Regional Research Center, USDA-ARS, Albany, CA USA
| |
Collapse
|
8
|
Vasudevan V, Sathish D, Ajithan C, Sathish S, Manickavasagam M. Efficient Agrobacterium-mediated in planta genetic transformation of watermelon [Citrullus lanatus Thunb.]. PLANT BIOTECHNOLOGY REPORTS 2021; 15:447-457. [DOI: 10.1007/s11816-021-00691-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 06/16/2023]
|
9
|
Basso MF, Arraes FBM, Grossi-de-Sa M, Moreira VJV, Alves-Ferreira M, Grossi-de-Sa MF. Insights Into Genetic and Molecular Elements for Transgenic Crop Development. FRONTIERS IN PLANT SCIENCE 2020; 11:509. [PMID: 32499796 PMCID: PMC7243915 DOI: 10.3389/fpls.2020.00509] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/03/2020] [Indexed: 05/21/2023]
Abstract
Climate change and the exploration of new areas of cultivation have impacted the yields of several economically important crops worldwide. Both conventional plant breeding based on planned crosses between parents with specific traits and genetic engineering to develop new biotechnological tools (NBTs) have allowed the development of elite cultivars with new features of agronomic interest. The use of these NBTs in the search for agricultural solutions has gained prominence in recent years due to their rapid generation of elite cultivars that meet the needs of crop producers, and the efficiency of these NBTs is closely related to the optimization or best use of their elements. Currently, several genetic engineering techniques are used in synthetic biotechnology to successfully improve desirable traits or remove undesirable traits in crops. However, the features, drawbacks, and advantages of each technique are still not well understood, and thus, these methods have not been fully exploited. Here, we provide a brief overview of the plant genetic engineering platforms that have been used for proof of concept and agronomic trait improvement, review the major elements and processes of synthetic biotechnology, and, finally, present the major NBTs used to improve agronomic traits in socioeconomically important crops.
Collapse
Affiliation(s)
| | - Fabrício Barbosa Monteiro Arraes
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maíra Grossi-de-Sa
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Valdeir Junio Vaz Moreira
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Department of Molecular Biology and Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Maria Fatima Grossi-de-Sa
- Plant Biotechnology, Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Department of Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, Brazil
| |
Collapse
|
10
|
Dattgonde N, Tiwari S, Sapre S, Gontia-Mishra I. Genetic Transformation of Oat Mediated by Agrobacterium is enhanced with Sonication and Vacuum Infiltration. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 17:e1563. [PMID: 31457038 PMCID: PMC6697858 DOI: 10.21859/ijb.1563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Oat (Avena sativa) with high nutritive value and fiber content is used as the main food grain in many countries for human diet as well as animal feed. Recently, it became difficult to transfer new genes through the conventional breeding due to the lack of desirable traits. OBJECTIVES The current study aimed at achieving a standardized protocol for Agrobacterium-mediated transformation in oat. MATERIALS AND METHODS For oat transformation, mature seeds were sterilized, germinated, and used for explants generation. Agrobacterium tumefaciens GV3101 with the binary vector pCAMBIA 1305.1, which carries gus as reporter gene, was utilized in the transformation. The co-cultivation treatment assisted with sonication, and vacuum infiltration, and their combination was employed for transformation with different incubation periods of 48, 72, and 96 hours under the dark conditions. RESULTS Among the different transformation treatments, the vacuum treatment with 72 hours dark incubation had the best results. Vacuum infiltration of the cultures from leaf base produced a maximum of 25% hygromycin-resistant explants. These explants upon GUS assay and PCR analysis revealed 21.85% and 19.04% transformation efficiency, respectively. CONCLUSIONS It could be concluded that vacuum infiltration assisted Agrobacterium-mediated transformation is the most efficient method to conduct the genetic improvement of the oat using transformation protocol.
Collapse
Affiliation(s)
- Nagesh Dattgonde
- Biotechnology Centre, Jawaharlal Nehru Agriculture University, Jabalpur, India
| | - Sharad Tiwari
- Biotechnology Centre, Jawaharlal Nehru Agriculture University, Jabalpur, India
| | - Swapnil Sapre
- Biotechnology Centre, Jawaharlal Nehru Agriculture University, Jabalpur, India
| | - Iti Gontia-Mishra
- Biotechnology Centre, Jawaharlal Nehru Agriculture University, Jabalpur, India
| |
Collapse
|
11
|
Karthik S, Pavan G, Sathish S, Siva R, Kumar PS, Manickavasagam M. Genotype-independent and enhanced in planta Agrobacterium tumefaciens-mediated genetic transformation of peanut [ Arachis hypogaea (L.)]. 3 Biotech 2018; 8:202. [PMID: 29607283 DOI: 10.1007/s13205-018-1231-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/23/2018] [Indexed: 01/12/2023] Open
Abstract
Agrobacterium infection and regeneration of the putatively transformed plant from the explant remains arduous for some crop species like peanut. Henceforth, a competent and reproducible in planta genetic transformation protocol is established for peanut cv. CO7 by standardizing various factors such as pre-culture duration, acetosyringone concentration, duration of co-cultivation, sonication and vacuum infiltration. In the present investigation, Agrobacterium tumefaciens strain EHA105 harboring the binary vector pCAMBIA1301-bar was used for transformation. The two-stage selection was carried out using 4 and 250 mg l-1 BASTA® to completely eliminate the chimeric and non-transformed plants. The transgene integration into plant genome was evaluated by GUS histochemical assay, polymerase chain reaction (PCR), and Southern blot hybridization. Among the various combinations and concentrations analyzed, highest transformation efficiency was obtained when the 2-day pre-cultured explants were subjected to sonication for 6 min and vacuum infiltrated for 3 min in Agrobacterium suspension, and co-cultivated on MS medium supplemented with 150 µM acetosyringone for 3 days. The fidelity of the standardized in planta transformation method was assessed in five peanut cultivars and all the cultivars responded positively with a transformation efficiency ranging from minimum 31.3% (with cv. CO6) to maximum 38.6% (with cv. TMV7). The in planta transformation method optimized in this study could be beneficial to develop superior peanut cultivars with desirable genetic traits.
Collapse
Affiliation(s)
- Sivabalan Karthik
- 1Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024 Tamil Nadu India
| | - Gadamchetty Pavan
- 1Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024 Tamil Nadu India
| | - Selvam Sathish
- 1Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024 Tamil Nadu India
| | - Ramamoorthy Siva
- 2School of Bio Sciences and Technology, VIT, Vellore, 632014 Tamil Nadu India
| | - Periyasamy Suresh Kumar
- 3Department of Biotechnology, BIT Campus, Anna University, Tiruchirappalli, 620024 Tamil Nadu India
| | - Markandan Manickavasagam
- 1Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024 Tamil Nadu India
| |
Collapse
|
12
|
Basso MF, da Cunha BADB, Ribeiro AP, Martins PK, de Souza WR, de Oliveira NG, Nakayama TJ, Augusto das Chagas Noqueli Casari R, Santiago TR, Vinecky F, Cançado LJ, de Sousa CAF, de Oliveira PA, de Souza SACD, Cançado GMDA, Kobayashi AK, Molinari HBC. Improved Genetic Transformation of Sugarcane (Saccharum spp.) Embryogenic Callus Mediated by Agrobacterium tumefaciens. ACTA ACUST UNITED AC 2018; 2:221-239. [PMID: 31725972 DOI: 10.1002/cppb.20055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sugarcane (Saccharum spp.) is a monocotyledonous semi-perennial C4 grass of the Poaceae family. Its capacity to accumulate high content of sucrose and biomass makes it one of the most important crops for sugar and biofuel production. Conventional methods of sugarcane breeding have shown several limitations due to its complex polyploid and aneuploid genome. However, improvement by biotechnological engineering is currently the most promising alternative to introduce economically important traits. In this work, we present an improved protocol for Agrobacterium tumefaciens-mediated transformation of commercial sugarcane hybrids using immature top stalk-derived embryogenic callus cultures. The callus cultures are transformed with preconditioned A. tumefaciens carrying a binary vector that encodes expression cassettes for a gene of interest and the bialaphos resistance gene (bar confers resistance to glufosinate-ammonium herbicide). This protocol has been used to successfully transform a commercial sugarcane cultivar, SP80-3280, highlighting: (i) reduced recalcitrance and oxidation; (ii) high yield of embryogenic callus; (iii) improved selection; and (iv) shoot regeneration and rooting of the transformed plants. Altogether, these improvements generated a transformation efficiency of 2.2%. This protocol provides a reliable tool for a routine procedure for sugarcane improvement by genetic engineering. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marcos Fernando Basso
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Bárbara Andrade Dias Brito da Cunha
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Ana Paula Ribeiro
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Polyana Kelly Martins
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Wagner Rodrigo de Souza
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Nelson Geraldo de Oliveira
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Thiago Jonas Nakayama
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Raphael Augusto das Chagas Noqueli Casari
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Thais Ribeiro Santiago
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Felipe Vinecky
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Letícia Jungmann Cançado
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Carlos Antônio Ferreira de Sousa
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Patricia Abrão de Oliveira
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | | | - Geraldo Magela de Almeida Cançado
- The Joint Research Unit for Genomics Applied to Climate Change (UMIP GenClima), National Center for Agricultural Informatics (CNPTIA), Brazilian Agricultural Research Corporation (EMBRAPA), Campinas, São Paulo, Brazil
| | - Adilson Kenji Kobayashi
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| | - Hugo Bruno Correa Molinari
- Genetics and Biotechnology Laboratory, National Center for Agroenergy Research (CNPAE), Brazilian Agricultural Research Corporation (EMBRAPA), Brasília, Distrito Federal, Brazil
| |
Collapse
|
13
|
|
14
|
Pandey S, Patel MK, Mishra A, Jha B. In planta Transformed Cumin (Cuminum cyminum L.) Plants, Overexpressing the SbNHX1 Gene Showed Enhanced Salt Endurance. PLoS One 2016; 11:e0159349. [PMID: 27411057 PMCID: PMC4943630 DOI: 10.1371/journal.pone.0159349] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/30/2016] [Indexed: 12/19/2022] Open
Abstract
Cumin is an annual, herbaceous, medicinal, aromatic, spice glycophyte that contains diverse applications as a food and flavoring additive, and therapeutic agents. An efficient, less time consuming, Agrobacterium-mediated, a tissue culture-independent in planta genetic transformation method was established for the first time using cumin seeds. The SbNHX1 gene, cloned from an extreme halophyte Salicornia brachiata was transformed in cumin using optimized in planta transformation method. The SbNHX1 gene encodes a vacuolar Na+/H+ antiporter and is involved in the compartmentalization of excess Na+ ions into the vacuole and maintenance of ion homeostasis Transgenic cumin plants were confirmed by PCR using gene (SbNHX1, uidA and hptII) specific primers. The single gene integration event and overexpression of the gene were confirmed by Southern hybridization and competitive RT-PCR, respectively. Transgenic lines L3 and L13 showed high expression of the SbNHX1 gene compared to L6 whereas moderate expression was detected in L5 and L10 transgenic lines. Transgenic lines (L3, L5, L10 and L13), overexpressing the SbNHX1 gene, showed higher photosynthetic pigments (chlorophyll a, b and carotenoid), and lower electrolytic leakage, lipid peroxidation (MDA content) and proline content as compared to wild type plants under salinity stress. Though transgenic lines were also affected by salinity stress but performed better compared to WT plants. The ectopic expression of the SbNHX1 gene confirmed enhanced salinity stress tolerance in cumin as compared to wild type plants under stress condition. The present study is the first report of engineering salt tolerance in cumin, so far and the plant may be utilized for the cultivation in saline areas.
Collapse
Affiliation(s)
- Sonika Pandey
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
| | - Manish Kumar Patel
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Avinash Mishra
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
- * E-mail: (AM); (BJ)
| | - Bhavanath Jha
- Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
- * E-mail: (AM); (BJ)
| |
Collapse
|
15
|
Mayavan S, Subramanyam K, Jaganath B, Sathish D, Manickavasagam M, Ganapathi A. Agrobacterium-mediated in planta genetic transformation of sugarcane setts. PLANT CELL REPORTS 2015; 34:1835-48. [PMID: 26152769 DOI: 10.1007/s00299-015-1831-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 05/20/2023]
Abstract
An efficient, reproducible, and genotype-independent in planta transformation has been developed for sugarcane using setts as explant. Traditional Agrobacterium-mediated genetic transformation and in vitro regeneration of sugarcane is a complex and time-consuming process. Development of an efficient Agrobacterium-mediated transformation protocol, which can produce a large number of transgenic plants in short duration is advantageous. Hence, in the present investigation, we developed a tissue culture-independent in planta genetic transformation system for sugarcane using setts collected from 6-month-old sugarcane plants. The sugarcane setts (nodal cuttings) were infected with three Agrobacterium tumefaciens strains harbouring pCAMBIA 1301-bar plasmid, and the transformants were selected against BASTA(®). Several parameters influencing the in planta transformation such as A. tumefaciens strains, acetosyringone, sonication and exposure to vacuum pressure, have been evaluated. The putatively transformed sugarcane plants were screened by GUS histochemical assay. Sugarcane setts were pricked and sonicated for 6 min and vacuum infiltered for 2 min at 500 mmHg in A. tumefaciens C58C1 suspension containing 100 µM acetosyringone, 0.1 % Silwett L-77 showed the highest transformation efficiency of 29.6 % (with var. Co 62175). The three-stage selection process completely eliminated the chimeric transgenic sugarcane plants. Among the five sugarcane varieties evaluated using the standardized protocol, var. Co 6907 showed the maximum transformation efficiency (32.6 %). The in planta transformation protocol described here is applicable to transfer the economically important genes into different varieties of sugarcane in relatively short time.
Collapse
Affiliation(s)
- Subramanian Mayavan
- Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
- Center for Bioenergy, Cooperative Research, Lincoln University of Missouri, Jefferson City, MO, 65101, USA
| | - Kondeti Subramanyam
- Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure links 653, 9000, Ghent, Belgium
| | - Balusamy Jaganath
- Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Dorairaj Sathish
- Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Markandan Manickavasagam
- Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Andy Ganapathi
- Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
16
|
Wong SM, Zoolkefli FIRM, Karim R, Tan BC, Harikrishna JA, Khalid N. Stable integration ofmgfp5transgenes followingAgrobacterium-mediated transformation inBoesenbergia rotundacell suspension culture. FRONTIERS IN LIFE SCIENCE 2015. [DOI: 10.1080/21553769.2015.1051242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Krenek P, Samajova O, Luptovciak I, Doskocilova A, Komis G, Samaj J. Transient plant transformation mediated by Agrobacterium tumefaciens: Principles, methods and applications. Biotechnol Adv 2015; 33:1024-42. [PMID: 25819757 DOI: 10.1016/j.biotechadv.2015.03.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 03/05/2015] [Accepted: 03/19/2015] [Indexed: 12/20/2022]
Abstract
Agrobacterium tumefaciens is widely used as a versatile tool for development of stably transformed model plants and crops. However, the development of Agrobacterium based transient plant transformation methods attracted substantial attention in recent years. Transient transformation methods offer several applications advancing stable transformations such as rapid and scalable recombinant protein production and in planta functional genomics studies. Herein, we highlight Agrobacterium and plant genetics factors affecting transfer of T-DNA from Agrobacterium into the plant cell nucleus and subsequent transient transgene expression. We also review recent methods concerning Agrobacterium mediated transient transformation of model plants and crops and outline key physical, physiological and genetic factors leading to their successful establishment. Of interest are especially Agrobacterium based reverse genetics studies in economically important crops relying on use of RNA interference (RNAi) or virus-induced gene silencing (VIGS) technology. The applications of Agrobacterium based transient plant transformation technology in biotech industry are presented in thorough detail. These involve production of recombinant proteins (plantibodies, vaccines and therapeutics) and effectoromics-assisted breeding of late blight resistance in potato. In addition, we also discuss biotechnological potential of recombinant GFP technology and present own examples of successful Agrobacterium mediated transient plant transformations.
Collapse
Affiliation(s)
- Pavel Krenek
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Olga Samajova
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Ivan Luptovciak
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Anna Doskocilova
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - George Komis
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Jozef Samaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
18
|
Arun M, Subramanyam K, Mariashibu TS, Theboral J, Shivanandhan G, Manickavasagam M, Ganapathi A. Application of sonication in combination with vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars. Appl Biochem Biotechnol 2015; 175:2266-87. [PMID: 25480345 DOI: 10.1007/s12010-014-1360-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 11/10/2014] [Indexed: 01/28/2023]
Abstract
Soybean is a recalcitrant crop to Agrobacterium-mediated genetic transformation. Development of highly efficient, reproducible, and genotype-independent transformation protocol is highly desirable for soybean genetic improvement. Hence, an improved Agrobacterium-mediated genetic transformation protocol has been developed for cultivar PK 416 by evaluating various parameters including Agrobacterium tumefaciens strains (LBA4404, EHA101, and EHA105 harboring pCAMBIA1304 plasmid), sonication duration, vacuum infiltration pressure, and vacuum duration using cotyledonary node explants of soybean prepared from 7-day-old seedlings. The transformed plants were successfully developed through direct organogenesis system. Transgene expression was assessed by GUS histochemical and gfp visual assays, and integration was analyzed by PCR and Southern blot hybridization. Among the different combinations and durations evaluated, a maximum transformation efficiency of 18.6 % was achieved when the cotyledonary node explants of cv. PK 416 were sonicated for 20 s and vacuum infiltered for 2 min at 250 mmHg in A. tumefaciens EHA105 suspension. The amenability of the standardized protocol was tested on four more soybean cultivars JS 90-41, Hara Soy, Co 1, and Co 2 in which all the cultivars responded favorably with transformation efficiency ranging from 13.3 to 16.6 %. The transformation protocol developed in the present study would be useful to transform diverse soybean cultivars with desirable traits.
Collapse
Affiliation(s)
- Muthukrishnan Arun
- Department of Biotechnology & Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024,, Tamil Nadu, India
| | | | | | | | | | | | | |
Collapse
|
19
|
Metabolic engineering of higher plants and algae for isoprenoid production. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:161-99. [PMID: 25636485 DOI: 10.1007/10_2014_290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Isoprenoids are a class of compounds derived from the five carbon precursors, dimethylallyl diphosphate, and isopentenyl diphosphate. These molecules present incredible natural chemical diversity, which can be valuable for humans in many aspects such as cosmetics, agriculture, and medicine. However, many terpenoids are only produced in small quantities by their natural hosts and can be difficult to generate synthetically. Therefore, much interest and effort has been directed toward capturing the genetic blueprint for their biochemistry and engineering it into alternative hosts such as plants and algae. These autotrophic organisms are attractive when compared to traditional microbial platforms because of their ability to utilize atmospheric CO2 as a carbon substrate instead of supplied carbon sources like glucose. This chapter will summarize important techniques and strategies for engineering the accumulation of isoprenoid metabolites into higher plants and algae by choosing the correct host, avoiding endogenous regulatory mechanisms, and optimizing potential flux into the target compound. Future endeavors will build on these efforts by fine-tuning product accumulation levels via the vast amount of available "-omic" data and devising metabolic engineering schemes that integrate this into a whole-organism approach. With the development of high-throughput transformation protocols and synthetic biology molecular tools, we have only begun to harness the power and utility of plant and algae metabolic engineering.
Collapse
|
20
|
Jaganath B, Subramanyam K, Mayavan S, Karthik S, Elayaraja D, Udayakumar R, Manickavasagam M, Ganapathi A. An efficient in planta transformation of Jatropha curcas (L.) and multiplication of transformed plants through in vivo grafting. PROTOPLASMA 2014; 251:591-601. [PMID: 24150424 DOI: 10.1007/s00709-013-0558-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/30/2013] [Indexed: 05/10/2023]
Abstract
An efficient and reproducible Agrobacterium-mediated in planta transformation was developed in Jatropha curcas. The various factors affecting J. curcas in planta transformation were optimized, including decapitation, Agrobacterium strain, pin-pricking, vacuum infiltration duration and vacuum pressure. Simple vegetative in vivo cleft grafting method was adopted in the multiplication of transformants without the aid of tissue culture. Among the various parameters evaluated, decapitated plants on pin-pricking and vacuum infiltrated at 250 mmHg for 3 min with the Agrobacterium strain EHA 105 harbouring the binary vector pGA 492 was proved to be efficient in all terms with a transformation efficiency of 62.66%. Transgene integration was evinced by the GUS histochemical analysis, and the GUS positive plants were subjected to grafting. Putatively transformed J. curcas served as "Scion" and the wild type J. curcas plant severed as "Stock". There was no occurrence of graft rejection and the plants were then confirmed by GUS histochemical analysis, polymerase chain reaction (PCR) and Southern hybridization. Genetic stability of the grafted plants was evaluated by using randomly amplified polymorphic DNA (RAPD), marker which showed 100% genetic stability between mother and grafted plants. Thus, an efficient in planta transformation and grafting based multiplication of J. curcas was established.
Collapse
Affiliation(s)
- Balusamy Jaganath
- Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hiei Y, Ishida Y, Komari T. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. FRONTIERS IN PLANT SCIENCE 2014; 5:628. [PMID: 25426132 PMCID: PMC4224067 DOI: 10.3389/fpls.2014.00628] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/23/2014] [Indexed: 05/20/2023]
Abstract
Monocotyledonous plants were believed to be not transformable by the soil bacterium Agrobacterium tumefaciens until two decades ago, although convenient protocols for infection of leaf disks and subsequent regeneration of transgenic plants had been well established in a number of dicotyledonous species by then. This belief was reinforced by the fact that monocotyledons are mostly outside the host range of crown gall disease caused by the bacterium and by the failures in trials in monocotyledons to mimic the transformation protocols for dicotyledons. However, a key reason for the failure could have been the lack of active cell divisions at the wound sites in monocotyledons. The complexity and narrow optimal windows of critical factors, such as genotypes of plants, conditions of the plants from which explants are prepared, tissue culture methods and culture media, pre-treatments of explants, strains of A. tumefaciens, inducers of virulence genes, transformation vectors, selection marker genes and selective agents, kept technical hurdles high. Eventually it was demonstrated that rice and maize could be transformed by co-cultivating cells of callus cultures or immature embryos, which are actively dividing or about to divide, with A. tumefaciens. Subsequently, these initial difficulties were resolved one by one by many research groups, and the major cereals are now transformed quite efficiently. As many as 15 independent transgenic events may be regenerated from a single piece of immature embryo of rice. Maize transformation protocols are well established, and almost all transgenic events deregulated for commercialization after 2003 were generated by Agrobacterium-mediated transformation. Wheat, barley, and sorghum are also among those plants that can be efficiently transformed by A. tumefaciens.
Collapse
Affiliation(s)
| | | | - Toshihiko Komari
- *Correspondence: Toshihiko Komari, Plant Innovation Center, Japan Tobacco Inc., 700 Higashibara, Iwata, Shizuoka 438-0802, Japan e-mail:
| |
Collapse
|
22
|
Subramanyam K, Rajesh M, Jaganath B, Vasuki A, Theboral J, Elayaraja D, Karthik S, Manickavasagam M, Ganapathi A. Assessment of factors influencing the Agrobacterium-mediated in planta seed transformation of brinjal (Solanum melongena L.). Appl Biochem Biotechnol 2013; 171:450-68. [PMID: 23852797 DOI: 10.1007/s12010-013-0359-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/17/2013] [Indexed: 11/25/2022]
Abstract
An efficient and reproducible in planta transformation method was developed for brinjal using seed as an explant. The brinjal seeds were infected with Agrobacterium tumefaciens EHA 105 harbouring pCAMBIA 1301-bar plasmid, and the transformants were selected against BASTA®. Several parameters influencing the in planta seed transformation such as pre-culture duration, acetosyringone concentration, surfactants, duration of sonication, vacuum pressure and vacuum duration have been evaluated. The putatively transformed (T 0) brinjal plants were screened by GUS histochemical analysis. Among the different combinations and concentrations tested, when the 18-h pre-cultured brinjal seeds were sonicated for 20 min and vacuum infiltered for 3 min at 500 mm of Hg in Agrobacterium suspension containing 100 μM acetosyringone, 0.2 % Silwett L-77 favoured the Agrobacterium infection and showed maximum transformation efficiency. Among the five brinjal varieties evaluated, Arka Samhitha showed maximum transformation efficiency at 45.66 %. The transgene was successfully transmitted to progeny plants (T 1) which was evidenced by GUS histochemical analysis, polymerase chain reaction and Southern hybridisation. The in planta protocol developed in the present study would be beneficial to transfer the economically and nutritionally important genes into different varieties of brinjal, and the transgenic brinjal plants can be produced in less time (approximately 27 days).
Collapse
Affiliation(s)
- Kondeti Subramanyam
- Department of Biotechnology and Genetic Engineering, School of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | | | | | | | | | | | | | | | | |
Collapse
|