1
|
Zhao Z, Chen T, Yue J, Pu N, Liu J, Luo L, Huang M, Guo T, Xiao W. Small Auxin Up RNA 56 (SAUR56) regulates heading date in rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:62. [PMID: 37521314 PMCID: PMC10374499 DOI: 10.1007/s11032-023-01409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
Heading date is a critical agronomic trait that determines crop yield. Although numerous genes associated with heading date have been identified in rice, the mechanisms involving Small Auxin Up RNA (SAUR) family have not been elucidated. In this study, the biological function of several SAUR genes was initially investigated using the CRISPR-Cas9 technology in the Japonica cultivar Zhonghua11 (ZH11) background. Further analysis revealed that the loss-of-function of OsSAUR56 affected heading date in both NLD (natural long-day) and ASD (artificial short-day). OsSAUR56 exhibited predominant expression in the anther, with its protein localized in both the cytoplasm and nucleus. OsSAUR56 regulated flowering time and heading date by modulating the expression of the clock gene OsGI, as well as two repressors Ghd7 and DTH8. Furthermore, haplotype-phenotype association analysis revealed a strong correlation between OsSAUR56 and heading date, suggesting its role in selection during the domestication of rice. In summary, these findings highlights the importance of OsSAUR56 in the regulation of heading date for further potential facilitating genetic engineering for flowering time during rice breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01409-w.
Collapse
Affiliation(s)
- Zhe Zhao
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Tengkui Chen
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Jicheng Yue
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Na Pu
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Jinzhao Liu
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Lixin Luo
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Ming Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642 China
| | - Tao Guo
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
- Heyuan Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Heyuan, 517000 Guangdong China
| | - Wuming Xiao
- National Plant Space Breeding Engineering Technology Research Center, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
- Heyuan Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Heyuan, 517000 Guangdong China
| |
Collapse
|
2
|
Yang B, Chen N, Dang Y, Wang Y, Wen H, Zheng J, Zheng X, Zhao J, Lu J, Qiao L. Identification and validation of quantitative trait loci for chlorophyll content of flag leaf in wheat under different phosphorus treatments. FRONTIERS IN PLANT SCIENCE 2022; 13:1019012. [PMID: 36466250 PMCID: PMC9714299 DOI: 10.3389/fpls.2022.1019012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
In wheat, the leaf chlorophyll content in flag leaves is closely related to the degree of phosphorus stress. Identifying major genes/loci associated with chlorophyll content in flag leaves under different phosphorus conditions is critical for breeding wheat varieties resistant to low phosphorus (P). Under normal, medium, and low phosphorus conditions, the chlorophyll content of flag leaves was investigated by a double haploid (DH) population derived from a cross between two popular wheat varieties Jinmai 47 and Jinmai 84, at different grain filling stages. Chlorophyll content of the DH population and parents decreased gradually during the S1 to the S3 stages and rapidly at the S4 stage. At the S4 stage, the chlorophyll content of the DH population under low phosphorus conditions was significantly lower than under normal phosphate conditions. Using a wheat 15K single-nucleotide polymorphism (SNP) panel, a total of 157 QTLs were found to be associated with chlorophyll content in flag leaf and were identified under three phosphorus conditions. The phenotypic variation explained (PVE) ranged from 3.07 to 31.66%. Under three different phosphorus conditions, 36, 30, and 48 QTLs for chlorophyll content were identified, respectively. Six major QTLs Qchl.saw-2B.1, Qchl.saw-3B.1, Qchl.saw-4D.1, Qchl.saw-4D.2, Qchl.saw-5A.9 and Qchl.saw-6A.4 could be detected under multiple phosphorus conditions in which Qchl.saw-4D.1, Qchl.saw-4D.2, and Qchl.saw-6A.4 were revealed to be novel major QTLs. Moreover, the closely linked SNP markers of Qchl.saw-4D.1 and Qchl.saw-4D.2 were validated as KASP markers in a DH population sharing the common parent Jinmai 84, showed extreme significance (P <0.01) in more than three environments under different phosphorus conditions, which has the potential to be utilized in molecular marker-assisted breeding for low phosphorus tolerance in wheat.
Collapse
Affiliation(s)
- Bin Yang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Nan Chen
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
- College of Agronomy, Shanxi Agricultural University, Taiyuan, China
| | - Yifei Dang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
- College of Agronomy, Shanxi Agricultural University, Taiyuan, China
| | - Yuzhi Wang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Hongwei Wen
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Jun Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Xingwei Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Jiajia Zhao
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Jinxiu Lu
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| | - Ling Qiao
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, China
| |
Collapse
|
3
|
Yang B, Wen X, Wen H, Feng Y, Zhao J, Wu B, Zheng X, Yang C, Yang S, Qiao L, Zheng J. Identification of Genetic Loci Affecting Flag Leaf Chlorophyll in Wheat Grown under Different Water Regimes. Front Genet 2022; 13:832898. [PMID: 35368684 PMCID: PMC8965356 DOI: 10.3389/fgene.2022.832898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Chlorophyll content of the flag leaf is an important trait for drought resistance in wheat under drought stress. Understanding the regulatory mechanism of flag leaf chlorophyll content could accelerate breeding for drought resistance. In this study, we constructed a recombinant inbred line (RIL) population from a cross of drought-sensitive variety DH118 and drought-resistant variety Jinmai 919, and analyzed the chlorophyll contents of flag leaves in six experimental locations/years using the Wheat90K single-nucleotide polymorphism array. A total of 29 quantitative trait loci (QTLs) controlling flag leaf chlorophyll were detected with contributions to phenotypic variation ranging from 4.67 to 23.25%. Twelve QTLs were detected under irrigated conditions and 18 were detected under dryland (drought) conditions. Most of the QTLs detected under the different water regimes were different. Four major QTLs (Qchl.saw-3B.2, Qchl.saw-5A.2, Qchl.saw-5A.3, and Qchl.saw-5B.2) were detected in the RIL population. Qchl.saw-3B.2, possibly more suitable for marker-assisted selection of genotypes adapted to irrigated conditions, was validated by a tightly linked kompetitive allele specific PCR (KASP) marker in a doubled haploid population derived from a different cross. Qchl.saw-5A.3, a novel stably expressed QTL, was detected in the dryland environments and explained up to 23.25% of the phenotypic variation, and has potential for marker-assisted breeding of genotypes adapted to dryland conditions. The stable and major QTLs identified here add valuable information for understanding the genetic mechanism underlying chlorophyll content and provide a basis for molecular marker–assisted breeding.
Collapse
Affiliation(s)
- Bin Yang
- Institute of Wheat Research, Shanxi Agricultural University/ State Key Laboratory of Sustainable Dryland Agriculture, Linfen, China
- College of Agricultural Economics and Management, Shanxi Agricultural University, Taiyuan, China
| | - Xiaojie Wen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongwei Wen
- Institute of Wheat Research, Shanxi Agricultural University/ State Key Laboratory of Sustainable Dryland Agriculture, Linfen, China
| | - Yanru Feng
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, Bonn, Germany
- Department of Agronomy and Crop Physiology, Institute for Agronomy and Plant Breeding, Justus Liebig University Giessen, Giessen, Germany
| | - Jiajia Zhao
- Institute of Wheat Research, Shanxi Agricultural University/ State Key Laboratory of Sustainable Dryland Agriculture, Linfen, China
| | - Bangbang Wu
- Institute of Wheat Research, Shanxi Agricultural University/ State Key Laboratory of Sustainable Dryland Agriculture, Linfen, China
| | - Xingwei Zheng
- Institute of Wheat Research, Shanxi Agricultural University/ State Key Laboratory of Sustainable Dryland Agriculture, Linfen, China
| | - Chenkang Yang
- Institute of Wheat Research, Shanxi Agricultural University/ State Key Laboratory of Sustainable Dryland Agriculture, Linfen, China
| | - Sanwei Yang
- College of Agricultural Economics and Management, Shanxi Agricultural University, Taiyuan, China
- *Correspondence: Sanwei Yang, ; Ling Qiao, ; Jun Zheng,
| | - Ling Qiao
- Institute of Wheat Research, Shanxi Agricultural University/ State Key Laboratory of Sustainable Dryland Agriculture, Linfen, China
- *Correspondence: Sanwei Yang, ; Ling Qiao, ; Jun Zheng,
| | - Jun Zheng
- Institute of Wheat Research, Shanxi Agricultural University/ State Key Laboratory of Sustainable Dryland Agriculture, Linfen, China
- *Correspondence: Sanwei Yang, ; Ling Qiao, ; Jun Zheng,
| |
Collapse
|
4
|
Li BW, Gao S, Yang ZM, Song JB. The F-box E3 ubiquitin ligase AtSDR is involved in salt and drought stress responses in Arabidopsis. Gene 2022; 809:146011. [PMID: 34655724 DOI: 10.1016/j.gene.2021.146011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 11/04/2022]
Abstract
F-box protein genes have been shown to play vital roles in plant development and stress respones. In Arabidopsis, there are more than 600 F-box proteins, and most of their functions are unclear. The present study shows that the F-box (SKP1-Cullin/CDC53-F-box) gene At5g15710 (Salt and Drought Responsiveness, SDR) is involved in abiotic stress responses in Arabidopsis. SDR is expressed in all tissues of Arabidopsis and is upregulated by salt and heat stresses and ABA treatment but downregulated by drought stress. Subcellular localization analysis shows that the SDR protein colocalizes with the nucleus. 35S:AntiSDR plants are hypersensitive to salt stress, but 35S:SDR plants display a salt-tolerant phenotype. Furthermore, 35S:SDR plants are hypersensitive to drought stress, while 35S:AntiSDR plants are significantly more drought tolerant. Overall, our results suggest that SDR is involved in salt and drought stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Bo Wen Li
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; Department of Neurosurgery, The First People's Hospital of Changzhou, Changzhou 213003 , PR China
| | - Shuai Gao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jian Bo Song
- College of Biological Sciences and Engineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
5
|
Wei H, Wang X, Xu H, Wang L. Molecular basis of heading date control in rice. ABIOTECH 2020; 1:219-232. [PMID: 36304129 PMCID: PMC9590479 DOI: 10.1007/s42994-020-00019-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/06/2020] [Indexed: 01/25/2023]
Abstract
Flowering time is of great significance for crop reproduction, yield, and regional adaptability, which is intricately regulated by various environmental cues and endogenous signals. Genetic approaches in Arabidopsis have revealed the elaborate underlying mechanisms of sensing the dynamic change of photoperiod via a coincidence between light signaling and circadian clock, the cellular time keeping system, to precisely control photoperiodic flowering time, and many other signaling pathways including internal hormones and external temperature cues. Extensive studies in rice (Oryza sativa.), one of the short-day plants (SDP), have uncovered the multiple major genetic components in regulating heading date, and revealed the underlying mechanisms for regulating heading date. Here we summarize the current progresses on the molecular basis for rice heading date control, especially focusing on the integration mechanism between photoperiod and circadian clock, and epigenetic regulation and heading procedures in response to abiotic stresses.
Collapse
Affiliation(s)
- Hua Wei
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiling Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hang Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
6
|
Wu M, Liu H, Lin Y, Chen J, Fu Y, Luo J, Zhang Z, Liang K, Chen S, Wang F. In-Frame and Frame-Shift Editing of the Ehd1 Gene to Develop Japonica Rice With Prolonged Basic Vegetative Growth Periods. FRONTIERS IN PLANT SCIENCE 2020; 11:307. [PMID: 32265960 PMCID: PMC7096585 DOI: 10.3389/fpls.2020.00307] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/03/2020] [Indexed: 05/05/2023]
Abstract
Japonica rice has become increasingly popular in China owing to its superior grain quality. Over the past decades, "indica to japonica" projects have been proposed to promote cultivation of japonica rice in low latitudes in China. Traditionally, japonica varieties were planted mainly in mid latitudes in the northeast plain and Yangtze River region. The key obstacle for introducing elite mid-latitude japonica varieties to low latitudes is the severe shortening of growth period of the japonica varieties due to their sensitivity to low-latitude short photoperiod and high temperature. Here we report development of new japonica rice with prolonged basic vegetative growth (BVG) periods for low latitudes by targeted editing the Early heading date 1 (Ehd1) gene. Using CRISPR/Cas9 system, we generated both frame-shift and/or in-frame deletion mutants in four japonica varieties, Nipponbare, Longdao16, Longdao24, and Xiushui134. When planting at low-latitude stations, the frame-shift homozygous lines exhibited significantly longer BVG periods compared with wild-types. Interestingly, we observed that minor deletion of the first few residues within the receiver domain could quantitatively impair the function of Ehd1 on activation of Hd3a and RFT1, resulting in an intermediate-long BVG period phenotype in the homozygous in-frame deletion ehd1 lines. Field investigation further showed that, both the in-frame and frame-shift lines exhibited significantly improved yield potential compared with wild-types. Our study demonstrates an effective approach to rapid breeding of elite japonica varieties with intermediate-long and long BVG periods for flexible cropping systems in diverse areas or under different seasons in southern China, and other low-latitude regions.
Collapse
Affiliation(s)
- Mingji Wu
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Huaqing Liu
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yan Lin
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jianmin Chen
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yanping Fu
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jiami Luo
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zhujian Zhang
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kangjing Liang
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Songbiao Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Feng Wang
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
7
|
Rice Senescence-Induced Receptor-Like Kinase ( OsSRLK) Is Involved in Phytohormone-Mediated Chlorophyll Degradation. Int J Mol Sci 2019; 21:ijms21010260. [PMID: 31905964 PMCID: PMC6982081 DOI: 10.3390/ijms21010260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 01/26/2023] Open
Abstract
Chlorophyll breakdown is a vital catabolic process of leaf senescence as it allows the recycling of nitrogen and other nutrients. In the present study, we isolated rice senescence-induced receptor-like kinase (OsSRLK), whose transcription was upregulated in senescing rice leaves. The detached leaves of ossrlk mutant (ossrlk) contained more green pigment than those of the wild type (WT) during dark-induced senescence (DIS). HPLC and immunoblot assay revealed that degradation of chlorophyll and photosystem II proteins was repressed in ossrlk during DIS. Furthermore, ultrastructural analysis revealed that ossrlk leaves maintained the chloroplast structure with intact grana stacks during dark incubation; however, the retained green color and preserved chloroplast structures of ossrlk did not enhance the photosynthetic competence during age-dependent senescence in autumn. In ossrlk, the panicles per plant was increased and the spikelets per panicle were reduced, resulting in similar grain productivity between WT and ossrlk. By transcriptome analysis using RNA sequencing, genes related to phytohormone, senescence, and chlorophyll biogenesis were significantly altered in ossrlk compared to those in WT during DIS. Collectively, our findings indicate that OsSRLK may degrade chlorophyll by participating in a phytohormone-mediated pathway.
Collapse
|
8
|
Das S, Parida SK, Agarwal P, Tyagi AK. Transcription factor OsNF-YB9 regulates reproductive growth and development in rice. PLANTA 2019; 250:1849-1865. [PMID: 31482329 DOI: 10.1007/s00425-019-03268-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/26/2019] [Indexed: 05/02/2023]
Abstract
OsNF-YB9 controls heading by affecting expression of regulators of flowering. It affects the development of the reproductive meristem by interacting with MADS1 and controlling expression of hormone-related genes. Nuclear Factor-Y (NF-Y) family of transcription factors takes part in many aspects of growth and development in eukaryotes. They have been classified into three subunit classes, namely, NF-YA, NF-YB and NF-YC. In plants, this transcription factor family is much diverged and takes part in several developmental processes and stress. We investigated NF-Y subunit genes of rice (Oryza sativa) and found OsNF-YB9 as the closest homologue of LEAFY COTYLEDON1. OsNF-YB9 delayed the heading date when ectopically expressed in rice. Expression of several heading date regulating genes such as Hd1, Ehd1, Hd3a and RFT1 were altered. OsNF-YB9 overexpression also resulted in morphological defects in the reproductive organs and led to pseudovivipary. OsNF-YB9 interacted with MADS1, a key regulator of floral development. This NF-Y subunit acted upstream to several transcription factors as well as signalling proteins involved in brassinosteroid and gibberellic acid metabolism and cell cycle. OsNF-YB9 and OsNF-YC12 interacted in planta and the latter also delayed heading in rice upon overexpression suggesting its involvement in a similar pathway. Our data provide new insights into the rice heading date pathway integrating these OsNF-Y subunit members to the network. These features can be exploited to improve vegetative growth and yield of rice plants in future.
Collapse
Affiliation(s)
- Sweta Das
- National Institute of Plant Genome Research, New Delhi, 110067, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Swarup K Parida
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| | - Akhilesh Kumar Tyagi
- National Institute of Plant Genome Research, New Delhi, 110067, India.
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India.
| |
Collapse
|
9
|
Bello BK, Hou Y, Zhao J, Jiao G, Wu Y, Li Z, Wang Y, Tong X, Wang W, Yuan W, Wei X, Zhang J. NF-YB1-YC12-bHLH144 complex directly activates Wx to regulate grain quality in rice (Oryza sativa L.). PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1222-1235. [PMID: 30552799 PMCID: PMC6576074 DOI: 10.1111/pbi.13048] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 05/14/2023]
Abstract
Identification of seed development regulatory genes is the key for the genetic improvement in rice grain quality. NF-Ys are the important transcription factors, but their roles in rice grain quality control and the underlying molecular mechanism remain largely unknown. Here, we report the functional characterization a rice NF-Y heterotrimer complex NF-YB1-YC12-bHLH144, which is formed by the binding of NF-YB1 to NF-YC12 and then bHLH144 in a sequential order. Knock-out of each of the complex genes resulted in alteration of grain qualities in all the mutants as well as reduced grain size in crnf-yb1 and crnf-yc12. RNA-seq analysis identified 1496 genes that were commonly regulated by NF-YB1 and NF-YC12, including the key granule-bound starch synthase gene Wx. NF-YC12 and bHLH144 maintain NF-YB1 stability from the degradation mediated by ubiquitin/26S proteasome, while NF-YB1 directly binds to the 'G-box' domain of Wx promoter and activates Wx transcription, hence to regulate rice grain quality. Finally, we revealed a novel grain quality regulatory pathway controlled by NF-YB1-YC12-bHLH144 complex, which has great potential for rice genetic improvement.
Collapse
Affiliation(s)
| | - Yuxuan Hou
- State Key Lab of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Juan Zhao
- State Key Lab of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Guiai Jiao
- State Key Lab of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Yawen Wu
- State Key Lab of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Zhiyong Li
- State Key Lab of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Yifeng Wang
- State Key Lab of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Xiaohong Tong
- State Key Lab of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Wei Wang
- State Key Lab of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Wenya Yuan
- State Key Lab of Biocatalysis and Enzyme EngineeringHubei Collaborative Innovation Center for Green Transformation of Bio‐ResourcesHubei Key Laboratory of Industrial BiotechnologyCollege of Life SciencesHubei UniversityWuhanChina
| | - Xiangjin Wei
- State Key Lab of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Jian Zhang
- State Key Lab of Rice BiologyChina National Rice Research InstituteHangzhouChina
| |
Collapse
|
10
|
Yin J, Jia J, Lian Z, Hu Y, Guo J, Huo H, Zhu Y, Gong H. Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:8-17. [PMID: 30412897 DOI: 10.1016/j.ecoenv.2018.10.105] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/27/2018] [Accepted: 10/29/2018] [Indexed: 05/21/2023]
Abstract
Silicon can increase salt tolerance, but the underlying mechanism has remained unclear. Here, we investigated the effect of silicon on polyamine metabolism and the role of polyamine accumulation in silicon-mediated salt tolerance in cucumber. Seedlings of cucumber 'JinYou 1' were subjected to salt stress (75 mM NaCl) in the presence or absence of added 0.3 mM silicon. Plant growth, polyamine metabolism and effects of exogenous polyamines and polyamine synthesis inhibitor dicyclohexylammonium sulphate on oxidative damage were investigated. The results showed that salt stress inhibited plant growth and decreased leaf chlorophyll levels and the maximum quantum yield of PSII, and added silicon ameliorated these negative effects. Salt stress increased polyamine accumulation in the leaves and roots. Compared with salt stress alone, overall, silicon addition decreased free putrescine concentrations, but increased spermidine and spermine concentrations in both leaves and roots under salt stress. Silicon application resulted in increased polyamine levels under salt stress by promoting the activities of S-adenosylmethionine decarboxylase and arginine decarboxylase while inhibiting the activity of diamine oxidase. Exogenous application of spermidine and spermine alleviated salt-stress-induced oxidative damage, whereas polyamine synthesis inhibitor eliminated the silicon-mediated decrease in oxidative damage. The results suggest that silicon-enhanced polyamine accumulation in cucumber under salt stress may play a role in decreasing oxidative damage and therefore increase the salt tolerance.
Collapse
Affiliation(s)
- Junliang Yin
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China
| | - Jianhua Jia
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhaoyuan Lian
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yanhong Hu
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia Guo
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Heqiang Huo
- Mid-Florida Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 2725 South Binion Road, Apopka, FL 32703, USA
| | - Yongxing Zhu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Haijun Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
11
|
Mikuriya S, Kasai M, Nakashima K, Natasia, Hase Y, Yamada T, Abe J, Kanazawa A. Frequent generation of mutants with coincidental changes in multiple traits via ion-beam irradiation in soybean. Genes Genet Syst 2018; 92:153-161. [PMID: 28674272 DOI: 10.1266/ggs.16-00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ion beams are powerful mutagens that can induce novel mutants in plants. We previously established a system for producing a mutant population of soybean via ion-beam irradiation, isolated plants that had chlorophyll deficiency, and maintained their progeny via self-fertilization. Here we report the characterization of the progeny plants in terms of chlorophyll content, flowering time and isoflavone content in seeds. Chlorophyll deficiency in the leaf tissues was linked with reduced levels of isoflavones, the major flavonoid compounds accumulated in soybean seeds, which suggested the involvement of metabolic changes associated with the chlorophyll deficiency. Intriguingly, flowering time was frequently altered in plants that had a reduced level of chlorophyll in the leaf tissues. Plant lines that flowered either earlier or later than the wild-type plants were detected. The observed coincidental changes were presumed to be attributable to the following origins: structural changes of DNA segments leading to the loss of multiple gene functions, or indirect effects of mutations that affect one of these traits, which were manifested as phenotypic changes in the background of the duplicated composition of the soybean genome.
Collapse
Affiliation(s)
- Shun Mikuriya
- Research Faculty of Agriculture, Hokkaido University
| | - Megumi Kasai
- Research Faculty of Agriculture, Hokkaido University
| | | | - Natasia
- Research Faculty of Agriculture, Hokkaido University
| | - Yoshihiro Hase
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology
| | | | - Jun Abe
- Research Faculty of Agriculture, Hokkaido University
| | | |
Collapse
|