1
|
Dai Q, Zhang L, Jiang S, Su B, Li Z, Shuai Y, Wang J. Improved Salt Tolerance in Brassica napus L. Overexpressing a Synthetic Deinocuccus Stress-Resistant Module DICW. Int J Mol Sci 2025; 26:2500. [PMID: 40141142 PMCID: PMC11942316 DOI: 10.3390/ijms26062500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/21/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Salt stress adversely impacts plant physiology by causing ionic, osmotic, and oxidative stress, ultimately hindering growth and yield. The genus Deinococcus contains unique stress resistance genes, and previous studies have shown that proteins such as IrrE, Csp, and WHy enhance stress tolerance in plants and microbial cells. However, their role in Brassica napus L. (oilseed rape) remains unexamined. In this study, a synthetic stress-resistance module, DICW, was constructed using the Deinococcus-derived genes IrrE, Csp, and WHy and heterologously overexpressed in B. napus to assess its impact on salt tolerance. The results demonstrated that the DICW module significantly improved seed germination and seedling growth under salt stress. Transgenic B. napus plants exhibited reduced membrane damage, higher leaf relative water content, enhanced accumulation of osmoregulatory substances, and elevated antioxidant enzyme activity compared to wild-type plants. Additionally, qRT-PCR analysis revealed the upregulation of stress-related genes (BnRD29A, BnP5CS, BnKIN1, BnLEA1, BnNHX1, and BnSOS1) and antioxidant enzyme-related genes (BnSOD, BnPOD, and BnCAT) in transgenic lines. In conclusion, the DICW module plays a crucial role in enhancing salt tolerance in B. napus by regulating stress responses and antioxidant mechanisms. This study provides valuable molecular insights into improving the survival and growth of B. napus in saline environments.
Collapse
Affiliation(s)
- Qilin Dai
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang 621010, China; (Q.D.); (L.Z.); (Z.L.); (Y.S.)
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lingling Zhang
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang 621010, China; (Q.D.); (L.Z.); (Z.L.); (Y.S.)
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shijie Jiang
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang 621010, China; (Q.D.); (L.Z.); (Z.L.); (Y.S.)
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Bodan Su
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Zhaoqin Li
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang 621010, China; (Q.D.); (L.Z.); (Z.L.); (Y.S.)
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yinying Shuai
- College of Life Science and Agri-forestry, Southwest University of Science and Technology, Mianyang 621010, China; (Q.D.); (L.Z.); (Z.L.); (Y.S.)
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jin Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
2
|
Zhao J, Yuan Z, Han X, Bao T, Yang T, Liu Z, Liu H. The Carbonic Anhydrase βCA1 Functions in PopW-Mediated Plant Defense Responses in Tomato. Int J Mol Sci 2023; 24:11021. [PMID: 37446199 DOI: 10.3390/ijms241311021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
β-Carbonic anhydrase (βCA) is very important for plant growth and development, but its function in immunity has also been examined. In this study, we found that the expression level of Solanum lycopersicum βCA1 (SlβCA1) was significantly upregulated in plants treated with Xanthomonas euvesicatoria 85-10. The protein was localized in the nucleus, cell membrane and chloroplast. Using tomato plants silenced with SlβCA1, we demonstrated that SlβCA1 plays an active role in plant disease resistance. Moreover, we found that the elicitor PopW upregulated the expression of SlβCA1, while the microbe-associated molecular pattern response induced by PopW was inhibited in TRV-SlβCA1. The interaction between PopW and SlβCA1 was confirmed. Here, we found that SlβCA1 was positively regulated during PopW-induced resistance to Xanthomonas euvesicatoria 85-10. These data indicate the importance of SlβCA1 in plant basic immunity and its recognition by the Harpin protein PopW as a new target for elicitor recognition.
Collapse
Affiliation(s)
- Jieru Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhixiang Yuan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xixi Han
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingting Bao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Tingmi Yang
- Guangxi Academy of Specialty Crops, Guilin 541004, China
| | - Zhuang Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongxia Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
PopW improves salt stress tolerance of red clover (Trifolium pratense L.) via activating phytohormones and salinity related genes. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Genome-Wide Analyses of Tea Plant Stress-Associated Proteins (SAPs) Reveal the Role of CsSAP12 in Increased Drought Tolerance in Transgenic Tomatoes. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Plant stress-associated proteins (SAPs) contain A20/AN1 zinc finger domains and are involved in plant response to abiotic stresses. In this study, we aimed to explore the biological function of tea plant CsSAPs. A total of 14 CsSAP genes were identified in the tea plant genome using a reference genome database (Camellia sinensis var. sinensis). The CsSAPs were divided into the following two groups: Group I, containing one AN1 domain and/or one A20 domain; and Group II, containing two AN1 domains and/or two C2H2 domains. The sequence alignments and conserved domains analysis indicated that the CsSAPs were highly structurally conserved in terms of amino acid sequence and protein structure. The CsSAPs showed different transcript levels in spatio-temporal expression and in response to cold and drought stress in tea plants. Furthermore, the expression of CsSAP12 was considerably upregulated under drought stress. The overexpression of CsSAP12 in transgenic tomatoes showed increased tolerance to drought stress compared with the wild type. Altogether, the results showed that CsSAP12 might be involved in drought stress. Thus, CsSAP12 might be a target gene in genetic engineering to improve drought tolerance in tea plants.
Collapse
|
5
|
Differential response of physiology and metabolic response to drought stress in different sweetpotato cultivars. PLoS One 2022; 17:e0264847. [PMID: 35271628 PMCID: PMC8912141 DOI: 10.1371/journal.pone.0264847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022] Open
Abstract
Sweetpotato (Ipomoea batatas [L.] Lam) is a widely cultivated food crop with generally good adaptability. However, drought stress can cause a significant decline in yield. To reveal the response mechanism of sweetpotato to drought stress, an integrated physiological, proteomic and metabolomic investigation was conducted in leaves of two sweetpotato varieties with differing responses to drought stress, drought-resistant Wanzishu56 (WZ56) and a more sensitive variety, Ningzishu2(NZ2). Physiological analysis showed that the variety with better drought tolerance had superior performance in water retention capacity and photosynthetic efficiency under drought stress. A total of 1140 proteins were identified within the two varieties. Among them, 192 differentially expressed proteins were detected under drought conditions, including 97 that were up-regulated. Functional analysis showed that these up-regulated proteins were primarily involved in photosynthesis, reactive oxygen species metabolism, organonitrogen compound metabolism, and precursor metabolite catabolism and energy generation. All differentially expressed proteins in WZ56 that were involved in photosynthetic and glutathione metabolic processes were up-regulated. Enzyme activity assays were carried out to validate the proteomics data. Moreover, 75 metabolites were found to have a higher expression level in WZ56 than NZ2 under drought stress. The higher concentration of carbohydrates, amino acids, flavonoids and organic acids found in drought-stressed leaves of WZ56 suggested that these metabolites may improve the drought resistance of sweetpotato. This study uncovered specific-proteins and metabolites associated with drought resistance, providing new insights into the molecular mechanisms of drought tolerance in sweetpotato.
Collapse
|
6
|
Wang D, Sun Z, Hu X, Xiong J, Hu L, Xu Y, Tang Y, Wu Y. The key regulator LcERF056 enhances salt tolerance by modulating reactive oxygen species-related genes in Lotus corniculatus. BMC PLANT BIOLOGY 2021; 21:605. [PMID: 34965872 PMCID: PMC8715585 DOI: 10.1186/s12870-021-03336-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/10/2021] [Indexed: 06/09/2023]
Abstract
BACKGROUND The APETALA2/ethylene response factor (AP2/ERF) family are important regulatory factors involved in plants' response to environmental stimuli. However, their roles in salt tolerance in Lotus corniculatus remain unclear. RESULTS Here, the key salt-responsive transcription factor LcERF056 was cloned and characterised. LcERF056 belonging to the B3-1 (IX) subfamily of ERFs was considerably upregulated by salt treatment. LcERF056-fused GFP was exclusively localised to nuclei. Furthermore, LcERF056- overexpression (OE) transgenic Arabidopsis and L. corniculatus lines exhibited significantly high tolerance to salt treatment compared with wild-type (WT) or RNA interference expression (RNAi) transgenic lines at the phenotypic and physiological levels. Transcriptome analysis of OE, RNAi, and WT lines showed that LcERF056 regulated the downstream genes involved in several metabolic pathways. Chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR) and yeast one-hybrid (Y1H) assay demonstrated that LcERF056 could bind to cis-element GCC box or DRE of reactive oxygen species (ROS)-related genes such as lipid-transfer protein, peroxidase and ribosomal protein. CONCLUSION Our results suggested that the key regulator LcERF056 plays important roles in salt tolerance in L. corniculatus by modulating ROS-related genes. Therefore, it may be a useful target for engineering salt-tolerant L. corniculatus or other crops.
Collapse
Affiliation(s)
- Dan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, China
| | - Zhanmin Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xinxu Hu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Huanshan group, Qingdao, China
| | - Junbo Xiong
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal and Veterinary Science, Hubei Academy of Agricultural Science, Wuhan, China
| | - Lizhen Hu
- Institute of Animal and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yuandong Xu
- ChongQing Academy of Animal Sciences, Chongqing, China
| | - Yixiong Tang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Yanmin Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
7
|
Demirkol G. PopW enhances drought stress tolerance of alfalfa via activating antioxidative enzymes, endogenous hormones, drought related genes and inhibiting senescence genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:540-548. [PMID: 34174659 DOI: 10.1016/j.plaphy.2021.06.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Alfalfa (Medicago sativa L.) has the advantages of high yield and nutritional value as a perennial forage. However, one of the drawbacks of alfalfa is its susceptibility to drought conditions, which is a global problem in agriculture. The purpose of this study was to reveal the effects of exogenous PopW, a harpin protein from Ralstonia solanacearum, treatment on growth parameters, physiological and biochemical mechanism of alfalfa under drought-stress conditions. Growth parameters, relative water content, free proline, leaf area, total chlorophyll, antioxidative enzymes, endogenous hormones including ABA, CTK, GA, JA, SA and IAA were determined in response to exogenous PopW treatment under drought stress in alfalfa cultivar (Victoria). Moreover, relative gene expressions of drought-related and leaf senescence genes were determined. Under drought stress, alfalfa plants had lower shoot dry weight, shoot length, relative water content, leaf area, and total chlorophyll content, compared to control (non-stressed). However, Exogenous PopW treatment significantly increased growth values, relative water content, free proline, leaf area, total chlorophyll content, catalase, glutathione reductase and superoxide dismutase under drought conditions, compared to control and drought stress alone. Moreover, exogenous PopW treatment significantly increased ABA, GA, JA, SA, IAA contents, up-regulated auxin- and drought-responsive genes, down-regulated leaf senescence genes. Exogenous PopW treatment enhanced drought stress tolerance of alfalfa due to changes of endogenous hormone contents and expression levels of drought stress and leaf senescence genes. The results of the study show that PopW treatment could be used to increase the forage yield of alfalfa on areas having drought problem.
Collapse
Affiliation(s)
- Gürkan Demirkol
- Faculty of Agriculture, Department of Field Crops, Ordu University, 52200, Ordu, Turkey.
| |
Collapse
|
8
|
Mitsopoulou N, Lakiotis K, Golia EE, Khah EM, Pavli OI. Response of hrpZ Psph-transgenic N. benthamiana plants under cadmium stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3787-3796. [PMID: 32418109 DOI: 10.1007/s11356-020-09204-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
The hrpZPsph gene from Pseudomonas syringae pv. phaseolicola, in its secretable form (SP/hrpZPsph), has previously proven capable of conferring resistance against rhizomania disease as well as abiotic stresses in Nicotiana benthamiana plants, while enhancing plant growth. This study aimed at investigating the response of SP/hrpZPsph-expressing plants under cadmium stress. Transgenic N. benthamiana lines, homozygous for the SP/hrpZPsph gene, and wild-type plants were exposed to Cd at different stress levels (0, 50, 100, 150 μΜ CdCl2). Plants' response to stress was assessed at germination and at the whole plant level on the basis of physiological and growth parameters, including seed germination percentage, shoot and root length, total chlorophyll content, fresh and dry root weight, as well as overall symptomatology, and Cd content in leaves and roots. At germination phase, significant differences were noted in germination rates and post-germination growth among stress levels, with Cd effects being in most cases analogous to the level applied but also among plant categories. Although seedling growth was adversely affected in all plant categories, especially at high stress level, lines #6 and #9 showed the lowest decrease in root and shoot length over control. The superiority of these lines was further manifested at the whole plant level by the absence of stress-attributed symptoms and the low or zero reduction in chlorophyll content. Interestingly, a differential tissue-specific Cd accumulation pattern was observed in wt- and hrpZPsph-plants, with the former showing an increased Cd content in leaves and the latter retaining Cd in the roots. These data are discussed in the context of possible mechanisms underlying the hrpZPsph-based Cd stress resistance.
Collapse
Affiliation(s)
- Nikoletta Mitsopoulou
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece
| | - Kosmas Lakiotis
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece
| | - Evangelia E Golia
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece
| | - Ebrahim M Khah
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece
| | - Ourania I Pavli
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 38446, Volos, Greece.
| |
Collapse
|
9
|
Khati P, Mishra PK, Parihar M, Singh AK, Bisht JK, Pattanayak A. Drought Stress Tolerance: An Insight to Resistance Mechanism and Adaptation in Plants. MICROBES AND SIGNALING BIOMOLECULES AGAINST PLANT STRESS 2021. [DOI: 10.1007/978-981-15-7094-0_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Ji ZL, Yu MH, Ding YY, Li J, Zhu F, He JX, Yang LN. Coiled-Coil N21 of Hpa1 in Xanthomonas oryzae pv. oryzae Promotes Plant Growth, Disease Resistance and Drought Tolerance in Non-Hosts via Eliciting HR and Regulation of Multiple Defense Response Genes. Int J Mol Sci 2020; 22:E203. [PMID: 33379173 PMCID: PMC7795061 DOI: 10.3390/ijms22010203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022] Open
Abstract
Acting as a typical harpin protein, Hpa1 of Xanthomonas oryzae pv. oryzae is one of the pathogenic factors in hosts and can elicit hypersensitive responses (HR) in non-hosts. To further explain the underlying mechanisms of its induced resistance, we studied the function of the most stable and shortest three heptads in the N-terminal coiled-coil domain of Hpa1, named N21Hpa1. Proteins isolated from N21-transgenic tobacco elicited HR in Xanthi tobacco, which was consistent with the results using N21 and full-length Hpa1 proteins expressed in Escherichia coli. N21-expressing tobacco plants showed enhanced resistance to tobacco mosaic virus (TMV) and Pectobacterium carotovora subsp. carotovora (Pcc). Spraying of a synthesized N21 peptide solution delayed the disease symptoms caused by Botrytis cinerea and Monilinia fructicola and promoted the growth and drought tolerance of plants. Further analysis indicated that N21 upregulated the expression of multiple plant defense-related genes, such as genes mediated by salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) signaling, and genes related to reactive oxygen species (ROS) biosynthesis. Further, the bioavailability of N21 peptide was better than that of full-length Hpa1Xoo. Our studies support the broad application prospects of N21 peptide as a promising succedaneum to biopesticide Messenger or Illite or other biological pharmaceutical products, and provide a basis for further development of biopesticides using proteins with similar structures.
Collapse
Affiliation(s)
- Zhao-Lin Ji
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| | - Mei-Hui Yu
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China;
| | - Ya-Yan Ding
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| | - Jian Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| | - Feng Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| | - Jun-Xian He
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China;
| | - Li-Na Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (Z.-L.J.); (Y.-Y.D.); (J.L.); (F.Z.)
| |
Collapse
|
11
|
Zhou X, Chen Y, Zhao Y, Gao F, Liu H. The application of exogenous PopW increases the tolerance of Solanum lycopersicum L. to drought stress through multiple mechanisms. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:2521-2535. [PMID: 33424162 PMCID: PMC7772130 DOI: 10.1007/s12298-020-00918-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 05/25/2023]
Abstract
Tomato is a major cultivated vegetable species of great economic importance throughout the world, but its fruit yield is severely impaired by drought stress. PopW, a harpin protein from Ralstonia solanacearum ZJ3721, plays vital roles in various plant defence responses and growth. In this study, we observed that the foliar application of PopW increased tomato drought tolerance. Our results showed that compared with water-treated plants, PopW-treated plants presented a significantly higher recovery rate and leaf relative water content under drought-stress conditions. PopW decreased the malondialdehyde content and relative electrical conductivity by 40.2% and 21%, respectively. Drought disrupts redox homeostasis through the excessive accumulation of reactive oxygen species (ROS). PopW-treated plants displayed an obvious reduction in ROS accumulation due to enhanced activities of the antioxidant enzyme catalase, superoxide dismutase and peroxidase. Moreover, PopW promoted early stomatal closure, thereby minimizing the water loss rate of plants under drought stress. Further investigation revealed that endogenous abscisic acid (ABA) levels and the transcript levels of drought-responsive genes involved in ABA signal transduction pathways increased in response to PopW. These results confirm that PopW increases drought tolerance through multiple mechanisms involving an enhanced water-retention capacity, balanced redox homeostasis, increased osmotic adjustment, reduced membrane damage and decreased stomatal aperture, suggesting that the application of exogenous PopW may be a potential method to enhance tomato drought tolerance.
Collapse
Affiliation(s)
- Xiaosi Zhou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, People’s Republic of China
| | - Yu Chen
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, People’s Republic of China
| | - Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 People’s Republic of China
| | - Fangyuan Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, People’s Republic of China
| | - Hongxia Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing, People’s Republic of China
| |
Collapse
|
12
|
Ho TH, Chuang CY, Zheng JL, Chen HH, Liang YS, Huang TP, Lin YH. Bacillus amyloliquefaciens Strain PMB05 Intensifies Plant Immune Responses to Confer Resistance Against Bacterial Wilt of Tomato. PHYTOPATHOLOGY 2020; 110:1877-1885. [PMID: 32692280 DOI: 10.1094/phyto-01-20-0026-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tomato is an economic crop worldwide. Many limiting factors reduce the production of tomato, with bacterial wilt caused by Ralstonia solanacearum being the most destructive disease. Our previous study showed that the disease resistance to bacterial soft rot is enhanced by Bacillus amyloliquefaciens strain PMB05. This enhanced resistance is associated with the intensification of pathogen-associated molecular patterns (PAMP)-triggered immunity (PTI). To determine whether the PTI-intensifying Bacillus spp. strains are able to confer disease resistance to bacterial wilt, their effects on PTI signals triggered by PAMP from R. solanacearum and on the occurrence of bacterial wilt were assayed. Before assay, a gene that encodes harpin from R. solanacearum, PopW, was applied as a PAMP. Results revealed that the B. amyloliquefaciens strain PMB05 was the one strain among 9 Bacillus rhizobacterial strains which could significantly intensify the PopW-induced hypersensitive response (HR) on Arabidopsis leaves. Moreover, we observed that the signals of PopW-induced reactive oxygen species generation and callose deposition were increased, confirming that the PTI was intensified by PMB05. The intensification of the PopW-triggered HR by PMB05 in Arabidopsis was reduced upon treatment with inhibitors in PTI pathways. Furthermore, the application of Bacillus spp. strains on tomato plants showed that only the use of PMB05 resulted in significantly increased resistance to bacterial wilt. Moreover, the PTI signals were also intensified in the tomato leaves. Taken together, we demonstrated that PMB05 is a PTI-intensifying bacterium that confers resistance to tomato bacterial wilt. Screening of plant immunity intensifying rhizobacteria is a possible strategy to control tomato bacterial wilt.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Ting-Hsin Ho
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Chiao-Yu Chuang
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Jing-Lin Zheng
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Hong-Hua Chen
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Yu-Shen Liang
- Department of Plant Industry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Tzu-Pi Huang
- Department of Plant Pathology, National Chung-Hsing University, Taichung, Taiwan
| | - Yi-Hsien Lin
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
13
|
Liu Y, Zhou X, Liu W, Huang J, Liu Q, Sun J, Cai X, Miao W. HpaXpm, a novel harpin of Xanthomonas phaseoli pv. manihotis, acts as an elicitor with high thermal stability, reduces disease, and promotes plant growth. BMC Microbiol 2020; 20:4. [PMID: 31906854 PMCID: PMC6945534 DOI: 10.1186/s12866-019-1691-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 12/24/2019] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Harpins are proteins secreted by the type III secretion system of Gram-negative bacteria during pathogen-plant interactions that can act as elicitors, stimulating defense and plant growth in many types of non-host plants. Harpin-treated plants have higher resistance, quality and yields and, therefore, harpin proteins may potentially have many valuable agricultural applications. Harpins are characterized by high thermal stability at 100 °C. However, it is unknown whether harpins are still active at temperatures above 100 °C or whether different temperatures affect the activity of the harpin protein in different ways. The mechanism responsible for the heat stability of harpins is also unknown. RESULTS We identified a novel harpin, HpaXpm, from the cassava blight bacteria Xanthomonas phaseoli pv. manihotis HNHK. The predicted secondary structure and 3-D structure indicated that the HpaXpm protein has two β-strand domains and two major α-helical domains located at the N- and C-terminal regions, respectively. A phylogenetic tree generated using the maximum likelihood method grouped HpaXpm in clade I of the Hpa1 group along with harpins produced by other Xanthomonas spp. (i.e., HpaG-Xag, HpaG-Xcm, Hpa1-Xac, and Hpa1Xm). Phenotypic assays showed that HpaXpm induced the hypersensitive response (HR), defense responses, and growth promotion in non-host plants more effectively than Hp1Xoo (X. oryzae pv. oryzae). Quantitative real-time PCR analysis indicated that HpaXpm proteins subjected to heat treatments at 100 °C, 150 °C, or 200 °C were still able to stimulate the expression of function-related genes (i.e., the HR marker genes Hin1 and Hsr203J, the defense-related gene NPR1, and the plant growth enhancement-related gene NtEXP6); however, the ability of heat-treated HpaXpm to induce HR was different at different temperatures. CONCLUSIONS These findings add a new member to the harpin family. HpaXpm is heat-stable up to 200 °C and is able to stimulate powerful beneficial biological functions that could potentially be more valuable for agricultural applications than those stimulated by Hpa1Xoo. We hypothesize that the extreme heat resistance of HpaXpm is because the structure of harpin is very stable and, therefore, the HpaXpm structure is less affected by temperature.
Collapse
Affiliation(s)
- Yue Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Xiaoyun Zhou
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Wenbo Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Jiamin Huang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Qinghuan Liu
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Jianzhang Sun
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Xinfeng Cai
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China
| | - Weiguo Miao
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan Province, China.
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, Hainan Province, China.
| |
Collapse
|
14
|
Lawaju BR, Lawrence KS, Lawrence GW, Klink VP. Harpin-inducible defense signaling components impair infection by the ascomycete Macrophomina phaseolina. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 129:331-348. [PMID: 29936240 DOI: 10.1016/j.plaphy.2018.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 05/23/2023]
Abstract
Soybean (Glycine max) infection by the charcoal rot (CR) ascomycete Macrophomina phaseolina is enhanced by the soybean cyst nematode (SCN) Heterodera glycines. We hypothesized that G. max genetic lines impairing infection by M. phaseolina would also limit H. glycines parasitism, leading to resistance. As a part of this M. phaseolina resistance process, the genetic line would express defense genes already proven to impair nematode parasitism. Using G. max[DT97-4290/PI 642055], exhibiting partial resistance to M. phaseolina, experiments show the genetic line also impairs H. glycines parasitism. Furthermore, comparative studies show G. max[DT97-4290/PI 642055] exhibits induced expression of the effector triggered immunity (ETI) gene NON-RACE SPECIFIC DISEASE RESISTANCE 1/HARPIN INDUCED1 (NDR1/HIN1) that functions in defense to H. glycines as compared to the H. glycines and M. phaseolina susceptible line G. max[Williams 82/PI 518671]. Other defense genes that are induced in G. max[DT97-4290/PI 642055] include the pathogen associated molecular pattern (PAMP) triggered immunity (PTI) genes ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), NONEXPRESSOR OF PR1 (NPR1) and TGA2. These observations link G. max defense processes that impede H. glycines parasitism to also potentially function toward impairing M. phaseolina pathogenicity. Testing this hypothesis, G. max[Williams 82/PI 518671] genetically engineered to experimentally induce GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 expression leads to impaired M. phaseolina pathogenicity. In contrast, G. max[DT97-4290/PI 642055] engineered to experimentally suppress the expression of GmNDR1-1, EDS1-2, NPR1-2 and TGA2-1 by RNA interference (RNAi) enhances M. phaseolina pathogenicity. The results show components of PTI and ETI impair both nematode and M. phaseolina pathogenicity.
Collapse
Affiliation(s)
- Bisho R Lawaju
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, College of Agriculture and Life Sciences, Mississippi State, MS, 39762, USA.
| | - Kathy S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Life Science Building, Auburn, AL, 36849, USA.
| | - Gary W Lawrence
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, College of Agriculture and Life Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| | - Vincent P Klink
- Department of Biological Sciences, College of Arts and Sciences, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
15
|
Cao Y, Yang M, Ma W, Sun Y, Chen G. Overexpression of SSB Xoc, a Single-Stranded DNA-Binding Protein From Xanthomonas oryzae pv. oryzicola, Enhances Plant Growth and Disease and Salt Stress Tolerance in Transgenic Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2018; 9:953. [PMID: 30026748 PMCID: PMC6041465 DOI: 10.3389/fpls.2018.00953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/13/2018] [Indexed: 05/05/2023]
Abstract
We previously reported that SSBXoc, a highly conserved single-stranded DNA-binding protein from Xanthomonas spp., was secreted through the type III secretion system (T3SS) and functioned as a harpin-like protein to elicit the hypersensitive response (HR) in the non-host plant, tobacco. In this study, we cloned SsbXoc gene from X. oryzae pv. oryzicola (Xoc), the causal agent of bacterial leaf streak in rice, and transferred it into Nicotiana benthamiana via Agrobacterium-mediated transformation. The expression of SsbXoc in transgenic N. benthamiana enhanced growth of both seedling and adult plants. When inoculated with the harpin Hpa1 or the pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), the accumulation of reactive oxygen species (ROS) was increased more in SsbXoc transgenic lines than that in wild-type (WT) plants. The expression of pathogenesis-related protein genes (PR1a and SGT1), HR marker genes (HIN1 and HSR203J) and the mitogen-activated protein kinase pathway gene, MPK3, was significantly higher in transgenic lines than in WT after inoculation with Pst DC3000. In addition, SsbXoc transgenic lines showed the enhanced resistance to the pathogenic bacteria P. s. tabaci and the improved tolerance to salt stress, accompanied by the elevated transcription levels of the defense- and stress-related genes. Taken together, these results indicate that overexpression of the SsbXoc gene in N. benthamiana significantly enhanced plant growth and increased tolerance to disease and salt stress via modulating the expression of the related genes, thus providing an alternative approach for development of plants with improved tolerance against biotic and abiotic stresses.
Collapse
Affiliation(s)
- Yanyan Cao
- School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Mingtao Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Wenxiu Ma
- School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Yujing Sun
- School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Gongyou Chen
- School of Agriculture and Biology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Zhou M, Li W, Zheng Y, Lin P, Yao X, Lin J. CbRCI35, a Cold Responsive Peroxidase from Capsella bursa-pastoris Regulates Reactive Oxygen Species Homeostasis and Enhances Cold Tolerance in Tobacco. FRONTIERS IN PLANT SCIENCE 2016; 7:1599. [PMID: 27818675 PMCID: PMC5073210 DOI: 10.3389/fpls.2016.01599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/10/2016] [Indexed: 05/09/2023]
Abstract
Low temperature affects gene regulatory networks and alters cellular metabolism to inhibit plant growth. Peroxidases are widely distributed in plants and play a large role in adjusting and controlling reactive oxygen species (ROS) homeostasis in response to abiotic stresses such as low temperature. The Rare Cold-Inducible 35 gene from Capsella bursa-pastoris (CbRCI35) belongs to the type III peroxidase family and has been reported to be a cold responsive gene in plants. Here we performed an expressional characterization of CbRCI35 under cold and ionic liquid treatments. The promoter of CbRCI35 was also cloned and its activity was examined using the GUS reporter system. CbRCI35 protein was localized in the cytoplasm according to sequence prediction and GFP fusion assay. Heterologous expression tests revealed that CbRCI35 conferred enhanced resistance to low temperature and activated endogenous cold responsive signaling in tobacco. Furthermore, in the normal condition the ROS accumulation was moderately enhanced while after chilling exposure superoxide dismutase activity was increased in CbRCI53 transgenic plants. The ROS metabolism related genes expression was altered accordingly. We conclude that CbRCI35 modulates ROS homeostasis and contributes to cold tolerance in plants.
Collapse
Affiliation(s)
- Mingqi Zhou
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan UniversityShanghai, China
| | - Weiwei Li
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan UniversityShanghai, China
| | - Ye Zheng
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan UniversityShanghai, China
| | - Ping Lin
- Research Institute of Subtropical Forestry, Chinese Academy of ForestryFuyang, China
| | - Xiaohua Yao
- Research Institute of Subtropical Forestry, Chinese Academy of ForestryFuyang, China
| | - Juan Lin
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan UniversityShanghai, China
| |
Collapse
|