1
|
Huang W, Zhang Y, Xiao N, Zhao W, Shi Y, Fang R. Trans-complementation of the viral movement protein mediates efficient expression of large target genes via a tobacco mosaic virus vector. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2957-2970. [PMID: 38923265 PMCID: PMC11500985 DOI: 10.1111/pbi.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/17/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
The development of plant virus-based expression systems has expanded rapidly owing to their potential applications in gene functional and disease resistance research, and industrial production of pharmaceutical proteins. However, the low yield of certain proteins, especially high-molecular-mass proteins, restricts the production scale. In this study, we observed that the tobacco mosaic virus (TMV)-mediated expression of a foreign protein was correlated with the amount of the movement protein (MP) and developed a TMV-derived pAT-transMP vector system incorporating trans-complementation expression of MP. The system is capable of efficient expression of exogenous proteins, in particular those with a high molecular mass, and enables simultaneous expression of two target molecules. Furthermore, viral expression of competent CRISPR-Cas9 protein and construction of CRISPR-Cas9-mediated gene-editing system in a single pAT-transMP construct was achieved. The results demonstrated a novel role for TMV-MP in enhancing the accumulation of a foreign protein produced from the viral vector or a binary expression system. Further investigation of the mechanism underlying this role will be beneficial for optimization of plant viral vectors with broad applications.
Collapse
Affiliation(s)
- Weikuo Huang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research CenterBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuman Zhang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research CenterBeijingChina
| | - Na Xiao
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research CenterBeijingChina
| | - Wenhui Zhao
- College of Veterinary Medicine, and College of AgronomyShanxi Agricultural UniversityJinzhongChina
| | - Ying Shi
- College of Veterinary Medicine, and College of AgronomyShanxi Agricultural UniversityJinzhongChina
| | - Rongxiang Fang
- State Key Laboratory of Plant GenomicsInstitute of Microbiology, Chinese Academy of Sciences, and National Plant Gene Research CenterBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
2
|
Fukuzawa N, Matsuo K, Atsumi G, Tasaka Y, Mitsuda N. Plant-made pharmaceuticals. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:243-260. [PMID: 40177139 PMCID: PMC11962629 DOI: 10.5511/plantbiotechnology.24.0716a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/16/2024] [Indexed: 04/05/2025]
Abstract
Plant-made pharmaceuticals (PMP) have great potential in terms of production costs, scalability, safety, environmental protection, and consumer acceptability. The first PMP were antibodies and antigens produced in stably transformed transgenic plants in the around 90s. Even though the effort using stable transgenic plants is still going on, the mainstream of PMP production has shifted to transient expression in Nicotiana benthamiana. This system involves the expression vectors by Agrobacterium, and its efficiency has been improved by the development of new vector systems and host engineering. The COVID-19 outbreak accelerated this trend through efforts to produce vaccines in plants. Transient expression systems have been improved and diversified by the development of plant virus vectors, which can be classified as full and deconstructed vectors. Full virus vectors spread systemically, allowing for protein production in the entire plant. Compared with conventional agroinfiltration vectors, excellent virus vectors result in higher protein production. Engineering of host plants has included knocking out gene-silencing systems to increase protein production, and the introduction of glycan modification enzymes so that plant-made proteins more resemble animal-made proteins. Hydroponic cultivation systems in plant factories and environmental controls have contributed to efficient protein production in plants. Considering their advantages and small environmental impact, PMP should be more widely adopted for pharmaceuticals' production. However, the initial investment and running costs of plant factories are higher than open filed cultivation. The next objectives are to develop next-generation low-cost plant factories that use renewable energy and recycle materials based on the idea of circular economy.
Collapse
Affiliation(s)
- Noriho Fukuzawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Kouki Matsuo
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Go Atsumi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Yasushi Tasaka
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan
| |
Collapse
|
3
|
Wu Z, Ma G, Zhu H, Chen M, Huang M, Xie X, Li X. Plant Viral Coat Proteins as Biochemical Targets for Antiviral Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8892-8900. [PMID: 35830295 DOI: 10.1021/acs.jafc.2c02888] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Coat proteins (CPs) of RNA plant viruses play a pivotal role in virus particle assembly, vector transmission, host identification, RNA replication, and intracellular and intercellular movement. Numerous compounds targeting CPs have been designed, synthesized, and screened for their antiviral activities. This review is intended to fill a knowledge gap where a comprehensive summary is needed for antiviral agent discovery based on plant viral CPs. In this review, major achievements are summarized with emphasis on plant viral CPs as biochemical targets and action mechanisms of antiviral agents. This review hopefully provides new insights and references for the further development of new safe and effective antiviral pesticides.
Collapse
Affiliation(s)
- Zilin Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Guangming Ma
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hengmin Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Meiqing Chen
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Min Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xin Xie
- College of Agriculture, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
4
|
Atsumi G, Matsuo K, Fukuzawa N, Matsumura T. Virus-Mediated Targeted DNA Methylation Illuminates the Dynamics of Methylation in an Endogenous Plant Gene. Int J Mol Sci 2021; 22:4125. [PMID: 33923780 PMCID: PMC8073618 DOI: 10.3390/ijms22084125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
DNA methylation maintains genome stability and regulates gene expression in plants. RNA-directed DNA methylation (RdDM) is critical for appropriate methylation. However, no efficient tools are available for the investigation of the functions of specific DNA methylation. In this study, the cucumber mosaic virus vector was used for targeted DNA methylation. Methylation was rapidly induced but gradually decreased from the 3' end of the target endogenous sequence in Nicotiana benthamiana, suggesting a mechanism to protect against the ectopic introduction of DNA methylation. Increasing 24-nt siRNAs blocked this reduction in methylation by down-regulating DCL2 and DCL4. RdDM relies on the sequence identity between RNA and genomic DNA; however, this identity does not appear to be the sole determinant for efficient DNA methylation. The current findings provide new insight into the regulation of DNA methylation and promote additional effort to develop efficient targeted DNA methylation in plants.
Collapse
|
5
|
Kobayashi Y, Fukuzawa N, Hyodo A, Kim H, Mashiyama S, Ogihara T, Yoshioka H, Matsuura H, Masuta C, Matsumura T, Takeshita M. Role of salicylic acid glucosyltransferase in balancing growth and defence for optimum plant fitness. MOLECULAR PLANT PATHOLOGY 2020; 21:429-442. [PMID: 31965700 PMCID: PMC7036366 DOI: 10.1111/mpp.12906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 05/22/2023]
Abstract
Salicylic acid (SA), an essential secondary messenger for plant defence responses, plays a role in maintaining a balance (trade-off) between plant growth and resistance induction, but the detailed mechanism has not been explored. Because the SA mimic benzothiadiazole (BTH) is a more stable inducer of plant defence than SA after exogenous application, we analysed expression profiles of defence genes after BTH treatment to better understand SA-mediated immune induction. Transcript levels of the salicylic acid glucosyltransferase (SAGT) gene were significantly lower in BTH-treated Nicotiana tabacum (Nt) plants than in SA-treated Nt control plants, suggesting that SAGT may play an important role in SA-related host defence responses. Treatment with BTH followed by SA suppressed SAGT transcription, indicating that the inhibitory effect of BTH is not reversible. In addition, in BTH-treated Nt and Nicotiana benthamiana (Nb) plants, an early high accumulation of SA and SA 2-O-β-d-glucoside was only transient compared to the control. This observation agreed well with the finding that SAGT-overexpressing (OE) Nb lines contained less SA and jasmonic acid (JA) than in the Nb plants. When inoculated with a virus, the OE Nb plants showed more severe symptoms and accumulated higher levels of virus, while resistance increased in SAGT-silenced (IR) Nb plants. In addition, the IR plants restricted bacterial spread to the inoculated leaves. After the BTH treatment, OE Nb plants were slightly larger than the Nb plants. These results together indicate that SAGT has a pivotal role in the balance between plant growth and SA/JA-mediated defence for optimum plant fitness.
Collapse
Affiliation(s)
- Yudai Kobayashi
- Laboratory of Plant PathologyFaculty of AgricultureDepartment of Agricultural and Environmental SciencesUniversity of MiyazakiJapan
| | - Noriho Fukuzawa
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)SapporoJapan
| | - Ayaka Hyodo
- Laboratory of Plant PathologyGraduate School of AgricultureKyushu UniversityFukuokaJapan
- Present address:
Ehime Research Institute of Agriculture, Forestry and FisheriesFruit Tree Research CenterMatsuyamaEhimeJapan
| | - Hangil Kim
- Graduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Shota Mashiyama
- Graduate School of AgricultureHokkaido UniversitySapporoJapan
| | | | - Hirofumi Yoshioka
- Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
| | | | - Chikara Masuta
- Graduate School of AgricultureHokkaido UniversitySapporoJapan
| | - Takeshi Matsumura
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)SapporoJapan
| | - Minoru Takeshita
- Laboratory of Plant PathologyFaculty of AgricultureDepartment of Agricultural and Environmental SciencesUniversity of MiyazakiJapan
| |
Collapse
|