1
|
Nishad A, Gautam JK, Agarwal I, Nandi AK. Immune Priming Promotes Thermotolerance, Whereas Thermopriming Suppresses Systemic Acquired Resistance in Arabidopsis. PLANT, CELL & ENVIRONMENT 2025; 48:3352-3363. [PMID: 39737832 DOI: 10.1111/pce.15364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/11/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025]
Abstract
Heat stress and pathogens are two serious yield-limiting factors of crop plants. Plants that previously experienced high but sub-lethal temperatures become subsequently tolerant to higher temperatures through the development of acquired thermotolerance (ATT). ATT activation is associated with the elevated expression of heat shock (HS)-related genes such as HSFA2, HSFA3, and HSP101. Similarly, through the development of systemic acquired resistance (SAR), previously experienced plants achieve a higher resistance than naïve plants. SAR activation requires mobile signals and primarily depends on salicylic acid (SA) signaling. Studies to understand the interaction between ATT and SAR are limiting. To investigate the possible interconnection, we studied cross-protection between SAR and ATT on 4-week-old soil-grown Arabidopsis plants. We observed localized pathogen inoculation provides thermotolerance. Pathogens activate the expressions of HSFA2, HSFA3, HSA32, and HSP101 in pathogen-free systemic tissues. Interestingly, pathogen-induced SAR activation is impaired in hsfa2, hsfa3, and hsp101 mutants, suggesting these HS memory genes are essential for SAR induction. In contrast, thermopriming by exposing plants to sublethal temperatures, blocks SAR activation by pathogens. Thermopriming suppresses SAR mobile signal generation, accumulation of SA, and PR1 gene expression in systemic leaves. Altogether, our results demonstrate a complex interaction between SAR and ATT induction pathways in plants.
Collapse
Affiliation(s)
- Anand Nishad
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Janesh Kumar Gautam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Ishu Agarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| |
Collapse
|
2
|
Jiang S, Pan L, Zhou Q, Xu W, He F, Zhang L, Gao H. Analysis of the apoplast fluid proteome during the induction of systemic acquired resistance in Arabidopsis thaliana. PeerJ 2023; 11:e16324. [PMID: 37876907 PMCID: PMC10592298 DOI: 10.7717/peerj.16324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/30/2023] [Indexed: 10/26/2023] Open
Abstract
Background Plant-pathogen interactions occur in the apoplast comprising the cell wall matrix and the fluid in the extracellular space outside the plasma membrane. However, little is known regarding the contribution of the apoplastic proteome to systemic acquired resistance (SAR). Methods Specifically, SAR was induced by inoculating plants with Pst DC3000 avrRps4. The apoplast washing fluid (AWF) was collected from the systemic leaves of the SAR-induced or mock-treated plants. A label free quantitative proteomic analysis was performed to identified the proteins related to SAR in AWF. Results A total of 117 proteins were designated as differentially accumulated proteins (DAPs), including numerous pathogenesis-related proteins, kinases, glycosyl hydrolases, and redox-related proteins. Functional enrichment analyses shown that these DAPs were mainly enriched in carbohydrate metabolic process, cell wall organization, hydrogen peroxide catabolic process, and positive regulation of catalytic activity. Comparative analysis of proteome data indicated that these DAPs were selectively enriched in the apoplast during the induction of SAR. Conclusions The findings of this study indicate the apoplastic proteome is involved in SAR. The data presented herein may be useful for future investigations on the molecular mechanism mediating the establishment of SAR.
Collapse
Affiliation(s)
- Shuna Jiang
- College of Survey and Planning, Shangqiu Normal University, Shangqiu, China
| | - Liying Pan
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Wenjie Xu
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Fuge He
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Lei Zhang
- Institute of Crops Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Hang Gao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| |
Collapse
|
3
|
Zhou H, Wang Y, Zhang Y, Xie Y, Nadeem H, Tang C. Flagellin C decreases the expression of the Gossypium hirsutum cation/proton exchanger 3 gene to promote calcium ion, hydrogen peroxide, and nitric oxide and synergistically regulate the resistance of cotton to Verticillium wilt. FRONTIERS IN PLANT SCIENCE 2022; 13:969506. [PMID: 36212377 PMCID: PMC9532700 DOI: 10.3389/fpls.2022.969506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
To date, no ideal effective method for controlling Verticillium wilt in upland cotton (Gossypium hirsutum) has been defined. The purpose of this study was to determine the effects and mechanism through which flagellin C (FLiC) regulates the Gossypium hirsutum cation/proton exchanger 3 gene (GhCAX3), induces plant immunity, and increases resistance to Verticillium wilt. The FLiC gene was cloned from an endophytic bacterium (Pseudomonas) isolated from roots of the upland cotton cultivar Zhongmiansuo 41. The biocontrol effects of FLiC purified in vitro on resistant and susceptible upland cotton cultivars were 47.50 and 32.42%, respectively. FLiC induced a hypersensitive response (HR) in leaves of tobacco and immune responses in upland cotton. Transcriptome data showed that treatment with FLiC significantly enriched the calcium antiporter activity-associated disease-resistant metabolic pathway in seedlings. Moreover, FLiC downregulated GhCAX3 expression to increase intracellular calcium ion (Ca2+) content and stimulate increases in the intracellular hydrogen peroxide (H2O2) and nitric oxide (NO) contents. The coordinated regulation of Ca2+, H2O2, and NO enhanced cotton resistance to Verticillium wilt. Furthermore, transgenic Arabidopsis plants overexpressing FLiC showed significantly improved resistance to Verticillium wilt. FLiC may be used as a resistance gene and a regulator to improve resistance to Verticillium dahliae (VD) in upland cotton.
Collapse
Affiliation(s)
- Heng Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yihao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Yijing Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Hasan Nadeem
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Canming Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Protein glycosylation changes during systemic acquired resistance in Arabidopsis thaliana. Int J Biol Macromol 2022; 212:381-392. [PMID: 35623457 DOI: 10.1016/j.ijbiomac.2022.05.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 01/01/2023]
Abstract
N-glycosylation, an important post-translational modification of proteins in all eukaryotes, has been clearly shown to be involved in numerous diseases in mammalian systems. In contrast, little is known regarding the role of protein N-glycosylation in plant defensive responses to pathogen infection. We identified, for the first time, glycoproteins related to systemic acquired resistance (SAR) in an Arabidopsis thaliana model, using a glycoproteomics platform based on high-resolution mass spectrometry. 407 glycosylation sites corresponding to 378 glycopeptides and 273 unique glycoproteins were identified. 65 significantly changed glycoproteins with 80 N-glycosylation sites were detected in systemic leaves of SAR-induced plants, including numerous GDSL-like lipases, thioglucoside glucohydrolases, kinases, and glycosidases. Functional enrichment analysis revealed that significantly changed glycoproteins were involved mainly in N-glycan biosynthesis and degradation, phenylpropanoid biosynthesis, cutin and wax biosynthesis, and plant-pathogen interactions. Comparative analysis of glycoproteomics and proteomics data indicated that glycoproteomics analysis is an efficient method for screening proteins associated with SAR. The present findings clarify glycosylation status and sites of A. thaliana proteins, and will facilitate further research on roles of glycoproteins in SAR induction.
Collapse
|
5
|
Smythers AL, Hicks LM. Mapping the plant proteome: tools for surveying coordinating pathways. Emerg Top Life Sci 2021; 5:203-220. [PMID: 33620075 PMCID: PMC8166341 DOI: 10.1042/etls20200270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
Plants rapidly respond to environmental fluctuations through coordinated, multi-scalar regulation, enabling complex reactions despite their inherently sessile nature. In particular, protein post-translational signaling and protein-protein interactions combine to manipulate cellular responses and regulate plant homeostasis with precise temporal and spatial control. Understanding these proteomic networks are essential to addressing ongoing global crises, including those of food security, rising global temperatures, and the need for renewable materials and fuels. Technological advances in mass spectrometry-based proteomics are enabling investigations of unprecedented depth, and are increasingly being optimized for and applied to plant systems. This review highlights recent advances in plant proteomics, with an emphasis on spatially and temporally resolved analysis of post-translational modifications and protein interactions. It also details the necessity for generation of a comprehensive plant cell atlas while highlighting recent accomplishments within the field.
Collapse
Affiliation(s)
- Amanda L Smythers
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, U.S.A
| |
Collapse
|
6
|
Zhou Q, Meng Q, Tan X, Ding W, Ma K, Xu Z, Huang X, Gao H. Protein Phosphorylation Changes During Systemic Acquired Resistance in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:748287. [PMID: 34858456 PMCID: PMC8632492 DOI: 10.3389/fpls.2021.748287] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/08/2021] [Indexed: 05/03/2023]
Abstract
Systemic acquired resistance (SAR) in plants is a defense response that provides resistance against a wide range of pathogens at the whole-plant level following primary infection. Although the molecular mechanisms of SAR have been extensively studied in recent years, the role of phosphorylation that occurs in systemic leaves of SAR-induced plants is poorly understood. We used a data-independent acquisition (DIA) phosphoproteomics platform based on high-resolution mass spectrometry in an Arabidopsis thaliana model to identify phosphoproteins related to SAR establishment. A total of 8011 phosphorylation sites from 3234 proteins were identified in systemic leaves of Pseudomonas syringae pv. maculicola ES4326 (Psm ES4326) and mock locally inoculated plants. A total of 859 significantly changed phosphoproteins from 1119 significantly changed phosphopeptides were detected in systemic leaves of Psm ES4326 locally inoculated plants, including numerous transcription factors and kinases. A variety of defense response-related proteins were found to be differentially phosphorylated in systemic leaves of Psm ES4326 locally inoculated leaves, suggesting that these proteins may be functionally involved in SAR through phosphorylation or dephosphorylation. Significantly changed phosphoproteins were enriched mainly in categories related to response to abscisic acid, regulation of stomatal movement, plant-pathogen interaction, MAPK signaling pathway, purine metabolism, photosynthesis-antenna proteins, and flavonoid biosynthesis. A total of 28 proteins were regulated at both protein and phosphorylation levels during SAR. RT-qPCR analysis revealed that changes in phosphorylation levels of proteins during SAR did not result from changes in transcript abundance. This study provides comprehensive details of key phosphoproteins associated with SAR, which will facilitate further research on the molecular mechanisms of SAR.
Collapse
Affiliation(s)
- Qingfeng Zhou
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Qi Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, China
| | - Xiaomin Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, China
| | - Wei Ding
- Shanghai Omicsspace Biotechnology Co., Ltd., Shanghai, China
| | - Kang Ma
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
| | - Ziqin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, China
| | - Xuan Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi’an, China
- *Correspondence: Xuan Huang,
| | - Hang Gao
- College of Biology and Food, Shangqiu Normal University, Shangqiu, China
- Hang Gao,
| |
Collapse
|
7
|
Castander-Olarieta A, Pereira C, Sales E, Meijón M, Arrillaga I, Cañal MJ, Goicoa T, Ugarte MD, Moncaleán P, Montalbán IA. Induction of Radiata Pine Somatic Embryogenesis at High Temperatures Provokes a Long-Term Decrease in DNA Methylation/Hydroxymethylation and Differential Expression of Stress-Related Genes. PLANTS 2020; 9:plants9121762. [PMID: 33322106 PMCID: PMC7762990 DOI: 10.3390/plants9121762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
Based on the hypothesis that embryo development is a crucial stage for the formation of stable epigenetic marks that could modulate the behaviour of the resulting plants, in this study, radiata pine somatic embryogenesis was induced at high temperatures (23 °C, eight weeks, control; 40 °C, 4 h; 60 °C, 5 min) and the global methylation and hydroxymethylation levels of emerging embryonal masses and somatic plants were analysed using LC-ESI-MS/ MS-MRM. In this context, the expression pattern of six genes previously described as stress-mediators was studied throughout the embryogenic process until plant level to assess whether the observed epigenetic changes could have provoked a sustained alteration of the transcriptome. Results indicated that the highest temperatures led to hypomethylation of both embryonal masses and somatic plants. Moreover, we detected for the first time in a pine species the presence of 5-hydroxymethylcytosine, and revealed its tissue specificity and potential involvement in heat-stress responses. Additionally, a heat shock protein-coding gene showed a down-regulation tendency along the process, with a special emphasis given to embryonal masses at first subculture and ex vitro somatic plants. Likewise, the transcripts of several proteins related with translation, oxidative stress response, and drought resilience were differentially expressed.
Collapse
Affiliation(s)
| | - Cátia Pereira
- Department of Forestry Science, NEIKER, 01192 Arkaute, Spain; (A.C.-O.); (C.P.)
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ester Sales
- Departament of Ciencias Agrarias y del Medio Natural, Instituto Universitario de Ciencias Ambientales, Universidad de Zaragoza, Escuela Politécnica Superior, 22071 Huesca, Spain;
| | - Mónica Meijón
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, 33006 Oviedo, Spain; (M.M.); (M.J.C.)
| | - Isabel Arrillaga
- Departamento de Biología Vegetal, Facultad de Farmacia, Instituto BiotecMed, Universidad de Valencia, 46100 Burjassot, Spain;
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, 33006 Oviedo, Spain; (M.M.); (M.J.C.)
| | - Tomás Goicoa
- Department of Statistics, Computer Science and Mathematics, Universidad Pública de Navarra, 31006 Pamplona, Spain; (T.G.); (M.D.U.)
- INAMAT2 (Institute for Advanced Materials and Mathematics), Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - María Dolores Ugarte
- Department of Statistics, Computer Science and Mathematics, Universidad Pública de Navarra, 31006 Pamplona, Spain; (T.G.); (M.D.U.)
- INAMAT2 (Institute for Advanced Materials and Mathematics), Universidad Pública de Navarra, 31006 Pamplona, Spain
| | - Paloma Moncaleán
- Department of Forestry Science, NEIKER, 01192 Arkaute, Spain; (A.C.-O.); (C.P.)
- Correspondence: (P.M.); (I.A.M.)
| | - Itziar A. Montalbán
- Department of Forestry Science, NEIKER, 01192 Arkaute, Spain; (A.C.-O.); (C.P.)
- Correspondence: (P.M.); (I.A.M.)
| |
Collapse
|