1
|
Kumar R, Iswanto ABB, Kumar D, Shuwei W, Oh K, Moon J, Son GH, Oh ES, Vu MH, Lee J, Lee KW, Oh MH, Kwon C, Chung WS, Kim JY, Kim SH. C-Type LECTIN receptor-like kinase 1 and ACTIN DEPOLYMERIZING FACTOR 3 are key components of plasmodesmata callose modulation. PLANT, CELL & ENVIRONMENT 2024; 47:3749-3765. [PMID: 38780063 DOI: 10.1111/pce.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Plasmodesmata (PDs) are intercellular organelles carrying multiple membranous nanochannels that allow the trafficking of cellular signalling molecules. The channel regulation of PDs occurs dynamically and is required in various developmental and physiological processes. It is well known that callose is a critical component in regulating PD permeability or symplasmic connectivity, but the understanding of the signalling pathways and mechanisms of its regulation is limited. Here, we used the reverse genetic approach to investigate the role of C-type lectin receptor-like kinase 1 (CLRLK1) in the aspect of PD callose-modulated symplasmic continuity. Here, we found that loss-of-function mutations in CLRLK1 resulted in excessive PD callose deposits and reduced symplasmic continuity, resulting in an accelerated gravitropic response. The protein interactome study also found that CLRLK1 interacted with actin depolymerizing factor 3 (ADF3) in vitro and in plants. Moreover, mutations in ADF3 result in elevated PD callose deposits and faster gravitropic response. Our results indicate that CLRLK1 and ADF3 negatively regulate PD callose accumulation, contributing to fine-tuning symplasmic opening apertures. Overall, our studies identified two key components involved in the deposits of PD callose and provided new insights into how symplasmic connectivity is maintained by the control of PD callose homoeostasis.
Collapse
Affiliation(s)
- Ritesh Kumar
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Arya B B Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Dhinesh Kumar
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Wu Shuwei
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyujin Oh
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Geon H Son
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Eun-Seok Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Minh H Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jinsu Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Keun W Lee
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Man-Ho Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| | - Woo S Chung
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang H Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
2
|
Del Casino C, Conti V, Licata S, Cai G, Cantore A, Ricci C, Cantara S. Mitigation of UV-B Radiation Stress in Tobacco Pollen by Expression of the Tardigrade Damage Suppressor Protein (Dsup). Cells 2024; 13:840. [PMID: 38786062 PMCID: PMC11119994 DOI: 10.3390/cells13100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Pollen, the male gametophyte of seed plants, is extremely sensitive to UV light, which may prevent fertilization. As a result, strategies to improve plant resistance to solar ultraviolet (UV) radiation are required. The tardigrade damage suppressor protein (Dsup) is a putative DNA-binding protein that enables tardigrades to tolerate harsh environmental conditions, including UV radiation, and was therefore considered as a candidate for reducing the effects of UV exposure on pollen. Tobacco pollen was genetically engineered to express Dsup and then exposed to UV-B radiation to determine the effectiveness of the protein in increasing pollen resistance. To establish the preventive role of Dsup against UV-B stress, we carried out extensive investigations into pollen viability, germination rate, pollen tube length, male germ unit position, callose plug development, marker protein content, and antioxidant capacity. The results indicated that UV-B stress has a significant negative impact on both pollen grain and pollen tube growth. However, Dsup expression increased the antioxidant levels and reversed some of the UV-B-induced changes to pollen, restoring the proper distance between the tip and the last callose plug formed, as well as pollen tube length, tubulin, and HSP70 levels. Therefore, the expression of heterologous Dsup in pollen may provide the plant male gametophyte with enhanced responses to UV-B stress and protection against harmful environmental radiation.
Collapse
Affiliation(s)
- Cecilia Del Casino
- Dipartimento di Scienze della Vita, University of Siena, via Mattioli 4, 53100 Siena, Italy; (C.D.C.); (S.L.)
| | - Veronica Conti
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, via Irnerio 42, 40126 Bologna, Italy;
| | - Silvia Licata
- Dipartimento di Scienze della Vita, University of Siena, via Mattioli 4, 53100 Siena, Italy; (C.D.C.); (S.L.)
| | - Giampiero Cai
- Dipartimento di Scienze della Vita, University of Siena, via Mattioli 4, 53100 Siena, Italy; (C.D.C.); (S.L.)
| | - Anna Cantore
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Viale Bracci, 53100 Siena, Italy; (A.C.); (C.R.); (S.C.)
| | - Claudia Ricci
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Viale Bracci, 53100 Siena, Italy; (A.C.); (C.R.); (S.C.)
| | - Silvia Cantara
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Viale Bracci, 53100 Siena, Italy; (A.C.); (C.R.); (S.C.)
| |
Collapse
|
3
|
Okamoto T, Motose H, Takahashi T. Microtubule-associated proteins WDL5 and WDL6 play a critical role in pollen tube growth in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2023; 18:2281159. [PMID: 37965769 PMCID: PMC10653773 DOI: 10.1080/15592324.2023.2281159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/06/2023] [Indexed: 11/16/2023]
Abstract
Morphological response of cells to environment involves concerted rearrangements of microtubules and actin microfilaments. A mutant of WAVE-DAMPENED2-LIKE5 (WDL5), which encodes an ethylene-regulated microtubule-associated protein belonging to the WVD2/WDL family in Arabidopsis thaliana, shows attenuation in the temporal root growth reduction in response to mechanical stress. We found that a T-DNA knockout of WDL6, the closest homolog of WDL5, oppositely shows an enhancement of the response. To know the functional relationship between WDL5 and WDL6, we attempted to generate the double mutant by crosses but failed in isolation. Close examination of gametophytes in plants that are homozygous for one and heterozygous for the other revealed that these plants produce pollen grains with a reduced rate of germination and tube growth. Reciprocal cross experiments of these plants with the wild type confirmed that the double mutation is not inherited paternally. These results suggest a critical and cooperative function of WDL5 and WDL6 in pollen tube growth.
Collapse
Affiliation(s)
- Takashi Okamoto
- Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hiroyasu Motose
- Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Taku Takahashi
- Department of Biological Science, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
4
|
Kapoor K, Geitmann A. Pollen tube invasive growth is promoted by callose. PLANT REPRODUCTION 2023; 36:157-171. [PMID: 36717422 DOI: 10.1007/s00497-023-00458-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/17/2023] [Indexed: 06/09/2023]
Abstract
Callose, a β-1,3-glucan, lines the pollen tube cell wall except for the apical growing region, and it constitutes the main polysaccharide in pollen tube plugs. These regularly deposited plugs separate the active portion of the pollen tube cytoplasm from the degenerating cell segments. They have been hypothesized to reduce the total amount of cell volume requiring turgor regulation, thus aiding the invasive growth mechanism. To test this, we characterized the growth pattern of Arabidopsis callose synthase mutants with altered callose deposition patterns. Mutant pollen tubes without callose wall lining or plugs had a wider diameter but grew slower compared to their respective wildtype. To probe the pollen tube's ability to perform durotropism in the absence of callose, we performed mechanical assays such as growth in stiffened media and assessed turgor through incipient plasmolysis. We found that mutants lacking plugs had lower invading capacity and higher turgor pressure when faced with a mechanically challenging substrate. To explain this unexpected elevation in turgor pressure in the callose synthase mutants we suspected that it is enabled by feedback-driven increased levels of de-esterified pectin and/or cellulose in the tube cell wall. Through immunolabeling we tested this hypothesis and found that the content and spatial distribution of these cell wall polysaccharides was altered in callose-deficient mutant pollen tubes. Combined, the results reveal how callose contributes to the pollen tube's invasive capacity and thus plays an important role in fertilization. In order to understand, how the pollen tube deposits callose, we examined the involvement of the actin cytoskeleton in the spatial targeting of callose synthases to the cell surface. The spatial proximity of actin with locations of callose deposition and the dramatic effect of pharmacological interference with actin polymerization suggest a potential role for the cytoskeleton in the spatial control of the characteristic wall assembly process in pollen tubes.
Collapse
Affiliation(s)
- Karuna Kapoor
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada
| | - Anja Geitmann
- Department of Plant Science, McGill University, Macdonald Campus, 21111 Lakeshore, Ste-Anne-de-Bellevue, Québec, H9X 3V9, Canada.
| |
Collapse
|
5
|
Zhang L, Lin X, Yang Z, Jiang L, Hou Q, Xie Z, Li Y, Pei H. The role of microtubules in microalgae: promotion of lipid accumulation and extraction. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:7. [PMID: 36635732 PMCID: PMC9837904 DOI: 10.1186/s13068-023-02257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/01/2023] [Indexed: 01/14/2023]
Abstract
BACKGROUND Microtubules in cells are closely related to the growth and metabolism of microalgae. To date, the study of microalgal microtubules has mainly concentrated on revealing the relationship between microtubule depolymerization and synthesis of precursors for flagellar regeneration. While information on the link between microtubule depolymerization and biosynthesis of precursors for complex organic matter (such as lipid, carbohydrate and protein), is still lacking, a better understanding of this could help to achieve a breakthrough in lipid regulation. With the aim of testing the assumption that microtubule disruption could regulate carbon precursors and redirect carbon flow to promote lipid accumulation, Chlorella sorokiniana SDEC-18 was pretreated with different concentrations of oryzalin. RESULTS Strikingly, microalgae that were pretreated with 1.5 mM oryzalin accumulated lipid contents of 41.06%, which was attributed to carbon redistribution induced by microtubule destruction. To promote the growth of microalgae, two-stage cultivation involving microtubule destruction was employed, which resulted in the lipid productivity being 1.44 times higher than that for microalgae with routine single-stage cultivation, as well as yielding a desirable biodiesel quality following from increases in monounsaturated fatty acid (MUFA) content. Furthermore, full extraction of lipid was achieved after only a single extraction step, because microtubule destruction caused removal of cellulose synthase and thereby blocked cellulose biosynthesis. CONCLUSIONS This study provides an important advance towards observation of microtubules in microalgae through immunocolloidal gold techniques combined with TEM. Moreover, the observation of efficient lipid accumulation and increased cell fragility engendered by microtubule destruction has expanded our knowledge of metabolic regulation by microtubules. Finally, two-stage cultivation involving microtubule destruction has established ideal growth, coupling enhanced lipid accumulation and efficient oil extraction; thus gaining advances in both applied and fundamental research in algal biodiesel production.
Collapse
Affiliation(s)
- Lijie Zhang
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Xiao Lin
- grid.5335.00000000121885934Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS UK
| | - Zhigang Yang
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Liqun Jiang
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Qingjie Hou
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Zhen Xie
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Yizhen Li
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China
| | - Haiyan Pei
- grid.27255.370000 0004 1761 1174School of Environmental Science and Engineering, Shandong University, Qingdao, 266237 China ,grid.8547.e0000 0001 0125 2443Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433 China ,Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan, 250061 China
| |
Collapse
|
6
|
Cai G. The legacy of kinesins in the pollen tube thirty years later. Cytoskeleton (Hoboken) 2022; 79:8-19. [PMID: 35766009 PMCID: PMC9542081 DOI: 10.1002/cm.21713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/10/2022]
Abstract
The pollen tube is fundamental in the reproduction of seed plants. Particularly in angiosperms, we now have much information about how it grows, how it senses extracellular signals, and how it converts them into a directional growth mechanism. The expansion of the pollen tube is also related to dynamic cytoplasmic processes based on the cytoskeleton (such as polymerization/depolymerization of microtubules and actin filaments) or motor activity along with the two cytoskeletal systems and is dependent on motor proteins. While a considerable amount of information is available for the actomyosin system in the pollen tube, the role of microtubules in the transport of organelles or macromolecular structures is still quite uncertain despite that 30 years ago the first work on the presence of kinesins in the pollen tube was published. Since then, progress has been made in elucidating the role of kinesins in plant cells. However, their role within the pollen tube is still enigmatic. In this review, I will postulate some roles of kinesins in the pollen tube 30 years after their initial discovery based on information obtained in other plant cells in the meantime. The most concrete hypotheses predict that kinesins in the pollen tube enable the short movement of specific organelles or contribute to generative cell or sperm cell transport, as well as mediate specific steps in the process of endocytosis.
Collapse
Affiliation(s)
- Giampiero Cai
- Dipartimento Scienze della Vita, Università di Siena, via Mattioli 4, Siena, Italy
| |
Collapse
|