1
|
Chen Q, Chen P. Changes in the heavy metals and petroleum hydrocarbon contents in seawater and surface sediment in the year following artificial reef construction in the Pearl River Estuary, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6009-6021. [PMID: 31863380 DOI: 10.1007/s11356-019-07406-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Marine pollution is an important driver of ocean biodiversity loss, which can be mitigated by the construction of artificial reefs (ARs). Many studies have explored how ARs affect marine organisms, but our understanding of the changes in heavy metals and petroleum hydrocarbons after AR construction is limited. In the current study, we assessed the heavy metal and petroleum hydrocarbon contents of the seawater (surface and bottom seawater) and surface sediment before and after AR construction in AR habitat and in nearby non-reef control habitat in the Pearl River Estuary, China. AR construction tended to decrease the contents of Cu, Pb, Cd, and Hg but tended to increase Zn content in seawater and in surface sediment. Petroleum hydrocarbon content changed irregularly in seawater and surface sediment. Effects of AR construction were similar in the nearby non-reef habitat vs. the AR habitat. Seawater heavy metal and petroleum hydrocarbon contents were correlated with the seawater physicochemical properties (mainly temperature, inorganic nitrogen, chemical oxygen demand, available phosphate, and suspended particulate organic matter), and sediment heavy metal content was correlated with sediment organic matter content. Additional studies over longer time periods and at larger spatial scales are needed to clarify how AR construction affects heavy metal and petroleum hydrocarbon contents in marine environments.
Collapse
Affiliation(s)
- Quan Chen
- Key Laboratory of Marine Ranch Technology, Chinese Academy of Fishery Sciences, 231 West Xingang Road, Haizhu District, Guangzhou, 510300, People's Republic of China.
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 West Xingang Road, Haizhu District, Guangzhou, 510300, People's Republic of China.
| | - Pimao Chen
- Key Laboratory of Marine Ranch Technology, Chinese Academy of Fishery Sciences, 231 West Xingang Road, Haizhu District, Guangzhou, 510300, People's Republic of China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 231 West Xingang Road, Haizhu District, Guangzhou, 510300, People's Republic of China
| |
Collapse
|
2
|
Panwar AS, Molpa D, Joshi GK. Biotechnological Potential of Some Cold-Adapted Bacteria Isolated from North-Western Himalaya. Microbiology (Reading) 2019. [DOI: 10.1134/s002626171903007x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
3
|
Antarctic Soil Microbial Communities in a Changing Environment: Their Contributions to the Sustainability of Antarctic Ecosystems and the Bioremediation of Anthropogenic Pollution. SPRINGER POLAR SCIENCES 2019. [DOI: 10.1007/978-3-030-02786-5_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Brakstad OG, Davies EJ, Ribicic D, Winkler A, Brönner U, Netzer R. Biodegradation of dispersed oil in natural seawaters from Western Greenland and a Norwegian fjord. Polar Biol 2018. [DOI: 10.1007/s00300-018-2380-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Ribicic D, Netzer R, Winkler A, Brakstad OG. Microbial communities in seawater from an Arctic and a temperate Norwegian fjord and their potentials for biodegradation of chemically dispersed oil at low seawater temperatures. MARINE POLLUTION BULLETIN 2018; 129:308-317. [PMID: 29680553 DOI: 10.1016/j.marpolbul.2018.02.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 05/20/2023]
Abstract
Biodegradation of chemically dispersed oil at low temperature (0-2 °C) was compared in natural seawater from Arctic (Svalbard) and a temperate (Norway) fjords. The oil was premixed with a dispersant (Corexit 9500) and small-droplet oil dispersions prepared. Faster biotransformation of n-alkanes in the Arctic than in the temperate seawater were associated with the initially higher abundance of the alkane-degrading genus Oleispira in the Arctic than the temperate seawater. Comparable transformation of aromatic hydrocarbons was further associated with the late emergences Cycloclasticus in both seawater sources. The results showed that chemically dispersed oil may be rapidly biodegraded by microbial communities in Arctic seawater. Compared to oil biodegradation studies at higher seawater temperatures, longer lag-periods were experienced here, and may be attributed to both microbial and oil properties at these low seawater temperatures.
Collapse
Affiliation(s)
- Deni Ribicic
- The Norwegian University of Science and Technology, Dept. Cancer Research and Molecular Medicine, 7491 Trondheim, Norway
| | - Roman Netzer
- SINTEF Ocean, Dept. Environmental Technology, Brattørkaia 17C, 7010 Trondheim, Norway
| | - Anika Winkler
- Bielefeld University, Centre for Biotechnology (CeBiTec), 33501 Bielefeld, Germany
| | - Odd Gunnar Brakstad
- SINTEF Ocean, Dept. Environmental Technology, Brattørkaia 17C, 7010 Trondheim, Norway.
| |
Collapse
|
6
|
Effect of temperature on bacterial community in petroleum hydrocarbon-contaminated and uncontaminated Antarctic soil. Polar Biol 2018. [DOI: 10.1007/s00300-018-2316-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Marchlewicz A, Guzik U, Smułek W, Wojcieszyńska D. Exploring the Degradation of Ibuprofen by Bacillus thuringiensis B1(2015b): The New Pathway and Factors Affecting Degradation. Molecules 2017; 22:molecules22101676. [PMID: 28991215 PMCID: PMC6151734 DOI: 10.3390/molecules22101676] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/06/2017] [Indexed: 11/29/2022] Open
Abstract
Ibuprofen is one of the most often detected pollutants in the environment, particularly at landfill sites and in wastewaters. Contamination with pharmaceuticals is often accompanied by the presence of other compounds which may influence their degradation. This work describes the new degradation pathway of ibuprofen by Bacillus thuringiensis B1(2015b), focusing on enzymes engaged in this process. It is known that the key intermediate which transformation limits the velocity of the degradation process is hydroxyibuprofen. As the degradation rate also depends on various factors, the influence of selected heavy metals and aromatic compounds on ibuprofen degradation by the B1(2015b) strain was examined. Based on the values of non-observed effect concentration (NOEC) it was found that the toxicity of tested metals increases from Hg(II) < Cu(II) < Cd(II) < Co(II) < Cr(VI). Despite the toxic effect of metals, the biodegradation of ibuprofen was observed. The addition of Co2+ ions into the medium significantly extended the time necessary for the complete removal of ibuprofen. It was shown that Bacillus thuringiensis B1(2015b) was able to degrade ibuprofen in the presence of phenol, benzoate, and 2-chlorophenol. Moreover, along with the removal of ibuprofen, degradation of phenol and benzoate was observed. Introduction of 4-chlorophenol into the culture completely inhibits degradation of ibuprofen.
Collapse
Affiliation(s)
- Ariel Marchlewicz
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Urszula Guzik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Danuta Wojcieszyńska
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
8
|
Kolsal F, Akbal Z, Liaqat F, Gök O, Sponza DT, Eltem R. Hydrocarbon degradation abilities of psychrotolerant Bacillus strains. AIMS Microbiol 2017; 3:467-482. [PMID: 31294171 PMCID: PMC6604985 DOI: 10.3934/microbiol.2017.3.467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 06/07/2017] [Indexed: 11/24/2022] Open
Abstract
Biodegradation requires identification of hydrocarbon degrading microbes and the investigation of psychrotolerant hydrocarbon degrading microbes is essential for successful biodegradation in cold seawater. In the present study, a total of 597 Bacillus isolates were screened to select psychrotolerant strains and 134 isolates were established as psychrotolerant on the basis of their ability to grow at 7 °C. Hydrocarbon degradation capacities of these 134 psychrotolerant isolate were initially investigated on agar medium containing different hydrocarbons (naphthalene, n-hexadecane, mineral oil) and 47 positive isolates were grown in broth medium containing hydrocarbons at 20 °C under static culture. Bacterial growth was estimated in terms of viable cell count (cfu ml-1). Isolates showing the best growth in static culture were further grown in presence of crude oil under shaking culture and viable cell count was observed between 8.3 × 105-7.4 × 108 cfu ml-1. In the final step, polycyclic aromatic hydrocarbon (PAH) (chrysene and naphthalene) degradation yield of two most potent isolates was determined by GC-MS along with the measurement of pH, biomass and emulsification activities. Results showed that isolates Ege B.6.2i and Ege B.1.4Ka have shown 60% and 36% chrysene degradation yield, respectively, while 33% and 55% naphthalene degradation yield, respectively, with emulsification activities ranges between 33-50%. These isolates can be used to remove hydrocarbon contamination from different environments, particularly in cold regions.
Collapse
Affiliation(s)
- Fulya Kolsal
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, İzmir, Turkey
| | - Zeynep Akbal
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, İzmir, Turkey
| | - Fakhra Liaqat
- Department of Biotechnology, Graduate School of Natural and Applied Sciences, Ege University, 35100, İzmir, Turkey
| | - Oğuzhan Gök
- Department of Environmental Engineering, Engineering Faculty, Aksaray University, Aksaray, Turkey
| | - Delia Teresa Sponza
- Department of Environmental Engineering, Engineering Faculty, Dokuz Eylül University, Buca, Kaynaklar Campus, 35160, İzmir, Turkey
| | - Rengin Eltem
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, İzmir, Turkey
| |
Collapse
|
9
|
Sauret C, Tedetti M, Guigue C, Dumas C, Lami R, Pujo-Pay M, Conan P, Goutx M, Ghiglione JF. Influence of PAHs among other coastal environmental variables on total and PAH-degrading bacterial communities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:4242-4256. [PMID: 26122564 DOI: 10.1007/s11356-015-4768-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/21/2015] [Indexed: 06/04/2023]
Abstract
We evaluated the relative impact of anthropogenic polycyclic aromatic hydrocarbons (PAHs) among biogeochemical variables on total, metabolically active, and PAH bacterial communities in summer and winter in surface microlayer (SML) and subsurface seawaters (SSW) across short transects along the NW Mediterranean coast from three harbors, one wastewater effluent, and one nearshore observatory reference site. At both seasons, significant correlations were found between dissolved total PAH concentrations and PAH-degrading bacteria that formed a gradient from the shore to nearshore waters. Accumulation of PAH degraders was particularly high in the SML, where PAHs accumulated. Harbors and wastewater outfalls influenced drastically and in a different way the total and active bacterial community structure, but they only impacted the communities from the nearshore zone (<2 km from the shore). By using direct multivariate statistical analysis, we confirmed the significant effect of PAH concentrations on the spatial and temporal dynamic of total and active communities in this area, but this effect was putted in perspective by the importance of other biogeochemical variables.
Collapse
Affiliation(s)
- Caroline Sauret
- UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Sorbonne Universités, F-66650, Banyuls/mer, France
| | - Marc Tedetti
- Aix Marseille Université, CNRS, Université de Toulon, IRD, MIO UM 110, 13288, Marseille, France
| | - Catherine Guigue
- Aix Marseille Université, CNRS, Université de Toulon, IRD, MIO UM 110, 13288, Marseille, France
| | - Chloé Dumas
- UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Sorbonne Universités, F-66650, Banyuls/mer, France
| | - Raphaël Lami
- UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Sorbonne Universités, F-66650, Banyuls/mer, France
| | - Mireille Pujo-Pay
- UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Sorbonne Universités, F-66650, Banyuls/mer, France
| | - Pascal Conan
- UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Sorbonne Universités, F-66650, Banyuls/mer, France
| | - Madeleine Goutx
- Aix Marseille Université, CNRS, Université de Toulon, IRD, MIO UM 110, 13288, Marseille, France
| | - Jean-François Ghiglione
- UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, Sorbonne Universités, F-66650, Banyuls/mer, France.
| |
Collapse
|
10
|
Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R. In-Situ Remediation Approaches for the Management of Contaminated Sites: A Comprehensive Overview. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 236:1-115. [PMID: 26423073 DOI: 10.1007/978-3-319-20013-2_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Though several in-situ treatment methods exist to remediate polluted sites, selecting an appropriate site-specific remediation technology is challenging and is critical for successful clean up of polluted sites. Hence, a comprehensive overview of all the available remediation technologies to date is necessary to choose the right technology for an anticipated pollutant. This review has critically evaluated the (i) technological profile of existing in-situ remediation approaches for priority and emerging pollutants, (ii) recent innovative technologies for on-site pollutant remediation, and (iii) current challenges as well as future prospects for developing innovative approaches to enhance the efficacy of remediation at contaminated sites.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- CERAR-Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SA, 5095, Australia
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
| | - Thavamani Palanisami
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mallavarapu Megharaj
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia.
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur, 515055, India
| | - Ravi Naidu
- CRC CARE-Cooperative Research Centre for Contamination Assessment and Remediation of Environment, 486, Salisbury South, SA, 5106, Australia
- GIER- Global Institute for Environmental Research, Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
11
|
He Z, Zhang K, Wang H, Lv Z. Trehalose promotes Rhodococcus sp. strain YYL colonization in activated sludge under tetrahydrofuran (THF) stress. Front Microbiol 2015; 6:438. [PMID: 26029182 PMCID: PMC4429620 DOI: 10.3389/fmicb.2015.00438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 04/23/2015] [Indexed: 12/20/2022] Open
Abstract
Few studies have focused on the role of compatible solutes in changing the microbial community structure in bioaugmentation systems. In this study, we investigated the influence of trehalose as a biostimulant on the microbial community in tetrahydrofuran (THF)-treated wastewater bioaugmentation systems with Rhodococcus sp. YYL. Functional gene profile changes were used to study the variation in the microbial community. Soluble di-iron monooxygenases (SDIMO), particularly group-5 SDIMOs (i.e., tetrahydrofuran and propane monooxygenases), play a significant role in the initiation of the ring cleavage of tetrahydrofuran. Group-5 SDIMOs genes are enriched upon trehalose addition, and exogenous tetrahydrofuran monooxygenase (thmA) genes can successfully colonize bioaugmentation systems. Cytochrome P450 monooxygenases (P450s) have a significant role in catalyzing the region- and stereospecific oxidation of non-activated hydrocarbons, and THF was reported to inhibit P450s in the environment. The CYP153 family was chosen as a representative P450 to study the inhibitory effects of THF. The results demonstrated that CYP153 family genes exhibited significant changes upon THF treatment and that trehalose helped maintain a rich diversity and high abundance of CYP153 family genes. Biostimulation with trehalose could alleviate the negative effects of THF stress on microbial diversity in bioaugmentation systems. Our results indicated that trehalose as a compatible solute plays a significant role for environmental strains under extreme conditions.
Collapse
Affiliation(s)
- Zhixing He
- College of Life Sciences, Zhejiang University Hangzhou, China
| | - Kai Zhang
- College of Life Sciences, Zhejiang University Hangzhou, China
| | - Haixia Wang
- College of Life Sciences, Zhejiang University Hangzhou, China
| | - Zhenmei Lv
- College of Life Sciences, Zhejiang University Hangzhou, China
| |
Collapse
|
12
|
Polmear R, Stark JS, Roberts D, McMinn A. The effects of oil pollution on Antarctic benthic diatom communities over 5 years. MARINE POLLUTION BULLETIN 2015; 90:33-40. [PMID: 25499184 DOI: 10.1016/j.marpolbul.2014.11.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/16/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
Although considered pristine, Antarctica has not been impervious to hydrocarbon pollution. Antarctica's history is peppered with oil spills and numerous abandoned waste disposal sites. Both spill events and constant leakages contribute to previous and current sources of pollution into marine sediments. Here we compare the response of the benthic diatom communities over 5 years to exposure to a commonly used standard synthetic lubricant oil, an alternative lubricant marketed as more biodegradable, in comparison to a control treatment. Community composition varied significantly over time and between treatments with some high variability within contaminated treatments suggesting community stress. Both lubricants showed evidence of significant effects on community composition after 5 years even though total petroleum hydrocarbon reduction reached approximately 80% over this time period. It appears that even after 5 years toxicity remains high for both the standard and biodegradable lubricants revealing the temporal scale at which pollutants persist in Antarctica.
Collapse
Affiliation(s)
- R Polmear
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart 7001, Tasmania, Australia
| | - J S Stark
- Australian Antarctic Division, Channel Hwy, Kingston 7050, Tasmania, Australia
| | - D Roberts
- Antarctic Climate and Ecosystems CRC, University of Tasmania, Hobart, Tasmania, Australia
| | - A McMinn
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 129, Hobart 7001, Tasmania, Australia.
| |
Collapse
|
13
|
Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biol 2014. [DOI: 10.1007/s00300-014-1630-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Jung J, Choi S, Hong H, Sung JS, Park W. Effect of red clay on diesel bioremediation and soil bacterial community. MICROBIAL ECOLOGY 2014; 68:314-323. [PMID: 24743885 DOI: 10.1007/s00248-014-0420-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/07/2014] [Indexed: 06/03/2023]
Abstract
Red clay is a type of soil, the red color of which results from the presence of iron oxide. It is considered an eco-friendly material, with many industrial, cosmetic, and architectural uses. A patented method was applied to red clay in order to change its chemical composition and mineral bioavailability. The resulting product was designated processed red clay. This study evaluates the novel use of red clay and processed red clay as biostimulation agents in diesel-contaminated soils. Diesel biodegradation was enhanced in the presence of red clay and processed red clay by 4.9- and 6.7-fold, respectively, and the number of culturable bacterial cells was correlated with the amount of diesel biodegradation. The growth of Acinetobacter oleivorans DR1, Pseudomonas putida KT2440, and Cupriavidus necator was promoted by both types of red clays. Culture-independent community analysis determined via barcoded pyrosequencing indicated that Nocardioidaceae, Xanthomonadaceae, Pseudomonadaceae, and Caulobacteraceae were enriched by diesel contamination. Bacterial strain isolation from naphthalene- and liquid paraffin-amended media was affiliated with enriched taxa based on 16S rRNA gene sequence identity. We suggest that the biostimulating mechanism of red clay and processed red clay is able to support bacterial growth without apparent selection for specific bacterial species.
Collapse
Affiliation(s)
- Jaejoon Jung
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 136-713, Republic of Korea
| | | | | | | | | |
Collapse
|
15
|
Bagi A, Pampanin DM, Brakstad OG, Kommedal R. Estimation of hydrocarbon biodegradation rates in marine environments: a critical review of the Q10 approach. MARINE ENVIRONMENTAL RESEARCH 2013; 89:83-90. [PMID: 23756048 DOI: 10.1016/j.marenvres.2013.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/08/2013] [Accepted: 05/11/2013] [Indexed: 06/02/2023]
Abstract
Offshore oil & gas industry is moving exploration and production activities into Arctic and deep water regions. Governmental regulations require environmental impact assessments before operations to evaluate the possible effects of accidental oil releases. These are often performed by numerical fate models, like the Oil Spill Contingency and Response (OSCAR) model, which has become an industry standard in Norway. In this model, biodegradation rates are adjusted to local conditions by temperature compensation according to a Q10 approach. Q10 is the multiplier by which rates of enzymatic reactions increase at a 10 °C temperature rise. Herein, this Q10 approach implemented in the OSCAR model is investigated based on published data and novel obtained results. Overall, biodegradation rate predictions calculated by temperature compensation are found to be questionable, and choosing one universal Q10 value is considered not feasible. The high variation in Q10 values is herein attributed to indirect effects of temperature.
Collapse
Affiliation(s)
- Andrea Bagi
- University of Stavanger, Faculty of Science and Technology, Department of Mathematics and Natural Science, Kristine Bonnevies vei 22, N-4036 Stavanger, Norway.
| | | | | | | |
Collapse
|
16
|
Naphthalene biodegradation in temperate and arctic marine microcosms. Biodegradation 2013; 25:111-25. [PMID: 23624724 DOI: 10.1007/s10532-013-9644-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 04/20/2013] [Indexed: 10/26/2022]
Abstract
Naphthalene, the smallest polycyclic aromatic hydrocarbon (PAH), is found in abundance in crude oil, its major source in marine environments. PAH removal occurs via biodegradation, a key process determining their fate in the sea. Adequate estimation of PAH biodegradation rates is essential for environmental risk assessment and response planning using numerical models such as the oil spill contingency and response (OSCAR) model. Using naphthalene as a model compound, biodegradation rate, temperature response and bacterial community composition of seawaters from two climatically different areas (North Sea and Arctic Ocean) were studied and compared. Naphthalene degradation was followed by measuring oxygen consumption in closed bottles using the OxiTop(®) system. Microbial communities of untreated and naphthalene exposed samples were analysed by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) and pyrosequencing. Three times higher naphthalene degradation rate coefficients were observed in arctic seawater samples compared to temperate, at all incubation temperatures. Rate coefficients at in situ temperatures were however, similar (0.048 day(-1) for temperate and 0.068 day(-1) for arctic). Naphthalene biodegradation rates decreased with similar Q10 ratios (3.3 and 3.5) in both seawaters. Using the temperature compensation method implemented in the OSCAR model, Q10 = 2, biodegradation in arctic seawater was underestimated when calculated from the measured temperate k1 value, showing that temperature difference alone could not predict biodegradation rates adequately. Temperate and arctic untreated seawater communities were different as revealed by pyrosequencing. Geographic origin of seawater affected the community composition of exposed samples.
Collapse
|
17
|
Faruk Umar A, Tahir F, Larkin M, Mojisola Oyawoye O, Lawal Musa B, Bello Yerima M, Bede Agbo E. <i>In-Situ</i> Biostimulatory Effect of Selected Organic Wastes on Bacterial Atrazine Biodegradation. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/aim.2012.24076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Dynamics of bacterial community exposed to hydrocarbons and oleophilic fertilizer in high-Arctic intertidal beach. Polar Biol 2011. [DOI: 10.1007/s00300-011-1003-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 2010; 22:231-41. [DOI: 10.1007/s10532-010-9394-4] [Citation(s) in RCA: 346] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
|