1
|
Alcamán-Arias ME, Cifuentes-Anticevic J, Castillo-Inaipil W, Farías L, Sanhueza C, Fernández-Gómez B, Verdugo J, Abarzua L, Ridley C, Tamayo-Leiva J, Díez B. Dark Diazotrophy during the Late Summer in Surface Waters of Chile Bay, West Antarctic Peninsula. Microorganisms 2022; 10:microorganisms10061140. [PMID: 35744658 PMCID: PMC9227844 DOI: 10.3390/microorganisms10061140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/16/2022] Open
Abstract
Although crucial for the addition of new nitrogen in marine ecosystems, dinitrogen (N2) fixation remains an understudied process, especially under dark conditions and in polar coastal areas, such as the West Antarctic Peninsula (WAP). New measurements of light and dark N2 fixation rates in parallel with carbon (C) fixation rates, as well as analysis of the genetic marker nifH for diazotrophic organisms, were conducted during the late summer in the coastal waters of Chile Bay, South Shetland Islands, WAP. During six late summers (February 2013 to 2019), Chile Bay was characterized by high NO3− concentrations (~20 µM) and an NH4+ content that remained stable near 0.5 µM. The N:P ratio was approximately 14.1, thus close to that of the Redfield ratio (16:1). The presence of Cluster I and Cluster III nifH gene sequences closely related to Alpha-, Delta- and, to a lesser extent, Gammaproteobacteria, suggests that chemosynthetic and heterotrophic bacteria are primarily responsible for N2 fixation in the bay. Photosynthetic carbon assimilation ranged from 51.18 to 1471 nmol C L−1 d−1, while dark chemosynthesis ranged from 9.24 to 805 nmol C L−1 d−1. N2 fixation rates were higher under dark conditions (up to 45.40 nmol N L−1 d−1) than under light conditions (up to 7.70 nmol N L−1 d−1), possibly contributing more than 37% to new nitrogen-based production (≥2.5 g N m−2 y−1). Of all the environmental factors measured, only PO43- exhibited a significant correlation with C and N2 rates, being negatively correlated (p < 0.05) with dark chemosynthesis and N2 fixation under the light condition, revealing the importance of the N:P ratio for these processes in Chile Bay. This significant contribution of N2 fixation expands the ubiquity and biological potential of these marine chemosynthetic diazotrophs. As such, this process should be considered along with the entire N cycle when further reviewing highly productive Antarctic coastal waters and the diazotrophic potential of the global marine ecosystem.
Collapse
Affiliation(s)
- María E. Alcamán-Arias
- Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (M.E.A.-A.); (L.F.); (L.A.)
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Blanco Encalada 2002, Santiago 8320000, Chile; (C.R.); (J.T.-L.)
- Escuela de Medicina, Universidad Espíritu Santo, Guayaquil 0901952, Ecuador
| | - Jerónimo Cifuentes-Anticevic
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
| | - Wilson Castillo-Inaipil
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
| | - Laura Farías
- Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (M.E.A.-A.); (L.F.); (L.A.)
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Blanco Encalada 2002, Santiago 8320000, Chile; (C.R.); (J.T.-L.)
| | - Cynthia Sanhueza
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
| | - Beatriz Fernández-Gómez
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), 35001 Las Palmas, Spain
| | - Josefa Verdugo
- Alfred-Wegener-Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany;
| | - Leslie Abarzua
- Departamento de Oceanografía, Universidad de Concepción, Concepción 4030000, Chile; (M.E.A.-A.); (L.F.); (L.A.)
| | - Christina Ridley
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Blanco Encalada 2002, Santiago 8320000, Chile; (C.R.); (J.T.-L.)
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
| | - Javier Tamayo-Leiva
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Blanco Encalada 2002, Santiago 8320000, Chile; (C.R.); (J.T.-L.)
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
- Center for Genome Regulation (CRG), Universidad de Chile, Blanco Encalada 2085, Santiago 8320000, Chile
| | - Beatriz Díez
- Center for Climate and Resilience Research (CR)2, Universidad de Chile, Blanco Encalada 2002, Santiago 8320000, Chile; (C.R.); (J.T.-L.)
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.C.-A.); (W.C.-I.); (C.S.); (B.F.-G.)
- Center for Genome Regulation (CRG), Universidad de Chile, Blanco Encalada 2085, Santiago 8320000, Chile
- Correspondence:
| |
Collapse
|
2
|
Alcamán-Arias ME, Cifuentes-Anticevic J, Díez B, Testa G, Troncoso M, Bello E, Farías L. Surface Ammonia-Oxidizer Abundance During the Late Summer in the West Antarctic Coastal System. Front Microbiol 2022; 13:821902. [PMID: 35401462 PMCID: PMC8992545 DOI: 10.3389/fmicb.2022.821902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/01/2022] [Indexed: 01/04/2023] Open
Abstract
Marine ammonia oxidizers that oxidize ammonium to nitrite are abundant in polar waters, especially during the winter in the deeper mixed-layer of West Antarctic Peninsula (WAP) waters. However, the activity and abundance of ammonia-oxidizers during the summer in surface coastal Antarctic waters remain unclear. In this study, the ammonia-oxidation rates, abundance and identity of ammonia-oxidizing bacteria (AOB) and archaea (AOA) were evaluated in the marine surface layer (to 30 m depth) in Chile Bay (Greenwich Island, WAP) over three consecutive late-summer periods (2017, 2018, and 2019). Ammonia-oxidation rates of 68.31 nmol N L−1 day−1 (2018) and 37.28 nmol N L−1 day−1 (2019) were detected from illuminated 2 m seawater incubations. However, high ammonia-oxidation rates between 267.75 and 109.38 nmol N L−1 day−1 were obtained under the dark condition at 30 m in 2018 and 2019, respectively. During the late-summer sampling periods both stratifying and mixing events occurring in the water column over short timescales (February–March). Metagenomic analysis of seven nitrogen cycle modules revealed the presence of ammonia-oxidizers, such as the Archaea Nitrosopumilus and the Bacteria Nitrosomonas and Nitrosospira, with AOA often being more abundant than AOB. However, quantification of specific amoA gene transcripts showed number of AOB being two orders of magnitude higher than AOA, with Nitrosomonas representing the most transcriptionally active AOB in the surface waters. Additionally, Candidatus Nitrosopelagicus and Nitrosopumilus, phylogenetically related to surface members of the NP-ε and NP-γ clades respectively, were the predominant AOA. Our findings expand the known distribution of ammonium-oxidizers to the marine surface layer, exposing their potential ecological role in supporting the marine Antarctic system during the productive summer periods.
Collapse
Affiliation(s)
- María E Alcamán-Arias
- Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile.,Center for Climate and Resilience Research (CR)2, Santiago, Chile.,Escuela de Medicina, Universidad Espíritu Santo, Guayaquil, Ecuador
| | | | - Beatriz Díez
- Center for Climate and Resilience Research (CR)2, Santiago, Chile.,Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for Genome Regulation (CGR), Universidad de Chile, Santiago, Chile
| | - Giovanni Testa
- Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile.,Programa de Postgrado en Oceanografía, Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile.,Research Center Dynamics of High Latitude Marine Ecosystems (IDEAL), Punta Arenas, Chile
| | | | - Estrella Bello
- Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile
| | - Laura Farías
- Departamento de Oceanografía, Universidad de Concepción, Concepción, Chile.,Center for Climate and Resilience Research (CR)2, Santiago, Chile
| |
Collapse
|
3
|
Spatiotemporal Variations in Antarctic Protistan Communities Highlight Phytoplankton Diversity and Seasonal Dominance by a Novel Cryptophyte Lineage. mBio 2021; 12:e0297321. [PMID: 34903046 PMCID: PMC8669470 DOI: 10.1128/mbio.02973-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Andvord fjord in the West Antarctic Peninsula (WAP) is known for its productivity and abundant megafauna. Nevertheless, seasonal patterns of the molecular diversity and abundance of protistan community members underpinning WAP productivity remain poorly resolved. We performed spring and fall expeditions pursuing protistan diversity, abundance of photosynthetic taxa, and the connection to changing conditions. 18S rRNA amplicon sequence variant (ASV) profiles revealed diverse predatory protists spanning multiple eukaryotic supergroups, alongside enigmatic heterotrophs like the Picozoa. Among photosynthetic protists, cryptophyte contributions were notable. Analysis of plastid-derived 16S rRNA ASVs supported 18S ASV results, including a dichotomy between cryptophytes and diatom contributions previously reported in other Antarctic regions. We demonstrate that stramenopile and cryptophyte community structures have distinct attributes. Photosynthetic stramenopiles exhibit high diversity, with the polar diatom Fragilariopsis cylindrus, unidentified Chaetoceros species, and others being prominent. Conversely, ASV analyses followed by environmental full-length rRNA gene sequencing, electron microscopy, and flow cytometry revealed that a novel alga dominates the cryptophytes. Phylogenetic analyses established that TPG clade VII, as named here, is evolutionarily distinct from cultivated cryptophyte lineages. Additionally, cryptophyte cell abundance correlated with increased water temperature. Analyses of global data sets showed that clade VII dominates cryptophyte ASVs at Southern Ocean sites and appears to be endemic, whereas in the Arctic and elsewhere, Teleaulax amphioxeia and Plagioselmis prolonga dominate, although both were undetected in Antarctic waters. Collectively, our studies provide baseline data against which future change can be assessed, identify different diversification patterns between stramenopiles and cryptophytes, and highlight an evolutionarily distinct cryptophyte clade that thrives under conditions enhanced by warming.
Collapse
|
4
|
Abstract
Microbial proton-pumping rhodopsins are considered the simplest strategy among phototrophs to conserve energy from light. Proteorhodopsins are the most studied rhodopsins thus far because of their ubiquitous presence in the ocean, except in Antarctica, where they remain understudied. We analyzed proteorhodopsin abundance and transcriptional activity in the Western Antarctic coastal seawaters. Combining quantitative PCR (qPCR) and metagenomics, the relative abundance of proteorhodopsin-bearing bacteria accounted on average for 17, 3.5, and 29.7% of the bacterial community in Chile Bay (South Shetland Islands) during 2014, 2016, and 2017 summer-autumn, respectively. The abundance of proteorhodopsin-bearing bacteria changed in relation to environmental conditions such as chlorophyll a and temperature. Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia were the main bacteria that transcribed the proteorhodopsin gene during day and night. Although green light-absorbing proteorhodopsin genes were more abundant than blue-absorbing ones, the latter were transcribed more intensely, resulting in >50% of the proteorhodopsin transcripts during the day and night. Flavobacteriia were the most abundant proteorhodopsin-bearing bacteria in the metagenomes; however, Alphaproteobacteria and Gammaproteobacteria were more represented in the metatranscriptomes, with qPCR quantification suggesting the dominance of the active SAR11 clade. Our results show that proteorhodopsin-bearing bacteria are prevalent in Antarctic coastal waters in late austral summer and early autumn, and their ecological relevance needs to be elucidated to better understand how sunlight energy is used in this marine ecosystem. IMPORTANCE Proteorhodopsin-bearing microorganisms in the Southern Ocean have been overlooked since their discovery in 2000. The present study identify taxonomy and quantify the relative abundance of proteorhodopsin-bearing bacteria and proteorhodopsin gene transcription in the West Antarctic Peninsula's coastal waters. This information is crucial to understand better how sunlight enters this marine environment through alternative ways unrelated to chlorophyll-based strategies. The relative abundance of proteorhodopsin-bearing bacteria seems to be related to environmental parameters (e.g., chlorophyll a, temperature) that change yearly at the coastal water of the West Antarctic Peninsula during the austral late summers and early autumns. Proteorhodopsin-bearing bacteria from Antarctic coastal waters are potentially able to exploit both the green and blue spectrum of sunlight and are a prevalent group during the summer in this polar environment.
Collapse
|
5
|
Stephens BM, Opalk K, Petras D, Liu S, Comstock J, Aluwihare LI, Hansell DA, Carlson CA. Organic Matter Composition at Ocean Station Papa Affects Its Bioavailability, Bacterioplankton Growth Efficiency and the Responding Taxa. FRONTIERS IN MARINE SCIENCE 2021; 2021:10.3389/fmars.2020.590273. [PMID: 35004707 PMCID: PMC8740527 DOI: 10.3389/fmars.2020.590273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The bioavailability of organic matter (OM) to marine heterotrophic bacterioplankton is determined by both the chemical composition of OM and the microbial community composition. In the current study, changes in OM bioavailability were identified at Ocean Station Papa as part of the 2018 Export Processes in the Ocean from Remote Sensing (EXPORTS) field study. Removal rates of carbon (C) in controlled experiments were significantly correlated with the initial composition of total hydrolyzable amino acids, and C removal rates were high when the amino acid degradation index suggested a more labile composition. Carbon remineralization rates averaged 0.19 ± 0.08 μmol C L-1 d-1 over 6-10 days while bacterial growth efficiencies averaged 31 ± 7%. Amino acid composition and tandem mass spectrometry analysis of compound classes also revealed transformations to a more degraded OM composition during experiments. There was a log2-fold increase in the relative abundances of 16S rDNA-resolved bacterioplankton taxa in most experiments by members of the Methylophilaceae family (OM43 genus) and KI89A order. Additionally, when OM was more bioavailable, relative abundances increased by at least threefold for the classes Bacteroidetes (Flavobacteriaceae NS2b genus), Alphaproteobacteria (Rhodobacteraceae Sulfitobacter genus), and Gammaproteobacteria (Alteromonadales and Ectothiorhodospiraceae orders). Our data suggest that a diverse group of bacterioplankton was responsible for removing organic carbon and altering the OM composition to a more degraded state. Elevated community diversity, as inferred from the Shannon-Wiener H index, may have contributed to relatively high growth efficiencies by the bacterioplankton. The data presented here shed light on the interconnections between OM bioavailability and key bacterioplankton taxa for the degradation of marine OM.
Collapse
Affiliation(s)
- Brandon M. Stephens
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Keri Opalk
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Shuting Liu
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jacqueline Comstock
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Lihini I. Aluwihare
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Dennis A. Hansell
- Department of Ocean Sciences, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, United States
| | - Craig A. Carlson
- Department of Ecology, Evolution, and Marine Biology, Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
6
|
Liu Q, Zhao Q, McMinn A, Yang EJ, Jiang Y. Planktonic microbial eukaryotes in polar surface waters: recent advances in high-throughput sequencing. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:94-102. [PMID: 37073396 PMCID: PMC10064379 DOI: 10.1007/s42995-020-00062-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/22/2020] [Indexed: 05/03/2023]
Abstract
Marine microbial eukaryotes are important primary producers and play critical roles in key biogeochemical cycles. Recent advances in sequencing technology have focused attention on the extent of microbial biodiversity, revealing a huge, previously underestimated phylogenetic diversity with many new lineages. This technology has now become the most important tool to understand the ecological significance of this huge and novel diversity in polar oceans. In particular, high-throughput sequencing technologies have been successfully applied to enumerate and compare marine microbial diversity in polar environments. Here, a brief overview of polar microbial eukaryote diversity, as revealed by in-situ surveys of the high-throughput sequencing on 18S rRNA gene, is presented. Using these 'omic' approaches, further attention still needs to be focused on differences between specific locations and/or entire polar oceans and on bipolar comparisons of diversity and distribution.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003 China
| | - Qiannan Zhao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003 China
| | - Andrew McMinn
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Eun Jin Yang
- Division of Polar Ocean Environment, Korea Polar Research Institute, 213-3 Songdo-dong, Yeonsu-gu, Incheon, 406-840 Korea
| | - Yong Jiang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003 China
| |
Collapse
|
7
|
Alcamán-Arias ME, Fuentes-Alburquenque S, Vergara-Barros P, Cifuentes-Anticevic J, Verdugo J, Polz M, Farías L, Pedrós-Alió C, Díez B. Coastal Bacterial Community Response to Glacier Melting in the Western Antarctic Peninsula. Microorganisms 2021; 9:microorganisms9010088. [PMID: 33401391 PMCID: PMC7823458 DOI: 10.3390/microorganisms9010088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023] Open
Abstract
Current warming in the Western Antarctic Peninsula (WAP) has multiple effects on the marine ecosystem, modifying the trophic web and the nutrient regime. In this study, the effect of decreased surface salinity on the marine microbial community as a consequence of freshening from nearby glaciers was investigated in Chile Bay, Greenwich Island, WAP. In the summer of 2016, samples were collected from glacier ice and transects along the bay for 16S rRNA gene sequencing, while in situ dilution experiments were conducted and analyzed using 16S rRNA gene sequencing and metatranscriptomic analysis. The results reveal that certain common seawater genera, such as Polaribacter, Pseudoalteromonas and HTCC2207, responded positively to decreased salinity in both the bay transect and experiments. The relative abundance of these bacteria slightly decreased, but their functional activity was maintained and increased the over time in the dilution experiments. However, while ice bacteria, such as Flavobacterium and Polaromonas, tolerated the increased salinity after mixing with seawater, their gene expression decreased considerably. We suggest that these bacterial taxa could be defined as sentinels of freshening events in the Antarctic coastal system. Furthermore, these results suggest that a significant portion of the microbial community is resilient and can adapt to disturbances, such as freshening due to the warming effect of climate change in Antarctica.
Collapse
Affiliation(s)
- María Estrella Alcamán-Arias
- Department of Oceanography, Universidad de Concepcion, Concepcion 4030000, Chile; (M.E.A.-A.); (L.F.)
- Center for Climate and Resilience Research (CR)2, Santiago 8320000, Chile
- Escuela de Medicina, Universidad Espíritu Santo, Guayaquil 0901952, Ecuador
| | - Sebastián Fuentes-Alburquenque
- Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O’Higgins, Santiago 8370993, Chile;
- Facultad de Ingeniería, Ciencia y Tecnología, Universidad Bernardo O’Higgins, Santiago 8370993, Chile
| | - Pablo Vergara-Barros
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (P.V.-B.); (J.C.-A.)
| | - Jerónimo Cifuentes-Anticevic
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (P.V.-B.); (J.C.-A.)
| | - Josefa Verdugo
- Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research, 27570 Bremerhaven, Germany;
| | - Martin Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Laura Farías
- Department of Oceanography, Universidad de Concepcion, Concepcion 4030000, Chile; (M.E.A.-A.); (L.F.)
- Center for Climate and Resilience Research (CR)2, Santiago 8320000, Chile
| | - Carlos Pedrós-Alió
- Departamento de Biología de Sistemas, Centro Nacional de Biotecnología (CSIC), Darwin 3, 28049 Madrid, Spain;
| | - Beatriz Díez
- Center for Climate and Resilience Research (CR)2, Santiago 8320000, Chile
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (P.V.-B.); (J.C.-A.)
- Correspondence:
| |
Collapse
|
8
|
Alarcón-Schumacher T, Guajardo-Leiva S, Antón J, Díez B. Elucidating Viral Communities During a Phytoplankton Bloom on the West Antarctic Peninsula. Front Microbiol 2019; 10:1014. [PMID: 31139164 PMCID: PMC6527751 DOI: 10.3389/fmicb.2019.01014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 04/24/2019] [Indexed: 01/16/2023] Open
Abstract
In Antarctic coastal waters where nutrient limitations are low, viruses are expected to play a major role in the regulation of bloom events. Despite this, research in viral identification and dynamics is scarce, with limited information available for the Southern Ocean (SO). This study presents an integrative-omics approach, comparing variation in the viral and microbial active communities on two contrasting sample conditions from a diatom-dominated phytoplankton bloom occurring in Chile Bay in the West Antarctic Peninsula (WAP) in the summer of 2014. The known viral community, initially dominated by Myoviridae family (∼82% of the total assigned reads), changed to become dominated by Phycodnaviridae (∼90%), while viral activity was predominantly driven by dsDNA members of the Phycodnaviridae (∼50%) and diatom infecting ssRNA viruses (∼38%), becoming more significant as chlorophyll a increased. A genomic and phylogenetic characterization allowed the identification of a new viral lineage within the Myoviridae family. This new lineage of viruses infects Pseudoalteromonas and was dominant in the phage community. In addition, a new Phycodnavirus (PaV) was described, which is predicted to infect Phaeocystis antarctica, the main blooming haptophyte in the SO. This work was able to identify the changes in the main viral players during a bloom development and suggests that the changes observed in the virioplankton could be used as a model to understand the development and decay of blooms that occur throughout the WAP.
Collapse
Affiliation(s)
- Tomás Alarcón-Schumacher
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Sergio Guajardo-Leiva
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Josefa Antón
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for Climate and Resilience Research (CR2), University of Chile, Santiago, Chile
| |
Collapse
|