1
|
Xie G, Bi X, Liu J, Yang Q, Natsuaki Y, Conte AH, Liu X, Li K, Li D, Fan Z. Three-dimensional coronary dark-blood interleaved with gray-blood (cDIG) magnetic resonance imaging at 3 tesla. Magn Reson Med 2015; 75:997-1007. [PMID: 25858528 DOI: 10.1002/mrm.25585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 01/26/2023]
Abstract
PURPOSE Three-dimensional (3D) dark-blood MRI has shown great potential in coronary artery plaque evaluation. However, substantial variability in quantification could result from superficial calcification because of its low signal. To address this issue, a 3D coronary dark-blood interleaved with gray-blood (cDIG) technique was developed. METHODS cDIG is based on a balanced steady-state free precession readout combined with a local re-inversion-based double-inversion-recovery (LocReInv-DIR) preparation. The LocReInv-DIR is applied every two RR intervals. Dark-blood and gray-blood contrasts are collected in the first and second RR interval, respectively. To improve the respiratory gating efficiency, two independent navigators were developed to separately gate the respiratory motion for the two interleaved acquisitions. In vivo experiments in eight healthy subjects and one patient were conducted to validate the technique. RESULTS cDIG provided dual-contrasts without compromise in scan time. The dark-blood images with cDIG demonstrated excellent wall and lumen signal performances and morphological measurements. Advantageously, cDIG yielded a second contrast that was shown to help identify the superficial calcification in the coronary plaque of a patient. CONCLUSION A novel technique was developed for obtaining 3D coronary vessel wall and gray lumen images. The additional contrast may aid in identifying calcified nodules and thus potentially improve the evaluation of coronary plaque burden.
Collapse
Affiliation(s)
- Guoxi Xie
- Shenzhen Key Lab for MRI, BCMIIS, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China.,Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Xiaoming Bi
- Siemens Healthcare, Los Angeles, California, USA
| | - Jiabin Liu
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Yang
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | | | | | - Xin Liu
- Shenzhen Key Lab for MRI, BCMIIS, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
| | - Kuncheng Li
- Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zhaoyang Fan
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
2
|
Keegan J. Coronary artery wall imaging. J Magn Reson Imaging 2014; 41:1190-202. [PMID: 25303707 DOI: 10.1002/jmri.24766] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 12/12/2022] Open
Abstract
Like X-Ray contrast angiography, MR coronary angiograms show the vessel lumens rather than the vessels themselves. Consequently, outward remodeling of the vessel wall, which occurs in subclinical coronary disease before luminal narrowing, cannot be seen. The current gold standard for assessing the coronary vessel wall is intravascular ultrasound, and more recently, optical coherence tomography, both of which are invasive and use ionizing radiation. A noninvasive, low-risk technique for assessing the vessel wall would be beneficial to cardiologists interested in the early detection of preclinical disease and for the safe monitoring of the progression or regression of disease in longitudinal studies. In this review article, the current state of the art in MR coronary vessel wall imaging is discussed, together with validation studies and recent developments.
Collapse
Affiliation(s)
- Jennifer Keegan
- Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London
| |
Collapse
|
3
|
Gharib AM, Zahiri H, Matta J, Pettigrew RI, Abd-Elmoniem KZ. Feasibility of coronary artery wall thickening assessment in asymptomatic coronary artery disease using phase-sensitive dual-inversion recovery MRI at 3T. Magn Reson Imaging 2013; 31:1051-8. [PMID: 23642801 PMCID: PMC3729736 DOI: 10.1016/j.mri.2013.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/26/2013] [Accepted: 03/09/2013] [Indexed: 12/19/2022]
Abstract
OBJECTIVES The purpose of this study was to (a) investigate the image quality of phase-sensitive dual-inversion recovery (PS-DIR) coronary wall imaging in healthy subjects and in subjects with known coronary artery disease (CAD) and to (b) investigate the utilization of PS-DIR at 3T in the assessment of coronary artery thickening in subjects with asymptomatic but variable degrees of CAD. MATERIALS AND METHODS A total of 37 subjects participated in this institutional review board-approved and HIPAA-compliant study. These included 21 subjects with known CAD as identified on multidetector computed tomography angiography (MDCT). Sixteen healthy subjects without known history of CAD were included. All subjects were scanned using free-breathing PS-DIR magnetic resonance imaging (MRI) for the assessment of coronary wall thickness at 3T. Lumen-tissue contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR) and quantitative vessel parameters including lumen area and wall thickness were measured. Statistical analyses were performed. RESULTS PS-DIR was successfully completed in 76% of patients and in 88% of the healthy subjects. Phase-sensitive signed-magnitude reconstruction, compared to modulus-magnitude images, significantly improved lumen-tissue CNR in healthy subjects (26.73±11.95 vs. 14.65±9.57, P<.001) and in patients (21.45±7.61 vs. 16.65±5.85, P<.001). There was no difference in image CNR and SNR between groups. In arterial segments free of plaques, coronary wall was thicker in patients in comparison to healthy subjects (1.74±0.27 mm vs. 1.17±0.14 mm, P<.001), without a change in lumen area (4.51±2.42 mm2 vs. 5.71±3.11mm2, P=.25). CONCLUSIONS This is the first study to demonstrate the feasibility of successfully obtaining vessel wall images at 3T using PS-DIR in asymptomatic patients with known variable degrees of CAD as detected by MDCT. This was achieved with a fixed subject-invariant planning of blood signal nulling. With that limitation alleviated, PS-DIR coronary wall MRI is capable of detecting arterial thickening and positive arterial remodeling at 3T in asymptomatic CAD.
Collapse
Affiliation(s)
- Ahmed M Gharib
- Biomedical and Metabolic Imaging Branch, The National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
4
|
Abstract
Although cardiovascular magnetic resonance allows the non-invasive and radiation free visualization of both the coronary arteries and veins, coronary vessel wall imaging is still undergoing technical development to improve diagnostic quality. Assessment of the coronary vessels is a valuable addition to the analysis of cardiac function, cardiac anatomy, viability and perfusion which magnetic resonance imaging reliably allows. However, cardiac and respiratory motion and the small size of the coronary vessels present a challenge and require several technical solutions for image optimization. Furthermore, the acquisition protocols need to be adapted to the specific clinical question. This review provides an update on the current clinical applications of cardiovascular magnetic resonance coronary angiography, recent technical advances and describes the acquisition protocols in use.
Collapse
Affiliation(s)
- Amedeo Chiribiri
- Division of Imaging Sciences and Biomedical Engineering, King's College London BHF Centre of Excellence, NIHR Biomedical Research Centre, London, SE1 7EH, UK.
| | | | | |
Collapse
|
5
|
Ibrahim ESH. Imaging sequences in cardiovascular magnetic resonance: current role, evolving applications, and technical challenges. Int J Cardiovasc Imaging 2012; 28:2027-47. [PMID: 22447266 DOI: 10.1007/s10554-012-0038-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/10/2012] [Indexed: 12/25/2022]
Abstract
Cardiovascular magnetic resonance (CMR) has been established as a powerful and comprehensive imaging modality for studying the cardiovascular (CV) system. Shortly after invention of magnetic resonance imaging, CMR applications and developments started to emerge, and they continue to evolve up to the present day. CMR has the advantages of high spatial resolution, enhanced tissue contrast, superior safety profile, and the plethora of physiological parameters that can be obtained. In the near future, CMR is expected to be the gold standard modality for comprehensive CV imaging. Specifically, CMR imaging sequences are increasingly growing in parallel with advancements in scanner hardware. Not only do CMR imaging sequences provide detailed anatomical information, but they also provide functional, perfusion, viability, hemodynamic, and metabolic information about the CV system. In this article, an up-to-date review of different CMR imaging sequences is presented. Each sequence is described along with typical imaging parameters, necessary image processing steps, derived CV parameters, and potential applications. The article then addresses advanced CMR imaging techniques and emerging applications. Finally, the challenges facing CMR imaging are discussed along with its expected future role.
Collapse
Affiliation(s)
- El-Sayed H Ibrahim
- Department of Radiology, University of Florida, 655 W 8th St, Jacksonville, FL 32209, USA.
| |
Collapse
|
6
|
Chiribiri A, Ishida M, Nagel E, Botnar RM. Coronary imaging with cardiovascular magnetic resonance: current state of the art. Prog Cardiovasc Dis 2011; 54:240-52. [PMID: 22014491 DOI: 10.1016/j.pcad.2011.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiovascular magnetic resonance allows noninvasive and radiation-free visualization of both the coronary arteries and veins, with the advantage of an integrated assessment of cardiac function, viability, perfusion, and anatomy. This combined approach provides valuable integrated information for patients with coronary artery disease and patients undergoing cardiac resynchronization therapy. Moreover, magnetic resonance offers the possibility of coronary vessel wall imaging, therefore assessing the anatomy and pathology of the normal and diseased coronary vessels noninvasively. Coronary magnetic resonance angiography is challenging because of cardiac and respiratory motion and the small size and tortuous path of the coronary vessels. Several technical solutions have been developed to optimize the acquisition protocol to the specific clinical question. The aims of this review are to provide an update on current technical improvements in coronary magnetic resonance angiography, including how to optimize the acquisition protocols, and to give an overview of its current clinical application.
Collapse
Affiliation(s)
- Amedeo Chiribiri
- Division of Imaging Sciences and Biomedical Engineering, King’s College London, UK.
| | | | | | | |
Collapse
|
7
|
Hays AG, Schär M, Kelle S. Clinical applications for cardiovascular magnetic resonance imaging at 3 tesla. Curr Cardiol Rev 2011; 5:237-42. [PMID: 20676283 PMCID: PMC2822147 DOI: 10.2174/157340309788970351] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 03/18/2009] [Accepted: 03/19/2009] [Indexed: 12/03/2022] Open
Abstract
Cardiovascular magnetic resonance (CMR) imaging has evolved rapidly and is now accepted as a powerful diagnostic tool with significant clinical and research applications. Clinical 3 Tesla (3 T) scanners are increasingly available and offer improved diagnostic capabilities compared to 1.5 T scanners for perfusion, viability, and coronary imaging. Although technical challenges remain for cardiac imaging at higher field strengths such as balanced steady state free precession (bSSFP) cine imaging, the majority of cardiac applications are feasible at 3 T with comparable or superior image quality to that of 1.5 T. This review will focus on the benefits and limitations of 3 T CMR for common clinical applications and examine areas in development for potential clinical use.
Collapse
Affiliation(s)
- Allison G Hays
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
8
|
Terashima M, Nguyen PK, Rubin GD, Meyer CH, Shimakawa A, Nishimura DG, Ehara S, Iribarren C, Courtney BK, Go AS, Hlatky MA, Fortmann SP, McConnell MV. Right coronary wall CMR in the older asymptomatic advance cohort: positive remodeling and associations with type 2 diabetes and coronary calcium. J Cardiovasc Magn Reson 2010; 12:75. [PMID: 21192815 PMCID: PMC3022803 DOI: 10.1186/1532-429x-12-75] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 12/30/2010] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Coronary wall cardiovascular magnetic resonance (CMR) is a promising noninvasive approach to assess subclinical atherosclerosis, but data are limited in subjects over 60 years old, who are at increased risk. The purpose of the study was to evaluate coronary wall CMR in an asymptomatic older cohort. RESULTS Cross-sectional images of the proximal right coronary artery (RCA) were acquired using spiral black-blood coronary CMR (0.7 mm resolution) in 223 older, community-based patients without a history of cardiovascular disease (age 60-72 years old, 38% female). Coronary measurements (total vessel area, lumen area, wall area, and wall thickness) had small intra- and inter-observer variabilities (r = 0.93~0.99, all p < 0.0001), though one-third of these older subjects had suboptimal image quality. Increased coronary wall thickness correlated with increased coronary vessel area (p < 0.0001), consistent with positive remodeling. On multivariate analysis, type 2 diabetes was the only risk factor associated with increased coronary wall area and thickness (p = 0.03 and p = 0.007, respectively). Coronary wall CMR measures were also associated with coronary calcification (p = 0.01-0.03). CONCLUSIONS Right coronary wall CMR in asymptomatic older subjects showed increased coronary atherosclerosis in subjects with type 2 diabetes as well as coronary calcification. Coronary wall CMR may contribute to the noninvasive assessment of subclinical coronary atherosclerosis in older, at-risk patient groups.
Collapse
Affiliation(s)
- Masahiro Terashima
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Patricia K Nguyen
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Geoffrey D Rubin
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Craig H Meyer
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Ann Shimakawa
- Applied Science Laboratory-West, GE Healthcare, Menlo Park, CA, USA
| | - Dwight G Nishimura
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University School of Medicine, Stanford, CA, USA
| | - Shoichi Ehara
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Carlos Iribarren
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA, USA
| | - Brian K Courtney
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Alan S Go
- Division of Research, Kaiser Permanente of Northern California, Oakland, CA, USA
- Departments of Epidemiology, Biostatistics, and Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Mark A Hlatky
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Health Research and Policy, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen P Fortmann
- Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael V McConnell
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Magnetic Resonance Systems Research Laboratory, Department of Electrical Engineering, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
9
|
Oshinski JN, Delfino JG, Sharma P, Gharib AM, Pettigrew RI. Cardiovascular magnetic resonance at 3.0 T: current state of the art. J Cardiovasc Magn Reson 2010; 12:55. [PMID: 20929538 PMCID: PMC2964699 DOI: 10.1186/1532-429x-12-55] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/07/2010] [Indexed: 12/12/2022] Open
Abstract
There are advantages to conducting cardiovascular magnetic resonance (CMR) studies at a field strength of 3.0 Telsa, including the increase in bulk magnetization, the increase in frequency separation of off-resonance spins, and the increase in T1 of many tissues. However, there are significant challenges to routinely performing CMR at 3.0 T, including the reduction in main magnetic field homogeneity, the increase in RF power deposition, and the increase in susceptibility-based artifacts.In this review, we outline the underlying physical effects that occur when imaging at higher fields, examine the practical results these effects have on the CMR applications, and examine methods used to compensate for these effects. Specifically, we will review cine imaging, MR coronary angiography, myocardial perfusion imaging, late gadolinium enhancement, and vascular wall imaging.
Collapse
Affiliation(s)
- John N Oshinski
- Department of Radiology, Emory University School of Medicine, 1364 Clifton Road, Room AG34, Atlanta, GA 30322, USA
- Department of Biomedical Engineering, Emory University and the Georgia Institute of Technology, 101 Woodruff Circle Woodruff Memorial Building, Suite 2001, Atlanta, Georgia 30322, USA
| | - Jana G Delfino
- Department of Radiology, Emory University School of Medicine, 1364 Clifton Road, Room AG34, Atlanta, GA 30322, USA
| | - Puneet Sharma
- Department of Radiology, Emory University School of Medicine, 1364 Clifton Road, Room AG34, Atlanta, GA 30322, USA
| | - Ahmed M Gharib
- Laboratory of Integrative Cardiovascular Imaging, Department of Radiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Bldg. 10, Rm. 3-5340, MSC 1263, 10 Center Dr., Bethesda, MD 20892, USA
| | - Roderic I Pettigrew
- Laboratory of Integrative Cardiovascular Imaging, Department of Radiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Clinical Research Center, Bldg. 10, Rm. 3-5340, MSC 1263, 10 Center Dr., Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Menke J. Improving the image quality of contrast-enhanced MR angiography by automated image registration: A prospective study in peripheral arterial disease of the lower extremities. Eur J Radiol 2010; 75:e1-8. [DOI: 10.1016/j.ejrad.2009.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 06/25/2009] [Indexed: 11/26/2022]
|
11
|
Affiliation(s)
- Tim Lockie
- Division of Imaging Sciences, The Rayne Institute, KCL, St. Thomas' Campus, London, UK
| | | | | | | |
Collapse
|
12
|
Abstract
Cardiovascular magnetic resonance (CMR) imaging at 3 T has started to demonstrate real clinical advantages compared to cardiac imaging at 1.5 T. This article provides an overview of 3 T CMR imaging and its clinical use in the diagnosis of cardiovascular diseases. In addition, an outlook is given on new and improved applications to fully utilize the advantages connected to the higher field strength.
Collapse
Affiliation(s)
- Sebastian Kelle
- Department of Internal Medicine/Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | | |
Collapse
|
13
|
Hinton-Yates DP, Cury RC, Wald LL, Wiggins GC, Keil B, Seethmaraju R, Gangadharamurthy D, Ogilvy CS, Dai G, Houser SL, Stone JR, Furie KL. 3.0 T plaque imaging. Top Magn Reson Imaging 2007; 18:389-400. [PMID: 18025993 DOI: 10.1097/rmr.0b013e3181598dc6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
OBJECTIVES The aim of this article is to evaluate 3.0 T magnetic resonance imaging for characterization of vessel morphology and plaque composition. Emphasis is placed on early and moderate stages of carotid atherosclerosis, where increases in signal-to-noise (SNR) and contrast-to-noise (CNR) ratios compared with 1.5 T are sought. Comparison of in vivo 3.0 T imaging to histopathology is performed for validation. Parallel acceleration methods applied with an 8-channel carotid array are investigated as well as higher field ex vivo imaging to explore even further gains. The overall endeavor is to improve prospective assessment of atherosclerosis stage and stability for reduction of atherothrombotic event risk. METHODS A total of 10 male and female subjects ranging in age from 22 to 72 years (5 healthy and 5 with cardiovascular disease) participated. Custom-built array coils were used with endogenous and exogenous multicontrast bright and black-blood protocols for 3.0 T carotid imaging. Comparisons were performed to 1.5 T, and ex vivo plaque was stained with hematoxylin and eosin for histology. Imaging (9.4 T) was also performed on intact specimens. RESULTS The factor of 2 gain in signal-to-noise SNR is realized compared with 1.5 T along with improved wall-lumen and plaque component CNR. Post-contrast black-blood imaging within 5-10 minutes of gadolinium injection is optimal for detection of the necrotic lipid component. In a preliminary 18-month follow-up study, this method provided measurement of a 50% reduction in lipid content with minimal change in plaque size in a subject receiving aggressive statin therapy. Parallel imaging applied with signal averaging further improves 3.0 T black-blood vessel wall imaging. CONCLUSIONS The use of 3.0 T for carotid plaque imaging has demonstrated increases in SNR and CNR compared with 1.5 T. Quantitative prospective studies of moderate and early plaques are feasible at 3.0 T. Continued improvements in coil arrays, 3-dimensional pulse sequences, and the use of novel molecular imaging agents implemented at high field will further improve magnetic resonance plaque characterization.
Collapse
Affiliation(s)
- Denise P Hinton-Yates
- Department of Radiology, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
OBJECTIVE To expatiate on the possible advantages and disadvantages of high magnetic field strengths for magnetic resonance imaging and, in particular, for magnetic resonance angiography. METHODS AND RESULTS A review of the available literature is given, presenting many of the advantages and disadvantages of imaging at higher field strengths. Focus is put on imaging at 3 to 7 T. Early results at 7 T are presented; these results indicate that several of the angiographic techniques commonly used at lower field strengths show promise for improvement by taking advantage of the higher signal and susceptibility sensitivity at 7 T. CONCLUSIONS The drive toward higher field strengths, both for the purpose of fundamental research and for clinical diagnostic imaging, is likely to continue. New applications using the unique properties of high field strength will almost certainly emerge as researchers gain more experience. The ultimate limiting factor is likely to be the physiological effects at high field strengths. However, this limit seems to lie at field strengths higher than 7 T because early experience shows good tolerance of 7 T examinations.
Collapse
Affiliation(s)
- Mark E Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|