1
|
Beneki E, Dimitriadis K, Pyrpyris N, Antonopoulos A, Aznaouridis K, Antiochos P, Fragoulis C, Lu H, Meier D, Tsioufis K, Fournier S, Aggeli C, Tzimas G. Computed Tomography Angiography in the Catheterization Laboratory: A Guide Towards Optimizing Coronary Interventions. J Cardiovasc Dev Dis 2025; 12:28. [PMID: 39852306 PMCID: PMC11766008 DOI: 10.3390/jcdd12010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
Cardiac computed tomography (CT) has become an essential tool in the pre-procedural planning and optimization of coronary interventions. Its non-invasive nature allows for the detailed visualization of coronary anatomy, including plaque burden, vessel morphology, and the presence of stenosis, aiding in precise decision making for revascularization strategies. Clinicians can assess not only the extent of coronary artery disease but also the functional significance of lesions using techniques like fractional flow reserve (FFR-CT). By providing comprehensive insights into coronary structure and hemodynamics, cardiac CT helps guide personalized treatment plans, ensuring the more accurate selection of patients for percutaneous coronary interventions or coronary artery bypass grafting and potentially improving patient outcomes.
Collapse
Affiliation(s)
- Eirini Beneki
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (E.B.); (N.P.); (A.A.); (K.A.); (C.F.); (K.T.); (C.A.)
| | - Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (E.B.); (N.P.); (A.A.); (K.A.); (C.F.); (K.T.); (C.A.)
| | - Nikolaos Pyrpyris
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (E.B.); (N.P.); (A.A.); (K.A.); (C.F.); (K.T.); (C.A.)
| | - Alexios Antonopoulos
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (E.B.); (N.P.); (A.A.); (K.A.); (C.F.); (K.T.); (C.A.)
| | - Konstantinos Aznaouridis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (E.B.); (N.P.); (A.A.); (K.A.); (C.F.); (K.T.); (C.A.)
| | - Panagiotis Antiochos
- Department of Cardiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.A.); (H.L.); (D.M.); (S.F.); (G.T.)
| | - Christos Fragoulis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (E.B.); (N.P.); (A.A.); (K.A.); (C.F.); (K.T.); (C.A.)
| | - Henri Lu
- Department of Cardiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.A.); (H.L.); (D.M.); (S.F.); (G.T.)
| | - David Meier
- Department of Cardiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.A.); (H.L.); (D.M.); (S.F.); (G.T.)
| | - Konstantinos Tsioufis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (E.B.); (N.P.); (A.A.); (K.A.); (C.F.); (K.T.); (C.A.)
| | - Stephane Fournier
- Department of Cardiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.A.); (H.L.); (D.M.); (S.F.); (G.T.)
| | - Constantina Aggeli
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, 115 27 Athens, Greece; (E.B.); (N.P.); (A.A.); (K.A.); (C.F.); (K.T.); (C.A.)
| | - Georgios Tzimas
- Department of Cardiology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; (P.A.); (H.L.); (D.M.); (S.F.); (G.T.)
| |
Collapse
|
2
|
Sadamatsu K, Okutsu M, Sumitsuji S, Kawasaki T, Nakamura S, Fukumoto Y, Tsujita K, Sonoda S, Kobayashi Y, Ikari Y. Practical utilization of cardiac computed tomography for the success in complex coronary intervention. Cardiovasc Interv Ther 2021; 36:178-189. [PMID: 33428155 DOI: 10.1007/s12928-020-00751-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
Percutaneous coronary intervention (PCI) for complex lesions is still technically demanding and is associated with less favorable procedural parameters such as lower success rate, longer procedural time, higher contrast volume and unexpected complications. Because the conventional angiographic analysis is limited by the inability to visualize the plaque information and the occluded segment, cardiac computed tomography has evolved as an adjunct to invasive angiography to better characterize coronary lesions to improve success rates of PCI. Adding to routine image reconstructions by coronary computed tomography angiography, the thin-slab maximum intensity projection method, which is a handy reconstruction technique on an ordinary workstation, could provide easy-to-understand images to reveal the anatomical characteristics and the lumen and plaque information simultaneously, and then assist to build an in-depth strategy for PCI. Especially in the treatment of chronic total occlusion lesion, these informations have big advantages in the visualization of the morphologies of entry and exit, the occluded segment and the distribution of calcium compared to invasive coronary angiography. Despite of the additional radiation exposure, contrast use and cost for cardiac computed tomography, the precise analysis of lesion characteristics would consequently improve the procedural success and prevent the complication in complex PCI.
Collapse
Affiliation(s)
- Kenji Sadamatsu
- Department of Cardiovascular Medicine, Omuta City Hospital, 2-19-1 Takarazaka-machi, Omuta, Fukuoka, 836-8567, Japan.
| | - Masaaki Okutsu
- Department of Cardiovascular Medicine, New Tokyo Hospital, Matsudo, Japan
| | - Satoru Sumitsuji
- Department of Cardiology for International Education and Research, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomohiro Kawasaki
- Cardiovascular and Heart Rhythm Center, Shin-Koga Hospital, Kurume, Japan
| | - Sunao Nakamura
- Department of Cardiovascular Medicine, New Tokyo Hospital, Matsudo, Japan
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Kumamoto University Graduate School of Medical Science, Kumamoto, Japan
| | - Shinjo Sonoda
- Second Department of Internal Medicine, School of Medicine, University of Occupational and Environ- Mental Health, Kitakyushu, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yuji Ikari
- Department of Cardiology, Tokai University, Kanagawa, Japan
| |
Collapse
|
3
|
Kim YJ, Yong HS, Kim SM, Kim JA, Yang DH, Hong YJ. Korean guidelines for the appropriate use of cardiac CT. Korean J Radiol 2015; 16:251-85. [PMID: 25741189 PMCID: PMC4347263 DOI: 10.3348/kjr.2015.16.2.251] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/03/2015] [Indexed: 01/07/2023] Open
Abstract
The development of cardiac CT has provided a non-invasive alternative to echocardiography, exercise electrocardiogram, and invasive angiography and cardiac CT continues to develop at an exponential speed even now. The appropriate use of cardiac CT may lead to improvements in the medical performances of physicians and can reduce medical costs which eventually contribute to better public health. However, until now, there has been no guideline regarding the appropriate use of cardiac CT in Korea. We intend to provide guidelines for the appropriate use of cardiac CT in heart diseases based on scientific data. The purpose of this guideline is to assist clinicians and other health professionals in the use of cardiac CT for diagnosis and treatment of heart diseases, especially in patients at high risk or suspected of heart disease.
Collapse
Affiliation(s)
- Young Jin Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Hwan Seok Yong
- Department of Radiology, Korea University Guro Hospital, Korea University College of Medicine, Seoul 152-703, Korea
| | - Sung Mok Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Korea
| | - Jeong A Kim
- Department of Radiology, Ilsan Paik Hospital, Inje University College of Medicine, Goyang 411-706, Korea
| | - Dong Hyun Yang
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Yoo Jin Hong
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | |
Collapse
|
4
|
Feng Y, Bogaert J, Oyen R, Ni Y. An overview on development and application of an experimental platform for quantitative cardiac imaging research in rabbit models of myocardial infarction. Quant Imaging Med Surg 2014; 4:358-75. [PMID: 25392822 PMCID: PMC4213418 DOI: 10.3978/j.issn.2223-4292.2013.09.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/05/2013] [Indexed: 12/28/2022]
Abstract
To exploit the advantages of using rabbits for cardiac imaging research and to tackle the technical obstacles, efforts have been made under the framework of a doctoral research program. In this overview article, by cross-referencing the current literature, we summarize how we have developed a preclinical cardiac research platform based on modified models of reperfused myocardial infarction (MI) in rabbits; how the in vivo manifestations of cardiac imaging could be closely matched with those ex vivo macro- and microscopic findings; how these imaging outcomes could be quantitatively analyzed, validated and demonstrated; and how we could apply this cardiac imaging platform to provide possible solutions to certain lingering diagnostic and therapeutic problems in experimental cardiology. In particular, tissue components in acute cardiac ischemia have been stratified and characterized, post-infarct lipomatous metaplasia (LM) as a common but hardly illuminated clinical pathology has been identified in rabbit models, and a necrosis avid tracer as well as an anti-ischemic drug have been successfully assessed for their potential utilities in clinical cardiology. These outcomes may interest the researchers in the related fields and help strengthen translational research in cardiovascular diseases.
Collapse
Affiliation(s)
- Yuanbo Feng
- KU Leuven, Department of Imaging and Pathology, Theragnostic Laboratory, Radiology Section, University Hospital Gasthuisberg, Leuven, Belgium
| | - Jan Bogaert
- KU Leuven, Department of Imaging and Pathology, Theragnostic Laboratory, Radiology Section, University Hospital Gasthuisberg, Leuven, Belgium
| | - Raymond Oyen
- KU Leuven, Department of Imaging and Pathology, Theragnostic Laboratory, Radiology Section, University Hospital Gasthuisberg, Leuven, Belgium
| | - Yicheng Ni
- KU Leuven, Department of Imaging and Pathology, Theragnostic Laboratory, Radiology Section, University Hospital Gasthuisberg, Leuven, Belgium
| |
Collapse
|
5
|
CAD Detection in Patients With Intermediate-High Pre-Test Probability. JACC Cardiovasc Imaging 2013; 6:1062-1071. [DOI: 10.1016/j.jcmg.2013.04.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/05/2013] [Accepted: 04/12/2013] [Indexed: 02/01/2023]
|
6
|
Abstract
Functional imaging in patients with suspected or known coronary artery disease (CAD) is crucial for the identification of patients who could benefit from coronary revascularization. Several studies demonstrated the high diagnostic accuracy of Single-photon-emission computed tomography myocardial perfusion imaging, stress perfusion magnetic resonance imaging, and of invasive FFR measurements for the detection of hemodynamic relevant stenosis. Cardiac computed tomography (CT) used to be limited to coronary angiography (CTA); current guidelines recommend CTA only for the exclusion of CAD. Technological advances now offer the possibility to assess myocardial perfusion by computed tomography (CT-MPI). Though different acquisition protocols and post-processing algorithms still have to be evaluated, initial clinical studies could already show a diagnostic accuracy comparable to the established imaging modalities. Thus, cardiac CT may offer a combined approach of anatomical and functional imaging. Beside the need for further studies, especially on the prognostic value of CT-MPI to stratify future cardiovascular events, the comparatively high radiation exposure and additional administration of contrast agent has to be taken in account.
Collapse
Affiliation(s)
- Alexander Becker
- Department of Cardiology, Ludwig-Maximilians-University Munich, Campus Grosshadern, Marchioninistr. 15, 81377, Munich, Germany.
| | | |
Collapse
|
7
|
Saeed M, Hetts SW, Do L, Sullivan S, Wilson MW. MDCT has the potential to predict percutaneous coronary intervention outcome in swine model: microscopic validation. Acta Radiol 2012; 53:987-94. [PMID: 22993269 DOI: 10.1258/ar.2012.120407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Volumes and sizes of dislodged coronary microemboli vary during PCI so their effects at the left ventricular (LV) and cellular levels cannot be quantified. Furthermore, biopsy for tissue characterization is not an option in PCI patients. PURPOSE To characterize and validate microinfarct size, LAD territory where microinfarct were found using multidetector computed tomography (MDCT), histochemical staining and microscopy as a function of microemboli volumes and to scale the effects of microemboli volumes on LV function. MATERIAL AND METHODS Under X-ray guidance, a 3F catheter was inserted into LAD coronary artery of 14 pigs for delivering 16 mm(3) or 32 mm(3) of 40-120 μm microemboli. MDCT imaging/histochemical staining/microscopy were performed 3 days later and used to characterize regional and global structural and functional changes in LV by threshold/planimetric methods. RESULTS MDCT and ex-vivo methods were able to quantify microinfarct size and LAD territory where microinfarct was found as a function of volumes. However, MDCT and histochemical staining significantly underestimated microinfarct size and territory where microinfarct was found compared with microscopy. MDCT demonstrated the functional changes and showed a moderate correlation between LV ejection fraction and microinfarct size (r = 0.53). Microscopy provided higher spatial resolution for measuring islands of necrotic cells, which explains the difference in measuring structural changes. CONCLUSION MDCT showed the difference in microinfarct size and LAD territory as a function of microemboli volumes and scaled the changes in LV function. This experimental study gives clinicians a reference for the effects of defined microemboli volumes on myocardial viability and LV function and the under-estimation of microinfarct on MDCT.
Collapse
Affiliation(s)
- Maythem Saeed
- Interventional Radiology Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Steven W Hetts
- Interventional Radiology Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Loi Do
- Interventional Radiology Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Sammir Sullivan
- Interventional Radiology Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Mark W Wilson
- Interventional Radiology Laboratory, Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Berliner JI, Kino A, Carr JC, Bonow RO, Choudhury L. Cardiac computed tomographic imaging to evaluate myocardial scarring/fibrosis in patients with hypertrophic cardiomyopathy: a comparison with cardiac magnetic resonance imaging. Int J Cardiovasc Imaging 2012; 29:191-7. [DOI: 10.1007/s10554-012-0048-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
|
9
|
Ordovas KG, Higgins CB. Delayed contrast enhancement on MR images of myocardium: past, present, future. Radiology 2011; 261:358-74. [PMID: 22012903 DOI: 10.1148/radiol.11091882] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Differential enhancement of myocardial infarction was first recognized on computed tomographic (CT) images obtained with iodinated contrast material in the late 1970s. Gadolinium enhancement of myocardial infarction was initially reported for T1-weighted magnetic resonance (MR) imaging in 1984. The introduction of an inversion-recovery gradient-echo MR sequence for accentuation of the contrast between normal and necrotic myocardium was the impetus for widespread clinical use for demonstrating the extent of myocardial infarction. This sequence has been called delayed-enhancement MR and MR viability imaging. The physiologic basis for differential enhancement of myocardial necrosis is the greater distribution volume of injured myocardium compared with that of normal myocardium. It is now recognized that delayed enhancement occurs in both acute and chronic (scar) infarctions and in an array of other myocardial processes that cause myocardial necrosis, infiltration, or fibrosis. These include myocarditis, hypertrophic cardiomyopathy, amyloidosis, sarcoidosis, and other myocardial conditions. In several of these diseases, the presence and extent of delayed enhancement has prognostic implications. Future applications of delayed enhancement with development of MR imaging and CT techniques will be discussed.
Collapse
Affiliation(s)
- Karen G Ordovas
- Department of Radiology, UCSF Medical Center, 505 Parnassus Ave, Room L308, Box 0628, San Francisco, CA 94143-0628, USA
| | | |
Collapse
|
10
|
Indications, imaging technique, and reading of cardiac computed tomography: survey of clinical practice. Eur Radiol 2011; 22:59-72. [PMID: 21845461 DOI: 10.1007/s00330-011-2239-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/09/2011] [Accepted: 07/01/2011] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To obtain an overview of the current clinical practice of cardiac computed tomography (CT). METHODS A 32-item questionnaire was mailed to a total of 750 providers of cardiac CT in 57 countries. RESULTS A total of 169 questionnaires from 38 countries were available for analysis (23%). Most CT systems used (94%, 207/221) were of the latest generation (64-row or dual-source CT). The most common indications for cardiac CT was exclusion of coronary artery disease (97%, 164/169). Most centres used beta blockade (91%, 151/166) and sublingual nitroglycerine (80%, 134/168). A median slice thickness of 0.625 mm with a 0.5-mm increment and an 18-cm reconstruction field of view was used. Interpretation was most often done using source images in orthogonal planes (92%, 155/169). Ninety percent of sites routinely evaluate extracardiac structures on a large (70%) or cardiac field of view (20%). Radiology sites were significantly more interested in jointly performing cardiac CT together with cardiology than cardiologists. The mean examination time was 18.6 ± 8.4 min, and reading took on average 28.7 ± 17.8 min. CONCLUSIONS Cardiac CT has rapidly become established in clinical practice, and there is emerging consensus regarding indications, conduct of the acquisition, and reading.
Collapse
|
11
|
Qanadli SD. Cardiac CT: practical approach to integrate appropriate indications in daily practice. Presse Med 2011; 40:e413-23. [PMID: 21733657 DOI: 10.1016/j.lpm.2011.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 05/16/2011] [Indexed: 11/16/2022] Open
Abstract
Recent advances in CT technologies had significantly improved the clinical utility of cardiac CT. Major efforts have been made to optimize the image quality, standardize protocols and limit the radiation exposure. Rapid progress in post-processing tools dedicated not only to the coronary artery assessment but also to the cardiac cavities, valves and veins extended applications of cardiac CT. This potential might be however used optimally considering the current appropriate indications for use as well as the current technical imitations. Coronary artery disease and related ischemic cardiomyopathy remain the major applications of cardiac CT and at the same time the most complex one. Integration of a specific knowledge is mandatory for optimal use in this area for asymptomatic as for symptomatic patients, with a specific regards to patient with acute chest pain. This review aimed to propose a practical approach to implement appropriate indications in our routine practice. Emerging indications and future direction are also discussed. Adequate preparation of the patient, training of physicians, and the multidisciplinary interaction between actors are the key of successful implementation of cardiac CT in daily practice.
Collapse
Affiliation(s)
- Salah D Qanadli
- Cardiothoracic and Vascular Unit, Department of radiology, CHUV-University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
12
|
Hrabak-Paar M, Štern-Padovan R. Evaluation of carcinoid heart disease using delayed enhancement imaging. Ir J Med Sci 2011; 180:619. [DOI: 10.1007/s11845-010-0660-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022]
|
13
|
Cardiac computed tomography and magnetic resonance imaging: the clinical use from a cardiologist's perspective. J Thorac Imaging 2010; 25:194-203. [PMID: 20711035 DOI: 10.1097/rti.0b013e3181eaadac] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The introduction and continued evolution of cardiac computed tomography and magnetic resonance imaging have added considerable noninvasive diagnostic insight into a wide range of frequently encountered clinical cardiology scenarios. With an increasing range of imaging modalities, and multiple methods of image acquisition in each, a detailed understanding of the clinical question at hand is often necessary to select the proper study and make optimal use of imaging data. We review common cardiac issues from a clinician's perspective, along with the unique role to be played by computed tomography and magnetic resonance imaging in each condition. This review will hopefully facilitate a strong dialogue between imagers and managing clinicians, creating a shared knowledge of both the capabilities of imaging and the management challenges that treating clinicians face.
Collapse
|
14
|
Krombach GA, Hahnen C, Lodemann KP, Krämer N, Schoth F, Neizel M, Boeringer J, Günther RW, Kelm M, Kühl H. Gd-BOPTA for assessment of myocardial viability on MRI: changes of T1 value and their impact on delayed enhancement. Eur Radiol 2009; 19:2136-46. [DOI: 10.1007/s00330-009-1400-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Accepted: 02/14/2009] [Indexed: 10/20/2022]
|
15
|
CT coronary angiography of chronic total occlusions of the coronary arteries: how to recognize and evaluate and usefulness for planning percutaneous coronary interventions. Int J Cardiovasc Imaging 2009; 25 Suppl 1:43-54. [DOI: 10.1007/s10554-009-9424-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Accepted: 01/07/2009] [Indexed: 12/29/2022]
|
16
|
Ischemic and non-ischemic myocardial injury: differential diagnosis using post-contrast delayed magnetic resonance imaging scans. COR ET VASA 2008. [DOI: 10.33678/cor.2008.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Furtado AD, Carlsson M, Wintermark M, Ordovas K, Saeed M. Identification of residual ischemia, infarction, and microvascular impairment in revascularized myocardial infarction using 64-slice MDCT. CONTRAST MEDIA & MOLECULAR IMAGING 2008; 3:198-206. [DOI: 10.1002/cmmi.253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Niendorf T, Sodickson DK. Highly accelerated cardiovascular MR imaging using many channel technology: concepts and clinical applications. Eur Radiol 2008; 18:87-102. [PMID: 17562047 PMCID: PMC2838248 DOI: 10.1007/s00330-007-0692-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2006] [Revised: 04/26/2007] [Accepted: 05/10/2007] [Indexed: 01/23/2023]
Abstract
Cardiovascular magnetic resonance imaging (CVMRI) is of proven clinical value in the non-invasive imaging of cardiovascular diseases. CVMRI requires rapid image acquisition, but acquisition speed is fundamentally limited in conventional MRI. Parallel imaging provides a means for increasing acquisition speed and efficiency. However, signal-to-noise (SNR) limitations and the limited number of receiver channels available on most MR systems have in the past imposed practical constraints, which dictated the use of moderate accelerations in CVMRI. High levels of acceleration, which were unattainable previously, have become possible with many-receiver MR systems and many-element, cardiac-optimized RF-coil arrays. The resulting imaging speed improvements can be exploited in a number of ways, ranging from enhancement of spatial and temporal resolution to efficient whole heart coverage to streamlining of CVMRI work flow. In this review, examples of these strategies are provided, following an outline of the fundamentals of the highly accelerated imaging approaches employed in CVMRI. Topics discussed include basic principles of parallel imaging; key requirements for MR systems and RF-coil design; practical considerations of SNR management, supported by multi-dimensional accelerations, 3D noise averaging and high field imaging; highly accelerated clinical state-of-the art cardiovascular imaging applications spanning the range from SNR-rich to SNR-limited; and current trends and future directions.
Collapse
Affiliation(s)
- Thoralf Niendorf
- Department of Diagnostic Radiology, RWTH Aachen, University Hospital, Pauwelsstrasse 30, 52057 Aachen, Germany, Tel.: +49-241-8080295, Fax: +49-241-803380295
| | - Daniel K. Sodickson
- Department of Radiology, Center for Biomedical Imaging, New York University, School of Medicine, 650 First Avenue, Suite 600-A, New York, NY, 10016, USA, Tel.: 212-263-4844, Fax: 212-263-4845
| |
Collapse
|