1
|
Angeli S, Neophytou C, Kalli M, Stylianopoulos T, Mpekris F. The mechanopathology of the tumor microenvironment: detection techniques, molecular mechanisms and therapeutic opportunities. Front Cell Dev Biol 2025; 13:1564626. [PMID: 40171226 PMCID: PMC11958720 DOI: 10.3389/fcell.2025.1564626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
The mechanical properties of the tumor microenvironment (TME) undergo significant changes during tumor growth, primarily driven by alterations in extracellular (ECM) stiffness and tumor viscoelasticity. These mechanical changes not only promote tumor progression but also hinder therapeutic efficacy by impairing drug delivery and activating mechanotransduction pathways that regulate crucial cellular processes such as migration, proliferation, and resistance to therapy. In this review, we examine the mechanisms through which tumor cells sense and transmit mechanical signals to maintain homeostasis in the biomechanically altered TME. We explore current computational modelling strategies for mechanotransduction pathways, highlighting the need for developing models that incorporate additional components of the mechanosignaling machinery. Furthermore, we review available methods for measuring the mechanical properties of tumors in clinical settings and strategies aiming at restoring the TME and blocking deregulated mechanotransduction pathways. Finally, we propose that proper characterization and a deeper understanding of the mechanical landscape of the TME, both at the tissue and cellular levels, are essential for developing therapeutic strategies that account for the influence of mechanical forces on treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
2
|
Kim JJ, Kim JY, Jeong YJ, Kim S, Lee IS, Lee NK, Kang T, Park H, Lee S. Magnetic Resonance Elastography of Invasive Breast Cancer: Evaluating Prognostic Factors and Treatment Response. Tomography 2025; 11:18. [PMID: 39998001 PMCID: PMC11860845 DOI: 10.3390/tomography11020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/20/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Objectives: To assess the elasticity values in breast tissues using magnetic resonance elastography (MRE) and examine the association between elasticity values of invasive breast cancer with prognostic factors and the pathologic response to neoadjuvant systemic therapy (NST). Methods: A total of 57 patients (mean age, 54.1 years) with invasive breast cancers larger than 2 cm in diameter on ultrasound were prospectively enrolled. The elasticity values (mean, minimum, and maximum) of invasive breast cancers, normal fibroglandular tissues, and normal fat tissues were measured via MRE using a commercially available acoustic driver and compared. Elasticity values of breast cancers were compared according to prognostic factors and pathologic responses in patients who received NST before surgery. Receiver operating curve analysis was performed to evaluate the predictive efficacy of elasticity values in terms of pathological response. Results: Among the 57 patients, the mean elasticity value of invasive breast cancers was significantly higher than that of normal fibroglandular tissue and normal fat tissue (7.90 ± 5.80 kPa vs. 2.54 ± 0.80 kPa vs. 1.32 ± 0.33 kPa, all ps < 0.001). Invasive breast cancers with a large diameter (>4 cm) exhibited significantly higher mean elasticity values relative to tumors with a small diameter (≤4 cm) (11.65 ± 7.22 kPa vs. 5.87 ± 3.58 kPa, p = 0.002). Among 24 patients who received NST, mean, minimum, and maximum elasticity values significantly differed between the pathologic complete response (pCR) and non-pCR groups (all ps < 0.05). For the mean elasticity value, the area under the curve value for distinguishing pCR and non-pCR groups was 0.880 (95% confidence interval, 0.682, 0.976; p < 0.001). Conclusions: The elasticity values of invasive breast cancers measured via breast MRE showed a positive correlation with tumor size and showed potential in predicting the therapeutic response in patients receiving NST.
Collapse
Affiliation(s)
- Jin Joo Kim
- Department of Radiology, Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea; (J.J.K.)
| | - Jin You Kim
- Department of Radiology, Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea; (J.J.K.)
| | - Yeon Joo Jeong
- Department of Radiology, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan-si 50612, Republic of Korea
| | - Suk Kim
- Department of Radiology, Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea; (J.J.K.)
| | - In Sook Lee
- Department of Radiology, Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea; (J.J.K.)
| | - Nam Kyung Lee
- Department of Radiology, Medical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea; (J.J.K.)
| | - Taewoo Kang
- Busan Cancer Center and Biomedical Research Institute, Department of Surgery, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Heeseung Park
- Busan Cancer Center and Biomedical Research Institute, Department of Surgery, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Seokwon Lee
- Department of Surgery, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Republic of Korea
| |
Collapse
|
3
|
Jamshidi MH, Karami A, Keshavarz A, Fatemi A, Ghanavati S. Magnetic Resonance Elastography for Breast Cancer Diagnosis Through the Assessment of Tissue Biomechanical Properties. Health Sci Rep 2024; 7:e70253. [PMID: 39669189 PMCID: PMC11635177 DOI: 10.1002/hsr2.70253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024] Open
Abstract
Background and Aim Breast cancer and normal breast tissue exhibit different degrees of stiffness, indicating distinct biomechanical properties. Study results reveal that breast cancer tissue is several times stiffer than normal breast tissue. These variations can serve as indicative factors for imaging purposes. Depicting markers can significantly enhance the process of breast cancer diagnosis and treatment. This article provides a brief review of the biomechanical properties of breast cancer tissue, highlighting the role of the magnetic resonance elastography (MRE) technique in utilizing these properties for diagnosing breast cancer. Methods In breast MRE, low-frequency shear waves are employed to measure breast stiffness. This method not only offers a quantitative diagnosis but also generates an elastogram, determining the stiffness of each area through its colors. Results MRE represents a diagnostic technique with heightened sensitivity, based on depicting the viscoelasticity properties of breast tissue and describing tumors in terms of biomechanical properties. Combining tissue biomechanical properties, such as tissue stiffness, with contrast-enhanced breast Magnetic Resonance Imaging (MRI) leads to tumor diagnosis. The value of MRE in oncological imaging aims at the early detection of tumors and evaluating the prognosis of breast cancer. Conclusion Breast MRE can identify the reduction of interstitial pressure in tumors by detecting changes in tissue stiffness, making it an effective tool for monitoring treatment responses. This technique is safe, repeatable, and highly precise, significantly aiding in patient screening.
Collapse
Affiliation(s)
- Mohammad Hossein Jamshidi
- Department of Medical Imaging and Radiation Sciences, School of Allied Medical SciencesAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Aida Karami
- Department of Medical Imaging and Radiation Sciences, School of Allied Medical SciencesAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Amirhesam Keshavarz
- Department of Anatomical Science, Faculty of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Ali Fatemi
- Department of PhysicsJackson State UniversityJacksonMississippiUSA
- Department of Radiation OncologyGamma Knife CenterJacksonMississippiUSA
| | - Sepehr Ghanavati
- Department of Medicine, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
4
|
Hoffmann E, Masthoff M, Kunz WG, Seidensticker M, Bobe S, Gerwing M, Berdel WE, Schliemann C, Faber C, Wildgruber M. Multiparametric MRI for characterization of the tumour microenvironment. Nat Rev Clin Oncol 2024; 21:428-448. [PMID: 38641651 DOI: 10.1038/s41571-024-00891-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Our understanding of tumour biology has evolved over the past decades and cancer is now viewed as a complex ecosystem with interactions between various cellular and non-cellular components within the tumour microenvironment (TME) at multiple scales. However, morphological imaging remains the mainstay of tumour staging and assessment of response to therapy, and the characterization of the TME with non-invasive imaging has not yet entered routine clinical practice. By combining multiple MRI sequences, each providing different but complementary information about the TME, multiparametric MRI (mpMRI) enables non-invasive assessment of molecular and cellular features within the TME, including their spatial and temporal heterogeneity. With an increasing number of advanced MRI techniques bridging the gap between preclinical and clinical applications, mpMRI could ultimately guide the selection of treatment approaches, precisely tailored to each individual patient, tumour and therapeutic modality. In this Review, we describe the evolving role of mpMRI in the non-invasive characterization of the TME, outline its applications for cancer detection, staging and assessment of response to therapy, and discuss considerations and challenges for its use in future medical applications, including personalized integrated diagnostics.
Collapse
Affiliation(s)
- Emily Hoffmann
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Max Masthoff
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Bobe
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Münster, Germany
| | - Mirjam Gerwing
- Clinic of Radiology, University of Münster, Münster, Germany
| | | | | | - Cornelius Faber
- Clinic of Radiology, University of Münster, Münster, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
5
|
Zerunian M, Masci B, Caruso D, Pucciarelli F, Polici M, Nardacci S, De Santis D, Iannicelli E, Laghi A. Liver Magnetic Resonance Elastography: Focus on Methodology, Technique, and Feasibility. Diagnostics (Basel) 2024; 14:379. [PMID: 38396418 PMCID: PMC10887609 DOI: 10.3390/diagnostics14040379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Magnetic resonance elastography (MRE) is an imaging technique that combines low-frequency mechanical vibrations with magnetic resonance imaging to create visual maps and quantify liver parenchyma stiffness. As in recent years, diffuse liver diseases have become highly prevalent worldwide and could lead to a chronic condition with different stages of fibrosis. There is a strong necessity for a non-invasive, highly accurate, and standardised quantitative assessment to evaluate and manage patients with different stages of fibrosis from diagnosis to follow-up, as the actual reference standard for the diagnosis and staging of liver fibrosis is biopsy, an invasive method with possible peri-procedural complications and sampling errors. MRE could quantitatively evaluate liver stiffness, as it is a rapid and repeatable method with high specificity and sensitivity. MRE is based on the propagation of mechanical shear waves through the liver tissue that are directly proportional to the organ's stiffness, expressed in kilopascals (kPa). To obtain a valid assessment of the real hepatic stiffness values, it is mandatory to obtain a high-quality examination. To understand the pearls and pitfalls of MRE, in this review, we describe our experience after one year of performing MRE from indications and patient preparation to acquisition, quality control, and image analysis.
Collapse
Affiliation(s)
- Marta Zerunian
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
- PhD School in Translational Medicine and Oncology, Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Benedetta Masci
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| | - Damiano Caruso
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| | - Francesco Pucciarelli
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| | - Michela Polici
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
- PhD School in Translational Medicine and Oncology, Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Stefano Nardacci
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| | - Domenico De Santis
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| | - Elsa Iannicelli
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| | - Andrea Laghi
- Department of Surgical and Medical Sciences and Translational Medicine, Sapienza University of Rome, Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (M.Z.); (B.M.); (M.P.); (S.N.); (D.D.S.); (E.I.); (A.L.)
| |
Collapse
|
6
|
Sacco JL, Vaneman ZT, Gomez EW. Extracellular matrix viscoelasticity regulates TGFβ1-induced epithelial-mesenchymal transition and apoptosis via integrin linked kinase. J Cell Physiol 2024; 239:e31165. [PMID: 38149820 DOI: 10.1002/jcp.31165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/06/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023]
Abstract
Transforming growth factor (TGF)-β1 is a multifunctional cytokine that plays important roles in health and disease. Previous studies have revealed that TGFβ1 activation, signaling, and downstream cell responses including epithelial-mesenchymal transition (EMT) and apoptosis are regulated by the elasticity or stiffness of the extracellular matrix. However, tissues within the body are not purely elastic, rather they are viscoelastic. How matrix viscoelasticity impacts cell fate decisions downstream of TGFβ1 remains unknown. Here, we synthesized polyacrylamide hydrogels that mimic the viscoelastic properties of breast tumor tissue. We found that increasing matrix viscous dissipation reduces TGFβ1-induced cell spreading, F-actin stress fiber formation, and EMT-associated gene expression changes, and promotes TGFβ1-induced apoptosis in mammary epithelial cells. Furthermore, TGFβ1-induced expression of integrin linked kinase (ILK) and colocalization of ILK with vinculin at cell adhesions is attenuated in mammary epithelial cells cultured on viscoelastic substrata in comparison to cells cultured on nearly elastic substrata. Overexpression of ILK promotes TGFβ1-induced EMT and reduces apoptosis in cells cultured on viscoelastic substrata, suggesting that ILK plays an important role in regulating cell fate downstream of TGFβ1 in response to matrix viscoelasticity.
Collapse
Affiliation(s)
- Jessica L Sacco
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Zachary T Vaneman
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
7
|
Abstract
ABSTRACT The mechanical traits of cancer include abnormally high solid stress as well as drastic and spatially heterogeneous changes in intrinsic mechanical tissue properties. Whereas solid stress elicits mechanosensory signals promoting tumor progression, mechanical heterogeneity is conducive to cell unjamming and metastatic spread. This reductionist view of tumorigenesis and malignant transformation provides a generalized framework for understanding the physical principles of tumor aggressiveness and harnessing them as novel in vivo imaging markers. Magnetic resonance elastography is an emerging imaging technology for depicting the viscoelastic properties of biological soft tissues and clinically characterizing tumors in terms of their biomechanical properties. This review article presents recent technical developments, basic results, and clinical applications of magnetic resonance elastography in patients with malignant tumors.
Collapse
Affiliation(s)
- Jing Guo
- From the Department of Radiology
| | | | | | | |
Collapse
|
8
|
Multi-frequency shear modulus measurements discriminate tumorous from healthy tissues. J Mech Behav Biomed Mater 2023; 140:105721. [PMID: 36791572 DOI: 10.1016/j.jmbbm.2023.105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
As far as their mechanical properties are concerned, cancerous lesions can be confused with healthy surrounding tissues in elastography protocols if only the magnitude of moduli is considered. We show that the frequency dependence of the tissue's mechanical properties allows for discriminating the tumor from other tissues, obtaining a good contrast even when healthy and tumor tissues have shear moduli of comparable magnitude. We measured the shear modulus G*(ω) of xenograft subcutaneous tumors developed in mice using breast human cancer cells, compared with that of fat, skin and muscle harvested from the same mice. As the absolute shear modulus |G*(ω)| of tumors increases by 42% (from 5.2 to 7.4 kPa) between 0.25 and 63 Hz, it varies over the same frequency range by 77% (from 0.53 to 0.94 kPa) for the fat, by 103% (from 3.4 to 6.9 kPa) for the skin and by 120% (from 4.4 to 9.7 kPa) for the muscle. These measurements fit well to the fractional model G*(ω)=K(iω)n, yielding a coefficient K and a power-law exponent n for each sample. Tumor, skin and muscle have comparable K parameter values, that of fat being significantly lower; the p-values given by a Mann-Whitney test are above 0.14 when comparing tumor, skin and muscle between themselves, but below 0.001 when comparing fat with tumor, skin or muscle. With regards the n parameter, tumor and fat are comparable, with p-values above 0.43, whereas tumor differs from both skin and muscle, with p-values below 0.001. Tumor tissues thus significantly differs from fat, skin and muscle on account of either the K or the n parameter, i.e. of either the magnitude or the frequency-dependence of the shear modulus.
Collapse
|
9
|
Li Y, Gao Q, Chen N, Zhang Y, Wang J, Li C, He X, Jiao Y, Zhang Z. Clinical studies of magnetic resonance elastography from 1995 to 2021: Scientometric and visualization analysis based on CiteSpace. Quant Imaging Med Surg 2022; 12:5080-5100. [PMID: 36330182 PMCID: PMC9622435 DOI: 10.21037/qims-22-207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/11/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND To assess the knowledge framework around magnetic resonance elastography (MRE) and to explore MRE research hotspots and emerging trends. METHODS The Science Citation Index Expanded of the Web of Science Core Collection was searched on 22 October 2021 for MRE-related studies published between 1995 and 2021. Excel 2016 and CiteSpace V (version 5.8.R3) were used to analyze the downloaded data. RESULTS In all, 1,236 articles published by 726 authors from 540 institutions in 40 countries were included in this study. The top 10 authors published 57.6% of all included articles. The 3 most productive countries were the USA (n=631), Germany (n=202), and France (n=134), and the 3 most productive institutions were the Mayo Clinic (n=240), Charité (n=131), and the University of Illinois (n=56). The USA and the Mayo Clinic had the highest betweenness centrality among countries and institutions, respectively, and played an important role in the field of MRE. In this study, the 24,347 distinct references were clustered into 48 categories via reasonable clustering using specific keywords, forming the knowledge framework. Among the 294 co-occurring keywords, "hepatic fibrosis", "stiffness", "skeletal muscle", "acoustic strain wave", "in vivo", and "non-invasive assessment" were research hotspots. "Diagnostic performance", "diagnostic accuracy", "hepatic steatosis", "chronic hepatitis B", "radiation force impulse", "children", and "echo" were frontier topics. CONCLUSIONS Scientometric and visualized analysis of MRE can provide information regarding the knowledge framework, research hotspots, frontier areas, and emerging trends in this field.
Collapse
Affiliation(s)
- Youwei Li
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Na Chen
- Department of Otorhinolaryngology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yuanfang Zhang
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Juan Wang
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Chang Li
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Xuan He
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Yang Jiao
- Department of Rehabilitation Psychology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Zongming Zhang
- Department of General Surgery, Beijing Electric Power Hospital, State Grid Corporation of China, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Magnetic Resonance Imaging (MRI) and MR Spectroscopic Methods in Understanding Breast Cancer Biology and Metabolism. Metabolites 2022; 12:metabo12040295. [PMID: 35448482 PMCID: PMC9030399 DOI: 10.3390/metabo12040295] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
A common malignancy that affects women is breast cancer. It is the second leading cause of cancer-related death among women. Metabolic reprogramming occurs during cancer growth, invasion, and metastases. Functional magnetic resonance (MR) methods comprising an array of techniques have shown potential for illustrating physiological and molecular processes changes before anatomical manifestations on conventional MR imaging. Among these, in vivo proton (1H) MR spectroscopy (MRS) is widely used for differentiating breast malignancy from benign diseases by measuring elevated choline-containing compounds. Further, the use of hyperpolarized 13C and 31P MRS enhanced the understanding of glucose and phospholipid metabolism. The metabolic profiling of an array of biological specimens (intact tissues, tissue extracts, and various biofluids such as blood, urine, nipple aspirates, and fine needle aspirates) can also be investigated through in vitro high-resolution NMR spectroscopy and high-resolution magic angle spectroscopy (HRMAS). Such studies can provide information on more metabolites than what is seen by in vivo MRS, thus providing a deeper insight into cancer biology and metabolism. The analysis of a large number of NMR spectral data sets through multivariate statistical methods classified the tumor sub-types. It showed enormous potential in the development of new therapeutic approaches. Recently, multiparametric MRI approaches were found to be helpful in elucidating the pathophysiology of cancer by quantifying structural, vasculature, diffusion, perfusion, and metabolic abnormalities in vivo. This review focuses on the applications of NMR, MRS, and MRI methods in understanding breast cancer biology and in the diagnosis and therapeutic monitoring of breast cancer.
Collapse
|
11
|
Kharat A, Vanpully NS, Jeeson JC. Simplified Guide to MR Elastography in Early Detection of Hepatic Fibrosis with Case Reports: The New Norm in Assessing Liver Health. Indian J Radiol Imaging 2021; 31:644-652. [PMID: 34790310 PMCID: PMC8590563 DOI: 10.1055/s-0041-1735929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The current unhealthy diets and sedentary lifestyle have led to increase in the prevalence of diabetes and metabolic syndrome globally. Fatty liver is a common occurrence in metabolic syndrome. The liver health is often ignored due to delayed warning signs. Fatty changes of the liver is one of the common findings in ultrasonography. Ultrasound does not detect fibrosis except when cirrhosis is developed. Early stages of fibrosis are asymptomatic with no significant laboratory or preliminary imaging findings. With fibrosis, the elasticity of the liver is reduced and becomes stiffer. Over the years, many techniques have developed to assess the stiffness of the liver, starting from palpation, ultrasonography, and recently developed magnetic resonance elastography (MRE). In this article, we have tried to simplify the concepts of MRE to detect fibrosis and present few case reports. The basic steps involved in generating elastograms and interpretation with some insight on how to incorporate it into the clinical workflow are discussed. MRE is superior to various other available techniques and even offers certain advantages over biopsy. MRE is FDA approved for liver fibrosis since 2009, yet it is hardly used in the Indian setting. MRE is a safe and noninvasive technique to evaluate a large volume of the liver and can be a new norm for the evaluation of fatty liver. Magnetic resonance imaging (MRI)-based elastography techniques hold an exciting future in providing mechanical properties of tissues in various organs like spleen, brain, kidney, and heart.
Collapse
Affiliation(s)
- Amit Kharat
- Department of Radiology, Dr. D.Y. Patil Medical College, Hospital & Research Centre, Pimpri, Pune, Maharashtra, India
| | - Nikhith Soman Vanpully
- Department of Radiology, Dr. D.Y. Patil Medical College, Hospital & Research Centre, Pimpri, Pune, Maharashtra, India
| | - Jacob Cheeran Jeeson
- Department of Radiology, Dr. D.Y. Patil Medical College, Hospital & Research Centre, Pimpri, Pune, Maharashtra, India
| |
Collapse
|
12
|
Yang JY, Qiu BS. The Advance of Magnetic Resonance Elastography in Tumor Diagnosis. Front Oncol 2021; 11:722703. [PMID: 34532290 PMCID: PMC8438294 DOI: 10.3389/fonc.2021.722703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
The change in tissue stiffness caused by pathological changes in the tissue's structure could be detected earlier, prior to the manifestation of their clinical features. Magnetic resonance elastography (MRE) is a noninvasive imaging technique that uses low-frequency vibrations to quantitatively measure the elasticity or stiffness of tissues. In tumor tissue, stiffness is directly related to tumor development, invasion, metastasis, and chemoradiotherapy resistance. It also dictates the choice of surgical method. At present, MRE is widely used in assessing different human organs, such as the liver, brain, breast, prostate, uterus, gallbladder, and colon stiffness. In the field of oncology, MRE's value lies in tumor diagnosis (especially early diagnosis), selection of treatment method, and prognosis evaluation. This article summarizes the principle of MRE and its research and application progress in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Jin-Ying Yang
- Laboratory Center for Information Science, University of Science and Technology of China, Hefei, China
| | - Ben-Sheng Qiu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engneering, University of Science and Technology of China, Hefei, China
| |
Collapse
|
13
|
MR Elastography. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Barba D, León-Sosa A, Lugo P, Suquillo D, Torres F, Surre F, Trojman L, Caicedo A. Breast cancer, screening and diagnostic tools: All you need to know. Crit Rev Oncol Hematol 2020; 157:103174. [PMID: 33249359 DOI: 10.1016/j.critrevonc.2020.103174] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/18/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is one of the most frequent malignancies among women worldwide. Methods for screening and diagnosis allow health care professionals to provide personalized treatments that improve the outcome and survival. Scientists and physicians are working side-by-side to develop evidence-based guidelines and equipment to detect cancer earlier. However, the lack of comprehensive interdisciplinary information and understanding between biomedical, medical, and technology professionals makes innovation of new screening and diagnosis tools difficult. This critical review gathers, for the first time, information concerning normal breast and cancer biology, established and emerging methods for screening and diagnosis, staging and grading, molecular and genetic biomarkers. Our purpose is to address key interdisciplinary information about these methods for physicians and scientists. Only the multidisciplinary interaction and communication between scientists, health care professionals, technical experts and patients will lead to the development of better detection tools and methods for an improved screening and early diagnosis.
Collapse
Affiliation(s)
- Diego Barba
- Escuela de Medicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Ariana León-Sosa
- Escuela de Medicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Paulina Lugo
- Hospital de los Valles HDLV, Quito, Ecuador; Fundación Ayuda Familiar y Comunitaria AFAC, Quito, Ecuador
| | - Daniela Suquillo
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Ingeniería en Procesos Biotecnológicos, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Fernando Torres
- Escuela de Medicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Hospital de los Valles HDLV, Quito, Ecuador
| | - Frederic Surre
- University of Glasgow, James Watt School of Engineering, Glasgow, G12 8QQ, United Kingdom
| | - Lionel Trojman
- LISITE, Isep, 75006, Paris, France; Universidad San Francisco de Quito USFQ, Colegio de Ciencias e Ingenierías Politécnico - USFQ, Instituto de Micro y Nanoelectrónica, IMNE, USFQ, Quito, Ecuador
| | - Andrés Caicedo
- Escuela de Medicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito USFQ, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador.
| |
Collapse
|
15
|
Ko KH, Jung HK, Park AY, Koh JE, Jang H, Kim Y. Accuracy of tumor size measurement on shear wave elastography (SWE): Correlation with histopathologic factors of invasive breast cancer. Medicine (Baltimore) 2020; 99:e23023. [PMID: 33126387 PMCID: PMC7598781 DOI: 10.1097/md.0000000000023023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The aim of this study is to investigate the accuracy of tumor size assessment by shear wave elastography (SWE) in invasive breast cancer and also evaluated histopathologic factors influencing the accuracy.A total of 102 lesions of 102 women with breast cancers of which the size was 3 cm or smaller were included and retrospectively analyzed. Tumor size on B-mode ultrasound (US) and SWE were recorded and compared with the pathologic tumor size. If tumor size measurements compared to pathological size were within ±3 mm, they were considered as accurate. The relationship between the accuracy and histopathologic characteristics were evaluated.The mean pathologic tumor size was 16.60 ± 6.12 mm. Tumor sizes on SWE were significantly different from pathologic sizes (18.00 ± 6.71 mm, P < 0.001). The accuracy of SWE (69.6%) was lower than that by B-mode US (74.5%). There was more size overestimation than underestimation (23.5% vs 6.9%) using SWE. Conversely, there was more size underestimation than overestimation (18.6% vs 6.9%) using B-mode US. The accuracy of SWE was associated with ER positivity (P = .004), PR positivity (P = .02), molecular subtype (P = .02), and histologic grade (P = .03). In the multivariate analysis, ER positivity (P = .002) and molecular subtype (P = .027) significantly influenced the accuracy of tumor size measurement by SWE.In conclusion, the accuracy of the tumor size measured with SWE was lower than that measured with B-mode US and SWE tends to overestimate the size. ER positivity and molecular subtype are significantly associated with the accuracy of SWE in tumor size assessment.
Collapse
|
16
|
Patel BK, Samreen N, Zhou Y, Chen J, Brandt K, Ehman R, Pepin K. MR Elastography of the Breast: Evolution of Technique, Case Examples, and Future Directions. Clin Breast Cancer 2020; 21:e102-e111. [PMID: 32900617 DOI: 10.1016/j.clbc.2020.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/20/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
Recognizing that breast cancers present as firm, stiff lesions, the foundation of breast magnetic resonance elastography (MRE) is to combine tissue stiffness parameters with sensitive breast MR contrast-enhanced imaging. Breast MRE is a non-ionizing, cross-sectional MR imaging technique that provides for quantitative viscoelastic properties, including tissue stiffness, elasticity, and viscosity, of breast tissues. Currently, the technique continues to evolve as research surrounding the use of MRE in breast tissue is still developing. In the setting of a newly diagnosed cancer, associated desmoplasia, stiffening of the surrounding stroma, and necrosis are known to be prognostic factors that can add diagnostic information to patient treatment algorithms. In fact, mechanical properties of the tissue might also influence breast cancer risk. For these reasons, exploration of breast MRE has great clinical value. In this review, we will: (1) address the evolution of the various MRE techniques; (2) provide a brief overview of the current clinical studies in breast MRE with interspersed case examples; and (3) suggest directions for future research.
Collapse
Affiliation(s)
| | | | - Yuxiang Zhou
- Department of Radiology, Mayo Clinic, Phoenix, AZ
| | - Jun Chen
- Department of Radiology, Mayo Clinic, Rochester, MN
| | - Kathy Brandt
- Department of Radiology, Mayo Clinic, Rochester, MN
| | | | - Kay Pepin
- Department of Radiology, Mayo Clinic, Rochester, MN
| |
Collapse
|
17
|
Manohar S, Dantuma M. Current and future trends in photoacoustic breast imaging. PHOTOACOUSTICS 2019; 16:100134. [PMID: 31871887 PMCID: PMC6909206 DOI: 10.1016/j.pacs.2019.04.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/19/2019] [Accepted: 04/10/2019] [Indexed: 05/14/2023]
Abstract
Non-invasive detection of breast cancer has been regarded as the holy grail of applications for photoacoustic (optoacoustic) imaging right from the early days of re-discovery of the method. Two-and-a-half decades later we report on the state-of-the-art in photoacoustic breast imaging technology and clinical studies. Even within the single application of breast imaging, we find imagers with various measurement geometries, ultrasound detection characteristics, illumination schemes, and image reconstruction strategies. We first analyze the implications on performance of a few of these design choices in a generic imaging system, before going into detailed descriptions of the imagers. Per imaging system we present highlights of patient studies, which barring a couple are mostly in the nature of technology demonstrations and proof-of-principle studies. We close this work with a discussion on several aspects that may turn out to be crucial for the future clinical translation of the method.
Collapse
|
18
|
Bunevicius A, Schregel K, Sinkus R, Golby A, Patz S. REVIEW: MR elastography of brain tumors. Neuroimage Clin 2019; 25:102109. [PMID: 31809993 PMCID: PMC6909210 DOI: 10.1016/j.nicl.2019.102109] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022]
Abstract
MR elastography allows non-invasive quantification of the shear modulus of tissue, i.e. tissue stiffness and viscosity, information that offers the potential to guide presurgical planning for brain tumor resection. Here, we review brain tumor MRE studies with particular attention to clinical applications. Studies that investigated MRE in patients with intracranial tumors, both malignant and benign as well as primary and metastatic, were queried from the Pubmed/Medline database in August 2018. Reported tumor and normal appearing white matter stiffness values were extracted and compared as a function of tumor histopathological diagnosis and MRE vibration frequencies. Because different studies used different elastography hardware, pulse sequences, reconstruction inversion algorithms, and different symmetry assumptions about the mechanical properties of tissue, effort was directed to ensure that similar quantities were used when making inter-study comparisons. In addition, because different methodologies and processing pipelines will necessarily bias the results, when pooling data from different studies, whenever possible, tumor values were compared with the same subject's contralateral normal appearing white matter to minimize any study-dependent bias. The literature search yielded 10 studies with a total of 184 primary and metastatic brain tumor patients. The group mean tumor stiffness, as measured with MRE, correlated with intra-operatively assessed stiffness of meningiomas and pituitary adenomas. Pooled data analysis showed significant overlap between shear modulus values across brain tumor types. When adjusting for the same patient normal appearing white matter shear modulus values, meningiomas were the stiffest tumor-type. MRE is increasingly being examined for potential in brain tumor imaging and might have value for surgical planning. However, significant overlap of shear modulus values between a number of different tumor types limits applicability of MRE for diagnostic purposes. Thus, further rigorous studies are needed to determine specific clinical applications of MRE for surgical planning, disease monitoring and molecular stratification of brain tumors.
Collapse
Affiliation(s)
- Adomas Bunevicius
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States; Harvard Medical School, Boston, MA, United States.
| | - Katharina Schregel
- Institute of Neuroradiology, University Medical Center Goettingen, Goettingen, Germany
| | - Ralph Sinkus
- Inserm U1148, LVTS, University Paris Diderot, University Paris 13, Paris, France
| | - Alexandra Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, United States; Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, United States
| | - Samuel Patz
- Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Boston, MA 02115, United States.
| |
Collapse
|
19
|
McGarry M, Van Houten E, Solamen L, Gordon-Wylie S, Weaver J, Paulsen K. Uniqueness of poroelastic and viscoelastic nonlinear inversion MR elastography at low frequencies. ACTA ACUST UNITED AC 2019; 64:075006. [DOI: 10.1088/1361-6560/ab0a7d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
20
|
New and Emerging Applications of Magnetic Resonance Elastography of Other Abdominal Organs. Top Magn Reson Imaging 2019; 27:335-352. [PMID: 30289829 DOI: 10.1097/rmr.0000000000000182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increasing clinical experience and ongoing research in the field of magnetic resonance elastography (MRE) is leading to exploration of its applications in other abdominal organs. In this review, the current research progress of MRE in prostate, uterus, pancreas, spleen, and kidney will be discussed. The article will describe patient preparation, modified technical approach including development of passive drivers, modification of sequences, and inversion. The potential clinical application of MRE in the evaluation of several disease processes affecting these organs will be discussed. In an era of increasing adoption of multiparametric magnetic resonance imaging approaches for solving complex abdominal problems, abdominal MRE as a biomarker may be seamlessly incorporated into a standard magnetic resonance imaging examination to provide a rapid, reliable, and comprehensive imaging evaluation at a single patient appointment in the future.
Collapse
|
21
|
|
22
|
Bohte AE, Nelissen JL, Runge JH, Holub O, Lambert SA, de Graaf L, Kolkman S, van der Meij S, Stoker J, Strijkers GJ, Nederveen AJ, Sinkus R. Breast magnetic resonance elastography: a review of clinical work and future perspectives. NMR IN BIOMEDICINE 2018; 31:e3932. [PMID: 29846986 DOI: 10.1002/nbm.3932] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 03/07/2018] [Accepted: 03/18/2018] [Indexed: 06/08/2023]
Abstract
This review on magnetic resonance elastography (MRE) of the breast provides an overview of available literature and describes current developments in the field of breast MRE, including new transducer technology for data acquisition and multi-frequency-derived power-law behaviour of tissue. Moreover, we discuss the future potential of breast MRE, which goes beyond its original application as an additional tool in differentiating benign from malignant breast lesions. These areas of ongoing and future research include MRE for pre-operative tumour delineation, staging, monitoring and predicting response to treatment, as well as prediction of the metastatic potential of primary tumours.
Collapse
Affiliation(s)
- A E Bohte
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - J L Nelissen
- Biomedical NMR, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - J H Runge
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
- Image Sciences and Biomedical Engineering, King's College London, London, UK
| | - O Holub
- Image Sciences and Biomedical Engineering, King's College London, London, UK
| | - S A Lambert
- Image Sciences and Biomedical Engineering, King's College London, London, UK
- Université Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, INSERM UMR 5220, U1206, Lyon, France
| | - L de Graaf
- Biomedical NMR, Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - S Kolkman
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - S van der Meij
- Department of Surgery, Academic Medical Center, Amsterdam, The Netherlands
- Department of Surgery, Flevoziekenhuis, Almere, The Netherlands
| | - J Stoker
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - G J Strijkers
- Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands
| | - A J Nederveen
- Department of Radiology and Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - R Sinkus
- Image Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
23
|
Fovargue D, Nordsletten D, Sinkus R. Stiffness reconstruction methods for MR elastography. NMR IN BIOMEDICINE 2018; 31:e3935. [PMID: 29774974 PMCID: PMC6175248 DOI: 10.1002/nbm.3935] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 05/19/2023]
Abstract
Assessment of tissue stiffness is desirable for clinicians and researchers, as it is well established that pathophysiological mechanisms often alter the structural properties of tissue. Magnetic resonance elastography (MRE) provides an avenue for measuring tissue stiffness and has a long history of clinical application, including staging liver fibrosis and stratifying breast cancer malignancy. A vital component of MRE consists of the reconstruction algorithms used to derive stiffness from wave-motion images by solving inverse problems. A large range of reconstruction methods have been presented in the literature, with differing computational expense, required user input, underlying physical assumptions, and techniques for numerical evaluation. These differences, in turn, have led to varying accuracy, robustness, and ease of use. While most reconstruction techniques have been validated against in silico or in vitro phantoms, performance with real data is often more challenging, stressing the robustness and assumptions of these algorithms. This article reviews many current MRE reconstruction methods and discusses the aforementioned differences. The material assumptions underlying the methods are developed and various approaches for noise reduction, regularization, and numerical discretization are discussed. Reconstruction methods are categorized by inversion type, underlying assumptions, and their use in human and animal studies. Future directions, such as alternative material assumptions, are also discussed.
Collapse
Affiliation(s)
- Daniel Fovargue
- Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
| | - David Nordsletten
- Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
| | - Ralph Sinkus
- Imaging Sciences & Biomedical EngineeringKing's College LondonLondonUK
- Inserm U1148, LVTSUniversity Paris Diderot, University Paris 13Paris75018France
| |
Collapse
|
24
|
Ito D, Numano T, Mizuhara K, Washio T, Misawa M, Nitta N. Development of a robust diffusion-MR elastography (dMRE) technique to mitigate intravoxel phase dispersion. Magn Reson Imaging 2018; 54:160-170. [PMID: 30171999 DOI: 10.1016/j.mri.2018.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/21/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
Abstract
Diffusion-magnetic resonance elastography (dMRE) is an emerging practical technique that can acquire diffusion magnetic resonance imaging and MRE simultaneously. However, a signal loss attributable to intravoxel phase dispersion (IVPD) interferes with the calculation of the apparent diffusion coefficient (ADC). This study presents an approach to dMRE that reduces the influence of IVPD by introducing a new pulse sequence. The existing and proposed techniques were performed using a phantom comprising five rods with different elasticities at 60 Hz vibration to investigate the accuracy of previous and proposed dMRE techniques. The measures of ADC and stiffness, obtained by using both dMRE techniques, were compared with conventional spin-echo (SE) diffusion and SE-MRE. Then, we evaluated those differences by using the mean of absolute differences (MAD) in each rod within the phantom. The results of the MAD of the stiffness from both dMRE techniques showed almost no difference. In contrast, the value of the ADC MAD (MAD ≒ 0.16 × 10-3 mm2/s), obtained in the soft region within the phantom with the previous dMRE technique, was large. This value was about 2.7 times that of the value produced by the proposed dMRE technique. This difference must reflect the degree of influence of IVPD in both techniques. These results demonstrate that our dMRE technique is a robust method for addressing the signal loss attributable to IVPD.
Collapse
Affiliation(s)
- Daiki Ito
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan; Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1, Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan; Office of Radiation Technology, Keio University Hospital, Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tomokazu Numano
- Department of Radiological Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10, Higashiogu, Arakawa-ku, Tokyo 116-8551, Japan; Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1, Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan.
| | - Kazuyuki Mizuhara
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1, Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan; Department of Mechanical Engineering, Tokyo Denki University, 5, Senju Asahicho, Adachi-ku, Tokyo 120-8551, Japan
| | - Toshikatsu Washio
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1, Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan
| | - Masaki Misawa
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1, Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan
| | - Naotaka Nitta
- Health Research Institute, National Institute of Advanced Industrial Science and Technology, 1-2-1, Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan
| |
Collapse
|
25
|
Balleyguier C, Lakhdar AB, Dunant A, Mathieu MC, Delaloge S, Sinkus R. Value of whole breast magnetic resonance elastography added to MRI for lesion characterization. NMR IN BIOMEDICINE 2018; 31:e3795. [PMID: 29073719 DOI: 10.1002/nbm.3795] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 07/23/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
The purpose of this work was to assess the diagnostic value of magnetic resonance elastography (MRE) in addition to MRI to differentiate malignant from benign breast tumors, and the feasibility of performing MRE on the whole breast. MRE quantified biomechanical properties within the entire breast (50 slices) using an 11 min acquisition protocol at an isotropic image acquisition resolution of 2 × 2 × 2 mm3 . Fifty patients were included. Finally, 43 patients (median age 52) with a suspect breast lesion detected by mammography and/or ultrasound were examined by MRI and MRE at 1.5 T. The viscoelastic parameters, i.e. elasticity (Gd ), viscosity (Gl ), the magnitude of the complex shear modulus Gd2+Gl2, and the phase angle y=2πatanGlGd, were measured via MRE and correlated with MRI Breast Imaging-Reporting and Data System (BI-RADS) score, histological type, and histological grade. Stroma component and angiogenesis were also correlated with viscoelastic properties. In the 43 lesions, Gd decreased and y increased with the MRI BI-RADS score (pGd = 0.02, py = 0.002), whereas (Gl ) and y were increased in malignant lesions (pGl = 0.045, py = 0.0004). The area under the curve increased from 0.84 for MRI BI-RADS alone to 0.92 with the MRI BI-RADS and y (AUC increase +0.08; 95% CI (-0.003; 0.16)). Lesion characterization using the y parameter increased the diagnostic accuracy. The phase angle y was found to have a significant role (p = 0.01) in predicting malignancy independently of the MRI BI-RADS. Interestingly, histological analysis showed no correlation between viscoelastic parameters and percentage and type of stroma, CD34 quantification of vessels, or histological grade. The combination of MRE and MRI improves the diagnostic accuracy for breast lesions in the studied cohort. In particular, the phase angle y was found to have a significant role in predicting malignancy in addition to BI-RADS.
Collapse
Affiliation(s)
- Corinne Balleyguier
- Radiology Department, Gustave Roussy, Villejuif, France
- Paris-Sud University, IR4M UMR 8081, Orsay, France
| | - Aicha Ben Lakhdar
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Ariane Dunant
- Department of Statistics, Gustave Roussy, Villejuif, France
| | | | - Suzette Delaloge
- Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Ralph Sinkus
- Paris Diderot University, Sorbonne Paris Cité, France
- INSERM U773, Centre de Recherche Biomédicale Bichat-Beaujon, Paris, France
- BHF Centre of Excellence, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, UK
| |
Collapse
|
26
|
Hawley JR, Kalra P, Mo X, Raterman B, Yee LD, Kolipaka A. Quantification of breast stiffness using MR elastography at 3 Tesla with a soft sternal driver: A reproducibility study. J Magn Reson Imaging 2017; 45:1379-1384. [PMID: 27779802 PMCID: PMC5395339 DOI: 10.1002/jmri.25511] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/27/2016] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Previous studies of breast MR elastography (MRE) evaluated the technique at magnetic field strengths of 1.5 Tesla (T) with the breast in contact with the driver. The aim of this study is to evaluate breast stiffness measurements and their reproducibility using a soft sternal driver at 3T and compare the results with qualitative measures of breast density. MATERIALS AND METHODS Twenty-two healthy volunteers each underwent two separate breast MRE scans in a 3T MRI. MRE vibrations were introduced into the breasts at 60 Hz using a soft sternal driver and axial slices were collected using a gradient echo MRE sequence. Mean stiffness measurements were calculated for each volunteer as well as a measure of reproducibility using concordance correlation between scans. Mean stiffness values for each volunteer were assessed and related to amounts of fibroglandular tissue (i.e., breast lobules, ducts, and fibrous connective tissue). RESULTS The stiffness values were reproducible with a significant P-value < 0.0001 between two scans with concordance correlation of 0.87 and 0.91 for center slice and grouping all slices, respectively. Volunteers with dense breasts (i.e., higher grades of fibroglandular tissue) had mean stiffness values of 0.96 kPa (center slice) and 0.92 kPa (all slices) while those without dense breasts had mean stiffness values of 0.85 kPa (center slice) and 0.83 kPa (all slices) (P ≤ 0.05). CONCLUSION Breast MRE is a reproducible technique at 3T using a soft sternal driver. Dense breasts had significantly higher stiffness measurements compared with nondense breasts. LEVEL OF EVIDENCE 2 J. MAGN. RESON. IMAGING 2017;45:1379-1384.
Collapse
Affiliation(s)
- Jeffrey R. Hawley
- Department of Radiology, The Ohio State University Wexner Medical Center Columbus, Ohio
| | - Prateek Kalra
- Department of Radiology, The Ohio State University Wexner Medical Center Columbus, Ohio
| | - Xiaokui Mo
- Department of Radiology, The Ohio State University Wexner Medical Center Columbus, Ohio
| | - Brian Raterman
- Department of Radiology, The Ohio State University Wexner Medical Center Columbus, Ohio
| | - Lisa D. Yee
- Department of Surgical Oncology, The Ohio State University Wexner Medical Center Columbus, Ohio
| | - Arunark Kolipaka
- Department of Radiology, The Ohio State University Wexner Medical Center Columbus, Ohio
| |
Collapse
|
27
|
Hiscox LV, Johnson CL, Barnhill E, McGarry MDJ, Huston J, van Beek EJR, Starr JM, Roberts N. Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications. Phys Med Biol 2016; 61:R401-R437. [DOI: 10.1088/0031-9155/61/24/r401] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
A new technique for MR elastography of the supraspinatus muscle: A gradient-echo type multi-echo sequence. Magn Reson Imaging 2016; 34:1181-8. [DOI: 10.1016/j.mri.2016.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 11/20/2022]
|
29
|
Abramson RG, Arlinghaus LR, Dula AN, Quarles CC, Stokes AM, Weis JA, Whisenant JG, Chekmenev EY, Zhukov I, Williams JM, Yankeelov TE. MR Imaging Biomarkers in Oncology Clinical Trials. Magn Reson Imaging Clin N Am 2016; 24:11-29. [PMID: 26613873 DOI: 10.1016/j.mric.2015.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The authors discuss eight areas of quantitative MR imaging that are currently used (RECIST, DCE-MR imaging, DSC-MR imaging, diffusion MR imaging) in clinical trials or emerging (CEST, elastography, hyperpolarized MR imaging, multiparameter MR imaging) as promising techniques in diagnosing cancer and assessing or predicting response of cancer to therapy. Illustrative applications of the techniques in the clinical setting are summarized before describing the current limitations of the methods.
Collapse
Affiliation(s)
- Richard G Abramson
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA
| | - Lori R Arlinghaus
- Department of Radiology and Radiological Sciences, Vanderbilt University, 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA
| | - Adrienne N Dula
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA
| | - C Chad Quarles
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA; Department of Biomedical Engineering, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA; Department of Cancer Biology, Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA
| | - Ashley M Stokes
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA
| | - Jared A Weis
- Department of Biomedical Engineering, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA
| | - Jennifer G Whisenant
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA
| | - Eduard Y Chekmenev
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA; Department of Biomedical Engineering, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA; Department of Biochemistry, Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA
| | - Igor Zhukov
- National Research Nuclear University MEPhI, Kashirskoye highway, 31, Moscow 115409, Russia
| | - Jason M Williams
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA
| | - Thomas E Yankeelov
- Department of Radiology and Radiological Sciences, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA; Department of Biomedical Engineering, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA; Department of Cancer Biology, Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA; Department of Physics, Institute of Imaging Science, Vanderbilt University, VUIIS 1161 21st Avenue South, AA 1105 MCN, Nashville, TN 37232-2310, USA.
| |
Collapse
|
30
|
Ramião NG, Martins PS, Rynkevic R, Fernandes AA, Barroso M, Santos DC. Biomechanical properties of breast tissue, a state-of-the-art review. Biomech Model Mechanobiol 2016; 15:1307-23. [DOI: 10.1007/s10237-016-0763-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 01/12/2016] [Indexed: 01/01/2023]
|
31
|
Low G, Kruse SA, Lomas DJ. General review of magnetic resonance elastography. World J Radiol 2016; 8:59-72. [PMID: 26834944 PMCID: PMC4731349 DOI: 10.4329/wjr.v8.i1.59] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/14/2015] [Accepted: 12/04/2015] [Indexed: 02/06/2023] Open
Abstract
Magnetic resonance elastography (MRE) is an innovative imaging technique for the non-invasive quantification of the biomechanical properties of soft tissues via the direct visualization of propagating shear waves in vivo using a modified phase-contrast magnetic resonance imaging (MRI) sequence. Fundamentally, MRE employs the same physical property that physicians utilize when performing manual palpation - that healthy and diseased tissues can be differentiated on the basis of widely differing mechanical stiffness. By performing “virtual palpation”, MRE is able to provide information that is beyond the capabilities of conventional morphologic imaging modalities. In an era of increasing adoption of multi-parametric imaging approaches for solving complex problems, MRE can be seamlessly incorporated into a standard MRI examination to provide a rapid, reliable and comprehensive imaging evaluation at a single patient appointment. Originally described by the Mayo Clinic in 1995, the technique represents the most accurate non-invasive method for the detection and staging of liver fibrosis and is currently performed in more than 100 centers worldwide. In this general review, the mechanical properties of soft tissues, principles of MRE, clinical applications of MRE in the liver and beyond, and limitations and future directions of this discipline -are discussed. Selected diagrams and images are provided for illustration.
Collapse
|
32
|
Ito D, Numano T, Mizuhara K, Takamoto K, Onishi T, Nishijo H. [The Development of Vibration System for Applying Magnetic Resonance Elastography (MRE) to the Supraspinatus Muscle]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2016; 72:1222-1229. [PMID: 28003609 DOI: 10.6009/jjrt.2016_jsrt_72.12.1222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Palpation is a standard clinical tool to diagnose abnormal stiffness changes in soft tissues. However, it is difficult to palpate the supraspinatus muscle because it locates under the trapezius muscle. The magnetic resonance elastography (MRE) uses harmonic mechanical excitation to quantitatively measure the stiffness (shear modulus) of both the superficial and deep tissues. The purpose of this study was to build a vibration system for applying the MRE to the supraspinatus muscle. In this study, a power amplifier and a pneumatic pressure generator were used to supply vibrations to a vibration pad. Six healthy volunteers underwent MRE. We investigated the effects of position (the head of the humerus and the trapezius muscle) of the vibration pad on the patterns of wave propagation (wave image). When the vibration pad was placed in the trapezius muscle, the wave images represented clear wave propagation. On the other hand, when the vibration pad was placed in the head of the humerus, the wave images represented unclear wave propagation. This result might be caused by wave interferences resulting from the vibrations from bones and an intramuscular tendon of the supraspinatus muscle. The mean shear modulus also was 8.12 ± 1.83 (mean ± SD) kPa, when the vibration pad was placed in the trapezius muscle. Our results demonstrated that the vibration pad should be placed in the trapezius muscle in the MRE of the supraspinatus muscle.
Collapse
Affiliation(s)
- Daiki Ito
- Department of Radiological Science, Graduate School of Human Health Science, Tokyo Metropolitan University
| | | | | | | | | | | |
Collapse
|
33
|
Pepin KM, Ehman RL, McGee KP. Magnetic resonance elastography (MRE) in cancer: Technique, analysis, and applications. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 90-91:32-48. [PMID: 26592944 PMCID: PMC4660259 DOI: 10.1016/j.pnmrs.2015.06.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 05/07/2023]
Abstract
Tissue mechanical properties are significantly altered with the development of cancer. Magnetic resonance elastography (MRE) is a noninvasive technique capable of quantifying tissue mechanical properties in vivo. This review describes the basic principles of MRE and introduces some of the many promising MRE methods that have been developed for the detection and characterization of cancer, evaluation of response to therapy, and investigation of the underlying mechanical mechanisms associated with malignancy.
Collapse
|
34
|
McGarry MDJ, Johnson CL, Sutton BP, Georgiadis JG, Van Houten EEW, Pattison AJ, Weaver JB, Paulsen KD. Suitability of poroelastic and viscoelastic mechanical models for high and low frequency MR elastography. Med Phys 2015; 42:947-57. [PMID: 25652507 DOI: 10.1118/1.4905048] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Descriptions of the structure of brain tissue as a porous cellular matrix support application of a poroelastic (PE) mechanical model which includes both solid and fluid phases. However, the majority of brain magnetic resonance elastography (MRE) studies use a single phase viscoelastic (VE) model to describe brain tissue behavior, in part due to availability of relatively simple direct inversion strategies for mechanical property estimation. A notable exception is low frequency intrinsic actuation MRE, where PE mechanical properties are imaged with a nonlinear inversion algorithm. METHODS This paper investigates the effect of model choice at each end of the spectrum of in vivo human brain actuation frequencies. Repeat MRE examinations of the brains of healthy volunteers were used to compare image quality and repeatability for each inversion model for both 50 Hz externally produced motion and ≈1 Hz intrinsic motions. Additionally, realistic simulated MRE data were generated with both VE and PE finite element solvers to investigate the effect of inappropriate model choice for ideal VE and PE materials. RESULTS In vivo, MRE data revealed that VE inversions appear more representative of anatomical structure and quantitatively repeatable for 50 Hz induced motions, whereas PE inversion produces better results at 1 Hz. Reasonable VE approximations of PE materials can be derived by equating the equivalent wave velocities for the two models, provided that the timescale of fluid equilibration is not similar to the period of actuation. An approximation of the equilibration time for human brain reveals that this condition is violated at 1 Hz but not at 50 Hz. Additionally, simulation experiments when using the "wrong" model for the inversion demonstrated reasonable shear modulus reconstructions at 50 Hz, whereas cross-model inversions at 1 Hz were poor quality. Attenuation parameters were sensitive to changes in the forward model at both frequencies, however, no spatial information was recovered because the mechanisms of VE and PE attenuation are different. CONCLUSIONS VE inversions are simpler with fewer unknown properties and may be sufficient to capture the mechanical behavior of PE brain tissue at higher actuation frequencies. However, accurate modeling of the fluid phase is required to produce useful mechanical property images at the lower frequencies of intrinsic brain motions.
Collapse
Affiliation(s)
- M D J McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - C L Johnson
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - B P Sutton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 and Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - J G Georgiadis
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; and Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - E E W Van Houten
- Department of Mechanical Engineering, University de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - A J Pattison
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - J B Weaver
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 and Department of Radiology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03755
| | - K D Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 and Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03755
| |
Collapse
|
35
|
Abstract
In this article, functional magnetic resonance (MR) imaging techniques in the abdomen are discussed. Diffusion-weighted imaging (DWI) increases the confidence in detecting and characterizing focal hepatic lesions. The potential uses of DWI in kidneys, adrenal glands, bowel, and pancreas are outlined. Studies have shown potential use of quantitative dynamic contrast-enhanced MR imaging parameters, such as K(trans), in predicting outcomes in cancer therapy. MR elastography is considered to be a useful tool in staging liver fibrosis. A major issue with all functional MR imaging techniques is the lack of standardization of the protocol.
Collapse
Affiliation(s)
- Kumar Sandrasegaran
- Department of Radiology, Indiana University School of Medicine, 550 N University Blvd, UH 0279, Indianapolis, IN 46202, USA.
| |
Collapse
|
36
|
Li J, Jamin Y, Boult JKR, Cummings C, Waterton JC, Ulloa J, Sinkus R, Bamber JC, Robinson SP. Tumour biomechanical response to the vascular disrupting agent ZD6126 in vivo assessed by magnetic resonance elastography. Br J Cancer 2014; 110:1727-32. [PMID: 24569471 PMCID: PMC3974089 DOI: 10.1038/bjc.2014.76] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/05/2013] [Accepted: 01/21/2014] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Magnetic resonance elastography (MRE) is an emerging imaging technique that affords non-invasive quantitative assessment and visualization of tissue mechanical properties in vivo. METHODS In this study, MRE was used to quantify (kPa) the absolute value of the complex shear modulus |G*|, elasticity Gd and viscosity Gl of SW620 human colorectal cancer xenografts before and 24 h after treatment with either 200 mg kg(-1) of the vascular disrupting agent ZD6126 (N-acetylcolchinol-O-phosphate) or vehicle control, and the data were compared with changes in water diffusivity measured by diffusion-weighted magnetic resonance imaging. RESULTS A heterogeneous distribution of |G*|, Gd and Gl was observed pre-treatment with an intertumoral coefficient of variation of 13% for |G*|. There were no significant changes in the vehicle-treated cohort. In contrast, ZD6126 induced a significant decrease in the tumour-averaged |G*| (P<0.01), Gd (P<0.01) and Gl (P<0.05), and this was associated with histologically confirmed central necrosis. This reduction in tumour viscoelasticity occurred at a time when no significant change in tumour apparent diffusion coefficient (ADC) was observed. CONCLUSIONS These data demonstrate that MRE can provide early imaging biomarkers for treatment-induced tumour necrosis.
Collapse
Affiliation(s)
- J Li
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK
| | - Y Jamin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK
| | - J K R Boult
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK
| | - C Cummings
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK
| | - J C Waterton
- Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - J Ulloa
- Personalised Healthcare and Biomarkers, AstraZeneca, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK
| | - R Sinkus
- BHF Centre of Excellence, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, SE1 7EH, UK
| | - J C Bamber
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK
| | - S P Robinson
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, UK
| |
Collapse
|
37
|
Kashif AS, Lotz TF, McGarry MD, Pattison AJ, Chase JG. Silicone breast phantoms for elastographic imaging evaluation. Med Phys 2014; 40:063503. [PMID: 23718614 DOI: 10.1118/1.4805096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Breast cancer is a major public health issue for women, and early detection significantly increases survival rate. Currently, there is increased research interest in elastographic soft-tissue imaging techniques based on the correlation between pathology and mechanical stiffness. Anthropomorphic breast phantoms are critical for ex vivo validation of emerging elastographic technologies. This research develops heterogeneous breast phantoms for use in testing elastographic imaging modalities. METHODS Mechanical property estimation of eight different elastomers is performed to determine storage moduli (E') and damping ratios (ζ) using a dynamic mechanical analyzer. Dynamic compression testing was carried out isothermally at room temperature over a range of 4-50 Hz. Silicone compositions with physiologically realistic storage modulus were chosen for mimicking skin adipose, cancerous tumors, and pectoral muscles and 13 anthropomorphic breast phantoms were constructed for ex vivo trials of digital image elastotomography (DIET) breast cancer screening system. A simpler fabrication was used to assess the possibility of multiple tumor detection using magnetic resonance elastography (MRE). RESULTS Silicone materials with ranges of storage moduli (E') from 2 to 570 kPa and damping ratios (ζ) from 0.03 to 0.56 were identified. The resulting phantoms were tested in two different elastographic breast cancer diagnostic modalities. A significant contrast was successfully identified between healthy tissues and cancerous tumors both in MRE and DIET. CONCLUSIONS The phantoms presented promise aid to researchers in elastographic imaging modalities for breast cancer detection and provide a foundation for silicone based phantom materials for mimicking soft tissues of other human organs.
Collapse
Affiliation(s)
- Amer S Kashif
- Centre for Bioengineering, Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand
| | | | | | | | | |
Collapse
|
38
|
McGarry M, Johnson CL, Sutton BP, Van Houten EEW, Georgiadis JG, Weaver JB, Paulsen KD. Including spatial information in nonlinear inversion MR elastography using soft prior regularization. IEEE TRANSACTIONS ON MEDICAL IMAGING 2013; 32:1901-9. [PMID: 23797239 PMCID: PMC4107367 DOI: 10.1109/tmi.2013.2268978] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Tissue displacements required for mechanical property reconstruction in magnetic resonance elastography (MRE) are acquired in a magnetic resonance imaging (MRI) scanner, therefore, anatomical information is available from other imaging sequences. Despite its availability, few attempts to incorporate prior spatial information in the MRE reconstruction process have been reported. This paper implements and evaluates soft prior regularization (SPR), through which homogeneity in predefined spatial regions is enforced by a penalty term in a nonlinear inversion strategy. Phantom experiments and simulations show that when predefined regions are spatially accurate, recovered property values are stable for SPR weighting factors spanning several orders of magnitude, whereas inaccurate segmentation results in bias in the reconstructed properties that can be mitigated through proper choice of regularization weighting. The method was evaluated in vivo by estimating viscoelastic mechanical properties of frontal lobe gray and white matter for five repeated scans of a healthy volunteer. Segmentations of each tissue type were generated using automated software, and statistically significant differences between frontal lobe gray and white matter were found for both the storage modulus and loss modulus . Provided homogeneous property assumptions are reasonable, SPR produces accurate quantitative property estimates for tissue structures which are finer than the resolution currently achievable with fully distributed MRE.
Collapse
Affiliation(s)
| | | | | | | | | | - John B. Weaver
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 USA
- Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| |
Collapse
|
39
|
Non-identifiability of the Rayleigh damping material model in magnetic resonance elastography. Math Biosci 2013; 246:191-201. [PMID: 24018294 DOI: 10.1016/j.mbs.2013.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/24/2013] [Accepted: 08/23/2013] [Indexed: 01/31/2023]
Abstract
Magnetic Resonance Elastography (MRE) is an emerging imaging modality for quantifying soft tissue elasticity deduced from displacement measurements within the tissue obtained by phase sensitive Magnetic Resonance Imaging (MRI) techniques. MRE has potential to detect a range of pathologies, diseases and cancer formations, especially tumors. The mechanical model commonly used in MRE is linear viscoelasticity (VE). An alternative Rayleigh damping (RD) model for soft tissue attenuation is used with a subspace-based nonlinear inversion (SNLI) algorithm to reconstruct viscoelastic properties, energy attenuation mechanisms and concomitant damping behavior of the tissue-simulating phantoms. This research performs a thorough evaluation of the RD model in MRE focusing on unique identification of RD parameters, μI and ρI. Results show the non-identifiability of the RD model at a single input frequency based on a structural analysis with a series of supporting experimental phantom results. The estimated real shear modulus values (μR) were substantially correct in characterising various material types and correlated well with the expected stiffness contrast of the physical phantoms. However, estimated RD parameters displayed consistent poor reconstruction accuracy leading to unpredictable trends in parameter behaviour. To overcome this issue, two alternative approaches were developed: (1) simultaneous multi-frequency inversion; and (2) parametric-based reconstruction. Overall, the RD model estimates the real shear shear modulus (μR) well, but identifying damping parameters (μI and ρI) is not possible without an alternative approach.
Collapse
|
40
|
Moon WK, Chang SC, Chang JM, Cho N, Huang CS, Kuo JW, Chang RF. Classification of breast tumors using elastographic and B-mode features: comparison of automatic selection of representative slice and physician-selected slice of images. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:1147-1157. [PMID: 23562018 DOI: 10.1016/j.ultrasmedbio.2013.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 01/15/2013] [Accepted: 01/25/2013] [Indexed: 06/02/2023]
Abstract
Inter-observer variability and image quality are two key factors that can affect the diagnostic performance of elastography and B-mode ultrasound for breast tumor characterization. The purpose of this study is to use an image quantification method that automatically chooses a representative slice and then segments the tumor contour to evaluate the diagnostic features for tumor characterization. First, the representative slice is selected based on either the stiffness inside the tumor (the signal-to-noise ratio on the elastogram [SNRe]) or the contrast between the tumor and the surrounding normal tissue (the contrast-to-noise ratio on the elastogram [CNRe]). Next, the level set method is used to segment the tumor contour. Finally, the B-mode and elastographic features related to the segmented tumor are extracted for tumor characterization. The performance of the representative slice selected using the proposed methods is compared to that of the physician-selected slice in 151 biopsy-proven lesions (89 benign and 62 malignant). The diagnostic accuracies using elastographic features are 82.1% (124/151) for the slice with the maximum CNRe value, 82.1% (124/151) for the slice with the maximum SNRe value and 82.8% (125/151) for the physician-selected slice, whereas the diagnostic accuracies using B-mode features are 80.8% (122/151) for the slice with the maximum CNRe value, 87.4% (132/151) for the slice with the maximum SNRe value and 84.1% (127/151) for the physician-selected slice. When using both the B-mode and elastographic features to characterize the tumor, the accuracy of diagnosis is 86.1% (130/151) for the slice with the maximum CNRe value, 90.1% (136/151) for the slice with the maximum SNRe value and 89.4% (135/151) for the physician-selected slice. Our results show that the representative slice selected by SNRe and CNRe could be used to reduce the observer variability and to increase the diagnostic performance by the B-mode and elastographic features.
Collapse
Affiliation(s)
- Woo Kyung Moon
- Department of Radiology, Seoul National University Hospital, Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Chen J, Yin M, Glaser KJ, Talwalkar JA, Ehman RL. MR elastography of liver disease: State of the art. APPLIED RADIOLOGY 2013. [DOI: 10.37549/ar1982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
42
|
McGarry MDJ, Van Houten EEW, Johnson CL, Georgiadis JG, Sutton BP, Weaver JB, Paulsen KD. Multiresolution MR elastography using nonlinear inversion. Med Phys 2012; 39:6388-96. [PMID: 23039674 DOI: 10.1118/1.4754649] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Nonlinear inversion (NLI) in MR elastography requires discretization of the displacement field for a finite element (FE) solution of the "forward problem", and discretization of the unknown mechanical property field for the iterative solution of the "inverse problem". The resolution requirements for these two discretizations are different: the forward problem requires sufficient resolution of the displacement FE mesh to ensure convergence, whereas lowering the mechanical property resolution in the inverse problem stabilizes the mechanical property estimates in the presence of measurement noise. Previous NLI implementations use the same FE mesh to support the displacement and property fields, requiring a trade-off between the competing resolution requirements. METHODS This work implements and evaluates multiresolution FE meshes for NLI elastography, allowing independent discretizations of the displacements and each mechanical property parameter to be estimated. The displacement resolution can then be selected to ensure mesh convergence, and the resolution of the property meshes can be independently manipulated to control the stability of the inversion. RESULTS Phantom experiments indicate that eight nodes per wavelength (NPW) are sufficient for accurate mechanical property recovery, whereas mechanical property estimation from 50 Hz in vivo brain data stabilizes once the displacement resolution reaches 1.7 mm (approximately 19 NPW). Viscoelastic mechanical property estimates of in vivo brain tissue show that subsampling the loss modulus while holding the storage modulus resolution constant does not substantially alter the storage modulus images. Controlling the ratio of the number of measurements to unknown mechanical properties by subsampling the mechanical property distributions (relative to the data resolution) improves the repeatability of the property estimates, at a cost of modestly decreased spatial resolution. CONCLUSIONS Multiresolution NLI elastography provides a more flexible framework for mechanical property estimation compared to previous single mesh implementations.
Collapse
Affiliation(s)
- M D J McGarry
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Abramson RG, Arlinghaus LR, Weis JA, Li X, Dula AN, Chekmenev EY, Smith SA, Miga MI, Abramson VG, Yankeelov TE. Current and emerging quantitative magnetic resonance imaging methods for assessing and predicting the response of breast cancer to neoadjuvant therapy. BREAST CANCER-TARGETS AND THERAPY 2012; 2012:139-154. [PMID: 23154619 DOI: 10.2147/bctt.s35882] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reliable early assessment of breast cancer response to neoadjuvant therapy (NAT) would provide considerable benefit to patient care and ongoing research efforts, and demand for accurate and noninvasive early-response biomarkers is likely to increase. Response assessment techniques derived from quantitative magnetic resonance imaging (MRI) hold great potential for integration into treatment algorithms and clinical trials. Quantitative MRI techniques already available for assessing breast cancer response to neoadjuvant therapy include lesion size measurement, dynamic contrast-enhanced MRI, diffusion-weighted MRI, and proton magnetic resonance spectroscopy. Emerging yet promising techniques include magnetization transfer MRI, chemical exchange saturation transfer MRI, magnetic resonance elastography, and hyperpolarized MR. Translating and incorporating these techniques into the clinical setting will require close attention to statistical validation methods, standardization and reproducibility of technique, and scanning protocol design.
Collapse
Affiliation(s)
- Richard G Abramson
- Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA ; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA ; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Glaser KJ, Manduca A, Ehman RL. Review of MR elastography applications and recent developments. J Magn Reson Imaging 2012; 36:757-74. [PMID: 22987755 PMCID: PMC3462370 DOI: 10.1002/jmri.23597] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The technique of MR elastography (MRE) has emerged as a useful modality for quantitatively imaging the mechanical properties of soft tissues in vivo. Recently, MRE has been introduced as a clinical tool for evaluating chronic liver disease, but many other potential applications are being explored. These applications include measuring tissue changes associated with diseases of the liver, breast, brain, heart, and skeletal muscle including both focal lesions (e.g., hepatic, breast, and brain tumors) and diffuse diseases (e.g., fibrosis and multiple sclerosis). The purpose of this review article is to summarize some of the recent developments of MRE and to highlight some emerging applications.
Collapse
Affiliation(s)
| | - Armando Manduca
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
45
|
Garteiser P, Doblas S, Daire JL, Wagner M, Leitao H, Vilgrain V, Sinkus R, Van Beers BE. MR elastography of liver tumours: value of viscoelastic properties for tumour characterisation. Eur Radiol 2012; 22:2169-77. [PMID: 22572989 DOI: 10.1007/s00330-012-2474-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/24/2012] [Accepted: 03/08/2012] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To assess the value of the viscoelastic parameters in the characterisation of liver tumours at MR elastography. PATIENTS AND METHODS Ninety-four patients with liver tumours >1 cm prospectively underwent MR elastography using 50-Hz mechanical waves and a full three-directional motion-sensitive sequence. The model-free viscoelastic parameters (the complex shear modulus and its real and imaginary parts, i.e. the storage and loss moduli) were calculated in 72 lesions after exclusion of cystic, treated or histopathologically undetermined tumours. RESULTS We observed higher absolute shear modulus and loss modulus in malignant versus benign tumours (3.38 ± 0.26 versus 2.41 ± 0.15 kPa, P < 0.01 and 2.25 ± 0.26 versus 1.05 ± 0.13 kPa, P < 0.001, respectively). Moreover, the loss modulus of hepatocellular carcinomas was significantly higher than in benign hepatocellular tumours. The storage modulus did not differ significantly between malignant and benign tumours. The area under the receiver-operating characteristic curve of loss modulus was significantly larger than that of the absolute shear modulus and storage modulus when comparing malignant and benign lesions. CONCLUSIONS The increased loss modulus is a better discriminator between benign and malignant tumours than the increased storage modulus or absolute value of the shear modulus. KEY POINTS • Magnetic Resonance elastography is a new method of assessing the liver. • Increased loss modulus is an indicator of malignancy in hepatic tumours. • Loss modulus is a better discriminator than absolute shear modulus values. • The viscoelastic properties of lesions offer promise for characterising liver tumours.
Collapse
Affiliation(s)
- Philippe Garteiser
- Department of Radiology, University Paris Diderot, Sorbonne Paris Cité, INSERM UMR 773, University Hospitals Paris Nord Val de Seine, Beaujon, 100 boulevard du Général Leclerc, 92118, Clichy Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Johnson CL, Chen DD, Olivero WC, Sutton BP, Georgiadis JG. Effect of off-frequency sampling in magnetic resonance elastography. Magn Reson Imaging 2011; 30:205-12. [PMID: 22055750 DOI: 10.1016/j.mri.2011.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 01/22/2023]
Abstract
In magnetic resonance elastography (MRE), shear waves at a certain frequency are encoded through bipolar gradients that switch polarity at a controlled encoding frequency and are offset in time to capture wave propagation using a controlled sampling frequency. In brain MRE, there is a possibility that the mechanical actuation frequency is different from the vibration frequency, leading to a mismatch with encoding and sampling frequencies. This mismatch can occur in brain MRE from causes both extrinsic and intrinsic to the brain, such as scanner bed vibrations or active damping in the head. The purpose of this work was to investigate how frequency mismatch can affect MRE shear stiffness measurements. Experiments were performed on a dual-medium agarose gel phantom, and the results were compared with numerical simulations to quantify these effects. It is known that off-frequency encoding alone results in a scaling of wave amplitude, and it is shown here that off-frequency sampling can result in two main effects: (1) errors in the overall shear stiffness estimate of the material on the global scale and (2) local variations appearing as stiffer and softer structures in the material. For small differences in frequency, it was found that measured global stiffness of the brain could theoretically vary by up to 12.5% relative to actual stiffness with local variations of up to 3.7% of the mean stiffness. It was demonstrated that performing MRE experiments at a frequency other than that of tissue vibration can lead to artifacts in the MRE stiffness images, and this mismatch could explain some of the large-scale scatter of stiffness data or lack of repeatability reported in the brain MRE literature.
Collapse
Affiliation(s)
- Curtis L Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
47
|
Palmeri ML, Nightingale KR. What challenges must be overcome before ultrasound elasticity imaging is ready for the clinic? IMAGING IN MEDICINE 2011; 3:433-444. [PMID: 22171226 PMCID: PMC3235674 DOI: 10.2217/iim.11.41] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ultrasound elasticity imaging has been a research interest for the past 20 years with the goal of generating novel images of soft tissues based on their material properties (i.e., stiffness and viscosity). The motivation for such an imaging modality lies in the fact that many soft tissues can share similar ultrasonic echogenicities, but may have very different mechanical properties that can be used to clearly visualize normal anatomy and delineate diseased tissues and masses. Recently, elasticity imaging techniques have moved from the laboratory to the clinical setting, where clinicians are beginning to characterize tissue stiffness as a diagnostic metric and commercial implementations of ultrasonic elasticity imaging are beginning to appear on the market. This article provides a foundation for elasticity imaging, an overview of current research and commercial realizations of elasticity imaging technology and a perspective on the current successes, limitations and potential for improvement of these imaging technologies.
Collapse
Affiliation(s)
- Mark L Palmeri
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Anesthesiology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
48
|
McGee KP, Lake D, Mariappan Y, Hubmayr RD, Manduca A, Ansell K, Ehman RL. Calculation of shear stiffness in noise dominated magnetic resonance elastography data based on principal frequency estimation. Phys Med Biol 2011; 56:4291-309. [PMID: 21701049 PMCID: PMC3144863 DOI: 10.1088/0031-9155/56/14/006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Magnetic resonance elastography (MRE) is a non-invasive phase-contrast-based method for quantifying the shear stiffness of biological tissues. Synchronous application of a shear wave source and motion encoding gradient waveforms within the MRE pulse sequence enable visualization of the propagating shear wave throughout the medium under investigation. Encoded shear wave-induced displacements are then processed to calculate the local shear stiffness of each voxel. An important consideration in local shear stiffness estimates is that the algorithms employed typically calculate shear stiffness using relatively high signal-to-noise ratio (SNR) MRE images and have difficulties at an extremely low SNR. A new method of estimating shear stiffness based on the principal spatial frequency of the shear wave displacement map is presented. Finite element simulations were performed to assess the relative insensitivity of this approach to decreases in SNR. Additionally, ex vivo experiments were conducted on normal rat lungs to assess the robustness of this approach in low SNR biological tissue. Simulation and experimental results indicate that calculation of shear stiffness by the principal frequency method is less sensitive to extremely low SNR than previously reported MRE inversion methods but at the expense of loss of spatial information within the region of interest from which the principal frequency estimate is derived.
Collapse
Affiliation(s)
- K P McGee
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
O'Flynn EAM, DeSouza NM. Functional magnetic resonance: biomarkers of response in breast cancer. Breast Cancer Res 2011; 13:204. [PMID: 21392409 PMCID: PMC3109577 DOI: 10.1186/bcr2815] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Functional magnetic resonance (MR) encompasses a spectrum of techniques that depict physiological and molecular processes before morphological changes are visible on conventional imaging. As understanding of the pathophysiological and biomolecular processes involved in breast malignancies evolves, newer functional MR techniques can be employed that define early predictive and surrogate biomarkers for monitoring response to chemotherapy. Neoadjuvant chemotherapy is increasingly used in women with primary breast malignancies to down-stage the tumour and enable successful breast conservation surgery. It also plays a role in the treatment of undetected micrometastases. Cardinal physiological features of tumours that occur as a result of interactions between cancer cells, stromal cells and secreted factors and cytokines and how they change with treatment provide the opportunity to detect changes in the tumour microenvironment prior to any morphological change. Through sequential imaging, tumour response can be assessed and non-responders can be identified early to enable alternative therapies to be considered. This review summarises the functional magnetic resonance biomarkers of response in patients with breast cancer that are currently available and under development. We describe the current state of each biomarker and explore their potential clinical uses and limitations in assessing treatment response. With the aid of selected interesting cases, biomarkers related to dynamic contrast-enhanced MRI, diffusion-weighted MRI, T2*/BOLD and MR spectroscopy are described and illustrated. The potential of newer approaches, such as MR elastography, are also reviewed.
Collapse
Affiliation(s)
- Elizabeth A M O'Flynn
- Clinical Magnetic Resonance Group, Institute of Cancer Research, Royal Marsden NHS Foundation Trust, Sutton, Surrey, SM2 5PT, UK.
| | | |
Collapse
|
50
|
Medeiros LR, Duarte CS, Rosa DD, Edelweiss MI, Edelweiss M, Silva FR, Winnnikow EP, Simões Pires PD, Rosa MI. Accuracy of magnetic resonance in suspicious breast lesions: a systematic quantitative review and meta-analysis. Breast Cancer Res Treat 2011; 126:273-85. [PMID: 21221772 DOI: 10.1007/s10549-010-1326-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/20/2010] [Indexed: 12/21/2022]
Abstract
Dynamic contrast-enhanced breast magnetic resonance (MR) is a promising emerging technique for evaluating breast lesions. A quantitative systematic review was performed to estimate the accuracy of breast MR in the diagnosis of high-risk breast lesions and breast cancer. A comprehensive search of the Cochrane Library, MEDLINE, CANCERLIT, LILACS, and EMBASE databases was performed from January 1985 to August 2010. The medical subjects heading (MeSH) and text words for the terms "breast neoplasm", "breast lesions", "breast cancer" and "magnetic resonance" were combined with the MeSH term diagnosis ("sensitivity and specificity"). Studies that compared breast MR with paraffin-embedded sections parameters for the diagnosis of breast lesions (benign, high-risk borderline, and breast cancer) were included. Sixty-nine studies were analyzed, which included 9,298 women with 9,884 breast lesions. Interrater overall agreement between breast MR and paraffin section diagnosis was 79% (κ = 0.55), indicating moderate agreement. Pooled sensitivity and specificity were 90% [95% CI 88-92%] and 75% [95% CI 70-79%], respectively. The pooled likelihood positive ratio was 3.64 (95% CI 3.0-4.2) and the negative ratio was 0.12 (95% CI 0.09-0.15). For breast cancer or high-risk lesions versus benign lesions, the AUC was 0.91 for breast MR and the point Q* was 0.84. In summary, breast MR is a useful pre-operative test for predicting the diagnosis of breast lesions.
Collapse
Affiliation(s)
- Lidia Rosi Medeiros
- Postgraduate Program in Medicine, Medical Sciences at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|