1
|
Breuer K, Weick S, Ströhle SP, Breuer FA, Kleine P, Veldhoen S, Richter A, Lapa C, Flentje M, Polat B. Feasibility of 4D T2* quantification in the lung with oxygen gas challenge in patients with non-small cell lung cancer. Phys Med 2020; 72:46-51. [PMID: 32200297 DOI: 10.1016/j.ejmp.2020.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/28/2020] [Accepted: 03/04/2020] [Indexed: 10/24/2022] Open
Abstract
Blood oxygen level-dependent (BOLD) MRI is a non-invasive diagnostic method for assessing tissue oxygenation level, by changes in the transverse relaxation time T2*. 3D BOLD imaging of lung tumours is challenging, because respiratory motion can lead to significant image quality degradation. The purpose of this work was to explore the feasibility of a three dimensional (3D) Cartesian multi gradient echo (MGRE) sequence for T2* measurements of non-small cell lung tumours during free-breathing. A non-uniform quasi-random reordering of the pahse encoding lines that allocates more sampling points near the k-space origin resulting in efficient undersampling pattern for parallel imaging was combined with multi echo acquisition and self-gating. In a series of three patients 3D T2* maps of lung carcinomas were generated with isotropic spatial resolution and full tumour coverage at air inhalation and after hyperoxic gas challenge in arbitrary respiratory phases using the proposed self-gated MGRE acquisition. The changes in T2* on the inhalation of hyperoxic gas relative to air were quantified. Significant changes in T2* were observed following oxygen inhalation in the tumour (p < 0.02). Thus, the self-gated MGRE sequence can be used for assessment of BOLD signal with isotropic resolution and arbitrary respiratory phases in non-small cell lung cancer.
Collapse
Affiliation(s)
- Kathrin Breuer
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany.
| | - Stefan Weick
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Serge-Peer Ströhle
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Felix A Breuer
- Magnetic Resonance and X-Ray Imaging Department, Fraunhofer Institute for Integrated Circuits (IIS), Würzburg, Germany
| | - Philip Kleine
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Simon Veldhoen
- Department of Radiology, University of Würzburg, Würzburg, Germany
| | - Anne Richter
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Bülent Polat
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Dependency of the blood oxygen level dependent-response to hyperoxic challenges on the order of gas administration in intracranial malignancies. Neuroradiology 2019; 61:783-793. [PMID: 30949747 DOI: 10.1007/s00234-019-02200-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/12/2019] [Indexed: 01/21/2023]
Abstract
PURPOSE Literature reports contradicting results on the response of brain tumors to vascular stimuli measured in T2*-weighted MRI. Here, we analyzed the potential dependency of the MRI-response to (hypercapnic) hyperoxia on the order of the gas administration. METHODS T2* values were quantified at 3 Tesla in eight consenting patients at rest and during inhalation of hyperoxic/hypercapnic gas mixtures. Patients were randomly divided into two groups undergoing different gas administration protocols (group A: medical air-pure oxygen-carbogen; group B: medical air-carbogen-pure oxygen). Mann-Whitney U test and Wilcoxon signed rank test have been used to proof differences in T2* regarding respiratory challenge or different groups, respectively. RESULTS T2* values at rest for gray and white matter were 50.3 ± 2.6 ms and 46.1 ± 2.0 ms, respectively, and slightly increased during challenge. In tumor areas, T2* at rest were: necrosis = 74.1 ± 10.1 ms; edema = 60.3 ± 17.6 ms; contrast-enhancing lesions = 48.6 ± 20.7 ms; and solid T2-hyperintense lesions = 45.0 ± 3.0 ms. Contrast-enhancing lesions strongly responded to oxygen (+ 20.7%) regardless on the gas protocol (p = 0.482). However, the response to carbogen significantly depended on the order of gas administration (group A, + 18.6%; group B, - 6.4%, p = 0.042). In edemas, a different trend between group was found when breathing oxygen (group A, - 9.9%; group B, + 19.5%, p = 0.057). CONCLUSION Preliminary results show a dependency of the T2* response of contrast-enhancing brain tumor lesions on the order of the gas administration. The gas administration protocol is an important factor in the interpretation of the T2*-response in areas of abnormal vascular growth.
Collapse
|
3
|
Özbay PS, Stieb S, Rossi C, Riesterer O, Boss A, Weiss T, Kuhn FP, Pruessmann KP, Nanz D. Lesion magnetic susceptibility response to hyperoxic challenge: A biomarker for malignant brain tumor microenvironment? Magn Reson Imaging 2017; 47:147-153. [PMID: 29221966 DOI: 10.1016/j.mri.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE Quantitative susceptibility mapping has been previously used to differentiate lesions in patients with brain tumors. The aim of this work was to characterize the response of magnetic susceptibility differences in malignant brain tumors and surrounding edema to hyperoxic and hypercapnic respiratory challenges. METHODS Images of malignant brain tumor patients (2 glioblastoma multiforme, 2 anaplastic astrocytoma, 1 brain metastasis) with clinical MRI exams (contrast-enhanced T1w) were acquired at 3T. 3D multi-gradient-echo data sets were acquired while the patients inhaled medical-air (21% O2), oxygen (100% O2), and carbogen (95% O2, 5% CO2). Susceptibility maps were generated from real and imaginary data. Regions of interest were analyzed with respect to respiration-gas-induced susceptibility changes. RESULTS Contrast-enhancing tumor regions with high baseline magnetic susceptibility exhibited a marked susceptibility reduction under hyperoxic challenges, with a stronger effect (-0.040 to -0.100ppm) under hypercapnia compared to hyperoxia (-0.010 to -0.067ppm). In contrast, regions attributed to necrotic tissue and to edema showed smaller changes of opposite sign, i.e. paramagnetic shift. There was a correlation between malignant tumor tissue magnetic susceptibility at baseline under normoxia and the corresponding susceptibility reduction under hypercapnia and - to a lesser degree - under hyperoxia. CONCLUSION In this small cohort of analysis, quantification of susceptibility changes in response to respiratory challenges allowed a complementary, functional differentiation of tumorous sub-regions. Those changes, together with the correlations observed between baseline susceptibility under normoxia and susceptibility reduction with challenges, could prove helpful for a non-invasive characterization of local tumor microenvironment.
Collapse
Affiliation(s)
- Pinar Senay Özbay
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich and University of Zurich, Switzerland; Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Switzerland; Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Sonja Stieb
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Switzerland
| | - Cristina Rossi
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich and University of Zurich, Switzerland
| | - Oliver Riesterer
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Switzerland
| | - Andreas Boss
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich and University of Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, University Hospital Zurich and University of Zurich, Switzerland
| | - Felix Pierre Kuhn
- Department of Nuclear Medicine, University Hospital Zurich and University of Zurich, Switzerland
| | - Klaas Paul Pruessmann
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Switzerland
| | - Daniel Nanz
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich and University of Zurich, Switzerland; Swiss Center for Musculoskeletal Imaging, Balgrist Campus AG, Zurich
| |
Collapse
|
4
|
Poublanc J, Crawley AP, Sobczyk O, Montandon G, Sam K, Mandell DM, Dufort P, Venkatraghavan L, Duffin J, Mikulis DJ, Fisher JA. Measuring cerebrovascular reactivity: the dynamic response to a step hypercapnic stimulus. J Cereb Blood Flow Metab 2015; 35:1746-56. [PMID: 26126862 PMCID: PMC4635229 DOI: 10.1038/jcbfm.2015.114] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 11/09/2022]
Abstract
We define cerebral vascular reactivity (CVR) as the ratio of the change in blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) signal (S) to an increase in blood partial pressure of CO2 (PCO2): % Δ S/Δ PCO2 mm Hg. Our aim was to further characterize CVR into dynamic and static components and then study 46 healthy subjects collated into a reference atlas and 20 patients with unilateral carotid artery stenosis. We applied an abrupt boxcar change in PCO2 and monitored S. We convolved the PCO2 with a set of first-order exponential functions whose time constant τ was increased in 2-second intervals between 2 and 100 seconds. The τ corresponding to the best fit between S and the convolved PCO2 was used to score the speed of response. Additionally, the slope of the regression between S and the convolved PCO2 represents the steady-state CVR (ssCVR). We found that both prolongations of τ and reductions in ssCVR (compared with the reference atlas) were associated with the reductions in CVR on the side of the lesion. τ and ssCVR are respectively the dynamic and static components of measured CVR.
Collapse
Affiliation(s)
- Julien Poublanc
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Adrian P Crawley
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Olivia Sobczyk
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Gaspard Montandon
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Kevin Sam
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Daniel M Mandell
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Paul Dufort
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | | | - James Duffin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Anaesthesia and Pain Management, University Health Network, Toronto, Ontario, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Joseph A Fisher
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Department of Anaesthesia and Pain Management, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Hattingen E, Jurcoane A, Nelles M, Müller A, Nöth U, Mädler B, Mürtz P, Deichmann R, Schild HH. Quantitative MR Imaging of Brain Tissue and Brain Pathologies. Clin Neuroradiol 2015. [PMID: 26223371 DOI: 10.1007/s00062-015-0433-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Measurement of basic quantitative magnetic resonance (MR) parameters (e.g., relaxation times T1, T2*, T2 or respective rates R (1/T)) corrected for radiofrequency (RF) coil bias yields different conventional and new tissue contrasts as well as volumes for tissue segmentation. This approach also provides quantitative measures of microstructural and functional tissue changes. We herein demonstrate some prospects of quantitative MR imaging in neurological diagnostics and science.
Collapse
Affiliation(s)
- E Hattingen
- Neuroradiologie, Radiologische Klinik des Universitätsklinikums Bonn, Sigmund Freud Strasse 25, 53127, Bonn, Germany.
| | - A Jurcoane
- Neuroradiologie, Radiologische Klinik des Universitätsklinikums Bonn, Sigmund Freud Strasse 25, 53127, Bonn, Germany
| | - M Nelles
- Neuroradiologie, Radiologische Klinik des Universitätsklinikums Bonn, Sigmund Freud Strasse 25, 53127, Bonn, Germany
| | - A Müller
- Neuroradiologie, Radiologische Klinik des Universitätsklinikums Bonn, Sigmund Freud Strasse 25, 53127, Bonn, Germany
| | - U Nöth
- Brain Imaging Center, Universitätsklinikum Frankfurt, Frankfurt/Main, Germany
| | - B Mädler
- Philips Medical Systems, Philips GmbH, Hamburg, Germany
| | - P Mürtz
- Neuroradiologie, Radiologische Klinik des Universitätsklinikums Bonn, Sigmund Freud Strasse 25, 53127, Bonn, Germany
| | - R Deichmann
- Brain Imaging Center, Universitätsklinikum Frankfurt, Frankfurt/Main, Germany
| | - H H Schild
- Radiologische Klinik des Universitätsklinikums Bonn, Sigmund Freud Strasse 25, 53127, Bonn, Germany
| |
Collapse
|
6
|
Thews O, Vaupel P. Spatial oxygenation profiles in tumors during normo- and hyperbaric hyperoxia. Strahlenther Onkol 2015; 191:875-82. [PMID: 26135917 DOI: 10.1007/s00066-015-0867-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/06/2015] [Indexed: 11/24/2022]
Abstract
BACKGROUND Inspiratory hyperoxia reduces tumor hypoxia, which is responsible for limited radiosensitivity of tumors. However, very little is known about the heterogeneity of intratumoral oxygenation during this supportive treatment. The study analyzes whether local hypoxia is still present during normobaric and hyperbaric inspiratory hyperoxia and whether the addition of CO2 to the inspiratory gas affects the spatial pO2 distribution. MATERIAL AND METHODS Tumor oxygenation of experimental DS-sarcomas in rats was assessed by polarographic needle electrodes at 1 and 2 atm (bar) environmental pressure during pure O2 or carbogen (95 % O2 + 5 % CO2) breathing. Up to 320 individual pO2 measurements were performed in a strictly oriented grid resulting in an oxygenation profile in a horizontal tumor layer. RESULTS In the experimental tumors used the oxygenation showed pronounced heterogeneities with closely adjacent hypoxic and oxygenated regions. This heterogeneity was still visible under normobaric hyperoxia where large confluent hypoxic regions were detectable. At 1 atm, the addition of CO2 improved tumor oxygenation significantly (at least in large tumors). At 2 atm, only very small local regions of hypoxia were detected. However, under this condition hypercapnia had no impact on tumor oxygenation. CONCLUSIONS The data show that even under hyperbaric hyperoxia, hypoxic regions are detectable despite the average pO2 increased by a factor of 100. The results also clearly indicate that the oxygenation pattern improves disproportionally with increasing environmental pressure.
Collapse
Affiliation(s)
- Oliver Thews
- Institute of Physiology, University of Halle, Magdeburger Str. 6, 06112, Halle (Saale), Germany.
| | - Peter Vaupel
- Department of Radiooncology and Radiotherapy, Tumor Pathophysiology Section, University Medical Center, 55131, Mainz, Germany
| |
Collapse
|
7
|
Gotzamanis G, Kocian R, Özbay PS, Redle M, Kollias S, Eberhardt C, Boss A, Nanz D, Rossi C. In vivo quantification of cerebral r2*-response to graded hyperoxia at 3 tesla. J Clin Imaging Sci 2015; 5:1. [PMID: 25806136 PMCID: PMC4322383 DOI: 10.4103/2156-7514.150439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/22/2015] [Indexed: 11/13/2022] Open
Abstract
Objectives: This study aims to quantify the response of the transverse relaxation rate of the magnetic resonance (MR) signal of the cerebral tissue in healthy volunteers to the administration of air with step-wise increasing percentage of oxygen. Materials and Methods: The transverse relaxation rate (R2*) of the MR signal was quantified in seven volunteers under respiratory intake of normobaric gas mixtures containing 21, 50, 75, and 100% oxygen, respectively. End-tidal breath composition, arterial blood saturation (SaO2), and heart pulse rate were monitored during the challenge. R2* maps were computed from multi-echo, gradient-echo magnetic resonance imaging (MRI) data, acquired at 3.0T. The average values in the segmented white matter (WM) and gray matter (GM) were tested by the analysis of variance (ANOVA), with Bonferroni post-hoc correction. The GM R2*-reactivity to hyperoxia was modeled using the Hill's equation. Results: Graded hyperoxia resulted in a progressive and significant (P < 0.05) decrease of the R2* in GM. Under normoxia the GM-R2* was 17.2 ± 1.1 s-1. At 75% O2 supply, the R2* had reached a saturation level, with 16.4 ± 0.7 s-1 (P = 0.02), without a significant further decrease for 100% O2. The R2*-response of GM correlated positively with CO2 partial pressure (R = 0.69 ± 0.19) and negatively with SaO2 (R = -0.74 ± 0.17). The WM showed a similar progressive, but non-significant, decrease in the relaxation rates, with an increase in oxygen intake (P = 0.055). The Hill's model predicted a maximum R2* response of the GM, of 3.5%, with half the maximum at 68% oxygen concentration. Conclusions: The GM-R2* responds to hyperoxia in a concentration-dependent manner, suggesting that monitoring and modeling of the R2*-response may provide new oxygenation biomarkers for tumor therapy or assessment of cerebrovascular reactivity in patients.
Collapse
Affiliation(s)
- Grigorios Gotzamanis
- Department of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland ; Klinikum Dritter Orden, Center for Radiology and Nuclear Medicine, Munich, Germany
| | - Roman Kocian
- Department of Anesthesiology, University Hospital of Zurich, Zurich, Switzerland
| | - Pinar S Özbay
- Department of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland ; Institute for Biomedical Engineering, Eidgenössische Technische Hochschule (ETH), Zurich, Switzerland
| | - Manuel Redle
- Department of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland
| | - Spyridon Kollias
- Department of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland
| | - Christian Eberhardt
- Department of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland
| | - Andreas Boss
- Department of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland
| | - Daniel Nanz
- Department of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland
| | - Cristina Rossi
- Department of Diagnostic and Interventional Radiology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Liu Z, Liao H, Yin J, Li Y. Using R2* values to evaluate brain tumours on magnetic resonance imaging: Preliminary results. Eur Radiol 2013; 24:693-702. [DOI: 10.1007/s00330-013-3057-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
|
9
|
Siero JC, Bhogal A, Jansma JM. Blood Oxygenation Level–dependent/Functional Magnetic Resonance Imaging. PET Clin 2013; 8:329-44. [DOI: 10.1016/j.cpet.2013.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Hallac RR, Ding Y, Yuan Q, McColl RW, Lea J, Sims RD, Weatherall PT, Mason RP. Oxygenation in cervical cancer and normal uterine cervix assessed using blood oxygenation level-dependent (BOLD) MRI at 3T. NMR IN BIOMEDICINE 2012; 25:1321-30. [PMID: 22619091 PMCID: PMC3445718 DOI: 10.1002/nbm.2804] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/27/2012] [Accepted: 03/16/2012] [Indexed: 05/19/2023]
Abstract
Hypoxia is reported to be a biomarker for poor prognosis in cervical cancer. However, a practical noninvasive method is needed for the routine clinical evaluation of tumor hypoxia. This study examined the potential use of blood oxygenation level-dependent (BOLD) contrast MRI as a noninvasive technique to assess tumor vascular oxygenation at 3T. Following Institutional Review Board-approved informed consent and in compliance with the Health Insurance Portability and Accountability Act, successful results were achieved in nine patients with locally advanced cervical cancer [International Federation of Gynecology and Obstetrics (FIGO) stage IIA to IVA] and three normal volunteers. In the first four patients, dynamic T₂*-weighted MRI was performed in the transaxial plane using a multi-shot echo planar imaging sequence whilst patients breathed room air followed by oxygen (15 dm³/min). Later, a multi-echo gradient echo examination was added to provide quantitative R₂* measurements. The baseline T₂*-weighted signal intensity was quite stable, but increased to various extents in tumors on initiation of oxygen breathing. The signal in normal uterus increased significantly, whereas that in the iliacus muscle did not change. R₂* responded significantly in healthy uterus, cervix and eight cervical tumors. This preliminary study demonstrates that BOLD MRI of cervical cancer at 3T is feasible. However, more patients must be evaluated and followed clinically before any prognostic value can be determined.
Collapse
Affiliation(s)
- Rami R Hallac
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hemodynamic response imaging: a potential tool for the assessment of angiogenesis in brain tumors. PLoS One 2012; 7:e49416. [PMID: 23209575 PMCID: PMC3507885 DOI: 10.1371/journal.pone.0049416] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/10/2012] [Indexed: 11/29/2022] Open
Abstract
Blood oxygenation level dependence (BOLD) imaging under either hypercapnia or hyperoxia has been used to study neuronal activation and for assessment of various brain pathologies. We evaluated the benefit of a combined protocol of BOLD imaging during both hyperoxic and hypercapnic challenges (termed hemodynamic response imaging (HRI)). Nineteen healthy controls and seven patients with primary brain tumors were included: six with glioblastoma (two newly diagnosed and four with recurrent tumors) and one with atypical-meningioma. Maps of percent signal intensity changes (ΔS) during hyperoxia (carbogen; 95%O2+5%CO2) and hypercapnia (95%air+5%CO2) challenges and vascular reactivity mismatch maps (VRM; voxels that responded to carbogen with reduced/absent response to CO2) were calculated. VRM values were measured in white matter (WM) and gray matter (GM) areas of healthy subjects and used as threshold values in patients. Significantly higher response to carbogen was detected in healthy subjects, compared to hypercapnia, with a GM/WM ratio of 3.8 during both challenges. In patients with newly diagnosed/treatment-naive tumors (n = 3), increased response to carbogen was detected with substantially increased VRM response (compared to threshold values) within and around the tumors. In patients with recurrent tumors, reduced/absent response during both challenges was demonstrated. An additional finding in 2 of 4 patients with recurrent glioblastoma was a negative response during carbogen, distant from tumor location, which may indicate steal effect. In conclusion, the HRI method enables the assessment of blood vessel functionality and reactivity. Reference values from healthy subjects are presented and preliminary results demonstrate the potential of this method to complement perfusion imaging for the detection and follow up of angiogenesis in patients with brain tumors.
Collapse
|
12
|
Remmele S, Sprinkart AM, Müller A, Träber F, von Lehe M, Gieseke J, Flacke S, Willinek WA, Schild HH, Sénégas J, Keupp J, Mürtz P. Dynamic and simultaneous MR measurement of R1 and R2* changes during respiratory challenges for the assessment of blood and tissue oxygenation. Magn Reson Med 2012; 70:136-46. [PMID: 22926895 DOI: 10.1002/mrm.24458] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 11/06/2022]
Abstract
This work presents a novel method for the rapid and simultaneous measurement of R1 and R2* relaxation rates. It is based on a dynamic short repetition time steady-state spoiled multigradient-echo sequence and baseline R1 and B1 measurements. The accuracy of the approach was evaluated in simulations and a phantom experiment. The sensitivity and specificity of the method were demonstrated in one volunteer and in four patients with intracranial tumors during carbogen inhalation. We utilized (ΔR2*, ΔR1) scatter plots to analyze the multiparametric response amplitude of each voxel within an area of interest. In normal tissue R2* decreased and R1 increased moderately in response to the elevated blood and tissue oxygenation. A strong negative ΔR2* and ΔR1 response was observed in veins and some tumor areas. Moderate positive ΔR2* and ΔR1 response amplitudes were found in fluid-rich tissue as in cerebrospinal fluid, peritumoral edema, and necrotic areas. The multiparametric approach was shown to increase the specificity and sensitivity of oxygen-enhanced MRI compared to measuring ΔR2* or ΔR1 alone. It is thus expected to provide an optimal tool for the identification of tissue areas with low oxygenation, e.g., in tumors with compromised oxygen supply.
Collapse
|
13
|
Hsu YY, Chu WC, Lim KE, Liu HL. Vascular space occupancy MRI during breathholding at 3 Tesla. J Magn Reson Imaging 2012; 36:1179-85. [PMID: 22791565 DOI: 10.1002/jmri.23745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 06/01/2012] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To evaluate the vasodilatory response of normal human brain and meningiomas under repeated breathholding challenges using vascular space occupancy (VASO) MRI at 3 Tesla (T). MATERIALS AND METHODS Five normal volunteers and five patients with meningiomas were recruited for this study. For the normal group, VASO MRI during repeated breathholds of different duration (5 to 30 s) was acquired. Patients performed a 15-s breathhold paradigm for VASO MRI. The maximum signal change and full-width at half-maximum (FWHM) were determined by curve fitting. RESULTS Significant VASO signal decreases in the gray matter could be detected for a breathhold period as short as 5 s. The fractional activation volume vs. breathhold duration reached a plateau around 34.21 ± 3.39% at 15 s. In the patient group, there were significant VASO signal decreases in normal gray matters and also in small areas of three large-sized meningiomas. CONCLUSION The 3T VASO MRI detected significant signal decreases in the gray matter, but not in the white matter, during short periods of breathholding. The fractional activation volume reached the plateau at 15-s breathhold, which is recommended for clinical application.
Collapse
Affiliation(s)
- Yuan-Yu Hsu
- Department of Medical Imaging, Buddhist Tzu Chi General Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|