1
|
Madrid J, Agarwal P, Müller-Peltzer K, Benning L, Selig M, Rolauffs B, Diehl P, Kalbhenn J, Trummer G, Utzolino S, Wengenmayer T, Busch HJ, Stolz D, Rieg S, Panning M, Bamberg F, Schlett CL, Askani E. Cardioprotective effects of vaccination in hospitalized patients with COVID-19. Clin Exp Med 2024; 24:103. [PMID: 38758248 PMCID: PMC11101587 DOI: 10.1007/s10238-024-01367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
COVID-19 vaccination has been shown to prevent and reduce the severity of COVID-19 disease. The aim of this study was to explore the cardioprotective effect of COVID-19 vaccination in hospitalized COVID-19 patients. In this retrospective, single-center cohort study, we included hospitalized COVID-19 patients with confirmed vaccination status from July 2021 to February 2022. We assessed outcomes such as acute cardiac events and cardiac biomarker levels through clinical and laboratory data. Our analysis covered 167 patients (69% male, mean age 58 years, 42% being fully vaccinated). After adjustment for confounders, vaccinated hospitalized COVID-19 patients displayed a reduced relative risk for acute cardiac events (RR: 0.33, 95% CI [0.07; 0.75]) and showed diminished troponin T levels (Cohen's d: - 0.52, 95% CI [- 1.01; - 0.14]), compared to their non-vaccinated peers. Type 2 diabetes (OR: 2.99, 95% CI [1.22; 7.35]) and existing cardiac diseases (OR: 4.31, 95% CI [1.83; 10.74]) were identified as significant risk factors for the emergence of acute cardiac events. Our findings suggest that COVID-19 vaccination may confer both direct and indirect cardioprotective effects in hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Julian Madrid
- Department of Cardiology, Pneumology, Angiology, Acute Geriatrics and Intensive Care, Ortenau Klinikum, Klostenstraße 19, 77933, Lahr/Schwarzwald, Germany.
| | - Prerana Agarwal
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Katharina Müller-Peltzer
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Leo Benning
- University Emergency Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Diehl
- Department of Cardiology, Pneumology, Angiology, Acute Geriatrics and Intensive Care, Ortenau Klinikum, Klostenstraße 19, 77933, Lahr/Schwarzwald, Germany
| | - Johannes Kalbhenn
- Department of Anesthesiology and Intensive Care Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg Trummer
- Department of Cardiovascular Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Utzolino
- Department of General and Visceral Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Wengenmayer
- Interdisciplinary Medical Intensive Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Jörg Busch
- University Emergency Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daiana Stolz
- Clinic of Respiratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Siegbert Rieg
- Division of Infectious Diseases, Department of Medicine II, Medical Center -University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Esther Askani
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|
2
|
Madrid J, Agarwal P, Müller-Peltzer K, Askani M, Benning L, Selig M, Diehl P, Kalbhenn J, Trummer G, Utzolino S, Wengenmayer T, Busch HJ, Stolz D, Rieg S, Panning M, Schlett CL, Bamberg F, Askani E. Vaccination protects against acute respiratory distress syndrome (ARDS) in hospitalized patients with COVID-19. Clin Exp Med 2024; 24:21. [PMID: 38280024 PMCID: PMC10822002 DOI: 10.1007/s10238-023-01293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/28/2023] [Indexed: 01/29/2024]
Abstract
This study aimed to analyze the effect of COVID-19 vaccination on the occurrence of ARDS in hospitalized COVID-19 patients. The study population of this retrospective, single-center cohort study consisted of hospitalized COVID-19 patients with known vaccination status and chest computed tomography imaging between July 2021 and February 2022. The impact of vaccination on ARDS in COVID-19 patients was assessed through logistic regression adjusting for demographic differences and confounding factors with statistical differences determined using confidence intervals and effect sizes. A total of 167 patients (69% male, average age 58 years, 95% CI [55; 60], 42% fully vaccinated) were included in the data analysis. Vaccinated COVID-19 patients had a reduced relative risk (RR) of developing ARDS (RR: 0.40, 95% CI [0.21; 0.62]). Consequently, non-vaccinated hospitalized patients had a 2.5-fold higher probability of developing ARDS. This risk reduction persisted after adjusting for several confounding variables (RR: 0.64, 95% CI [0.29; 0.94]) in multivariate analysis. The protective effect of COVID-19 vaccination increased with ARDS severity (RR: 0.61, 95% CI [0.37; 0.92]). Particularly, patients under 60 years old were at risk for ARDS onset and seemed to benefit from COVID-19 vaccination (RR: 0.51, 95% CI [0.20; 0.90]). COVID-19 vaccination showed to reduce the risk of ARDS occurrence in hospitalized COVID-19 patients, with a particularly strong effect in patients under 60 years old and those with more severe ARDS.
Collapse
Affiliation(s)
- Julian Madrid
- Department of Cardiology, Pneumology, Angiology, Acute Geriatrics and Intensive Care, Ortenau Klinikum, Klostenstraße 19, 77933, Lahr/Schwarzwald, Germany.
| | - Prerana Agarwal
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Katharina Müller-Peltzer
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Marvin Askani
- Department of Protestant Theology, Faculty of Theology, University of Heidelberg, Heidelberg, Germany
| | - Leo Benning
- University Emergency Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Diehl
- Department of Cardiology, Pneumology, Angiology, Acute Geriatrics and Intensive Care, Ortenau Klinikum, Klostenstraße 19, 77933, Lahr/Schwarzwald, Germany
| | - Johannes Kalbhenn
- Department of Anesthesiology and Intensive Care Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg Trummer
- Department of Cardiovascular Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Utzolino
- Department of General and Visceral Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Wengenmayer
- Interdisciplinary Medical Intensive Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans-Jörg Busch
- University Emergency Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daiana Stolz
- Clinic of Respiratory Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Siegbert Rieg
- Division of Infectious Diseases, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Esther Askani
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|
3
|
Askani E, Mueller-Peltzer K, Madrid J, Knoke M, Hasic D, Schlett CL, Bamberg F, Agarwal P. Pulmonary computed tomographic manifestations of COVID-19 in vaccinated and non-vaccinated patients. Sci Rep 2023; 13:6884. [PMID: 37105996 PMCID: PMC10134716 DOI: 10.1038/s41598-023-33942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to analyze computed tomographic (CT) imaging features of vaccinated and non-vaccinated COVID-19 patients. The study population of this retrospective single-center cohort study consisted of hospitalized COVID-19 patients who received a chest CT at the study site between July 2021 and February 2022. Qualitative scoring systems (RSNA, CO-RADS, COV-RADS), imaging pattern analysis and semi-quantitative scoring of lung changes were assessed. 105 patients (70,47% male, 62.1 ± 16.79 years, 53.3% fully vaccinated) were included in the data analysis. A significant association between vaccination status and the presence of the crazy-paving pattern was observed in univariate analysis and persisted after step-wise adjustment for possible confounders in multivariate analysis (RR: 2.19, 95% CI: [1.23, 2.62], P = 0.024). Scoring systems for probability assessment of the presence of COVID-19 infection showed a significant correlation with the vaccination status in univariate analysis; however, the associations were attenuated after adjustment for virus variant and stage of infection. Semi-quantitative assessment of lung changes due to COVID-19 infection revealed no association with vaccination status. Non-vaccinated patients showed a two-fold higher probability of the crazy-paving pattern compared to vaccinated patients. COVID-19 variants could have a significant impact on the CT-graphic appearance of COVID-19.
Collapse
Affiliation(s)
- Esther Askani
- Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg im Breisgau, Freiburg, Germany.
| | - Katharina Mueller-Peltzer
- Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg im Breisgau, Freiburg, Germany
| | - Julian Madrid
- Department of Cardiology, Pneumology, Angiology and Intensive Care, Ortenau Klinikum, Lahr, Germany
| | - Marvin Knoke
- Department of Protestant Theology, Faculty of Theology, University of Heidelberg, Heidelberg, Germany
| | - Dunja Hasic
- Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg im Breisgau, Freiburg, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg im Breisgau, Freiburg, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg im Breisgau, Freiburg, Germany
| | - Prerana Agarwal
- Department of Diagnostic and Interventional Radiology, Medical Center, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg im Breisgau, Freiburg, Germany
| |
Collapse
|
4
|
Sheshadri A, Sacks NC, Healey B, Cyr P, Boerner G, Huang HJ. The healthcare resource utilization and costs of chronic lung allograft dysfunction following lung transplantation in patients with commercial insurance in the United States. J Med Econ 2022; 25:650-659. [PMID: 35502563 DOI: 10.1080/13696998.2022.2071065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AIMS Chronic lung allograft dysfunction (CLAD), a common complication of lung transplantation, is the leading cause of death for lung transplant recipients. While data on lung transplant costs are available, the impact of CLAD on healthcare resource use (HRU) and cost is not well understood. The primary objective was to quantify the HRU and costs of CLAD in the US using real-world data. METHODS A longitudinal retrospective analysis was performed of commercial claims data from the IQVIA PharMetrics Plus database for patients aged 18-64 who underwent lung transplantation between January 1, 2006 and September 30, 2018. Lung transplantation was identified using International Classification of Disease and Common Procedure Terminology procedure codes. Patients studied were observable for at least 12 months before and after transplantation. Patients who developed CLAD were identified using novel, diagnosis codes for incident lung disease at least one year following transplantation. Descriptive analyses were conducted to assess the study's outcomes prior to and following a CLAD diagnosis. All-cause HRU and costs, the study's primary outcomes, leading up to and following CLAD diagnosis were calculated. RESULTS Among 129 transplant patients who developed CLAD, healthcare costs were substantially higher in the year following diagnosis ($198,113), compared to the year leading to diagnosis ($85,276). Inpatient admissions were responsible for most costs in years 1 and 2 following diagnosis ($99,372 and $83,348 respectively). Drug costs were higher in the 12 months post-index, compared to the 12 months pre-index ($3,600 vs $2,527). LIMITATIONS Claims data do not include clinical data, have limits determining loss of follow-up, and do not provide granularity to determine disease severity. Also, there is no ICD-10-CM code specific to CLAD or BOS. CONCLUSIONS CLAD after lung transplant is associated with substantial HRU and costs. Further work is needed to develop interventions that reduce this impact.
Collapse
Affiliation(s)
- Ajay Sheshadri
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naomi C Sacks
- Precision Health Economics and Outcomes Research, Boston, MA, USA
- Tufts University School of Medicine, Boston, MA, USA
| | - Bridget Healey
- Precision Health Economics and Outcomes Research, Boston, MA, USA
| | - Phil Cyr
- Precision Health Economics and Outcomes Research, Boston, MA, USA
- College of Health and Human Services, University of North Carolina, Charlotte, NC, USA
| | - Gerhard Boerner
- Breath Therapeutics, GmbH, a Zambon company, Munich, Germany
- Zambon Group, Bresso, Italy
| | - Howard J Huang
- Division of Pulmonary, Critical Care and Sleep Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
5
|
DeFreitas MR, McAdams HP, Azfar Ali H, Iranmanesh AM, Chalian H. Complications of Lung Transplantation: Update on Imaging Manifestations and Management. Radiol Cardiothorac Imaging 2021; 3:e190252. [PMID: 34505059 DOI: 10.1148/ryct.2021190252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/02/2021] [Accepted: 07/12/2021] [Indexed: 12/23/2022]
Abstract
As lung transplantation has become the most effective definitive treatment option for end-stage chronic respiratory diseases, yearly rates of this surgery have been steadily increasing. Despite improvement in surgical techniques and medical management of transplant recipients, complications from lung transplantation are a major cause of morbidity and mortality. Some of these complications can be classified on the basis of the time they typically occur after lung transplantation, while others may occur at any time. Imaging studies, in conjunction with clinical and laboratory evaluation, are key components in diagnosing and monitoring these conditions. Therefore, radiologists play a critical role in recognizing and communicating findings suggestive of lung transplantation complications. A description of imaging features of the most common lung transplantation complications, including surgical, medical, immunologic, and infectious complications, as well as an update on their management, will be reviewed here. Keywords: Pulmonary, Thorax, Surgery, Transplantation Supplemental material is available for this article. © RSNA, 2021.
Collapse
Affiliation(s)
- Mariana R DeFreitas
- Department of Radiology, Division of Cardiothoracic Imaging (M.R.D., H.P.M., A.M.I., H.C.), and Department of Medicine, Division of Pulmonary, Allergy and Critical Care (H.A.A.), Duke University Medical Center, Durham, NC
| | - Holman Page McAdams
- Department of Radiology, Division of Cardiothoracic Imaging (M.R.D., H.P.M., A.M.I., H.C.), and Department of Medicine, Division of Pulmonary, Allergy and Critical Care (H.A.A.), Duke University Medical Center, Durham, NC
| | - Hakim Azfar Ali
- Department of Radiology, Division of Cardiothoracic Imaging (M.R.D., H.P.M., A.M.I., H.C.), and Department of Medicine, Division of Pulmonary, Allergy and Critical Care (H.A.A.), Duke University Medical Center, Durham, NC
| | - Arya M Iranmanesh
- Department of Radiology, Division of Cardiothoracic Imaging (M.R.D., H.P.M., A.M.I., H.C.), and Department of Medicine, Division of Pulmonary, Allergy and Critical Care (H.A.A.), Duke University Medical Center, Durham, NC
| | - Hamid Chalian
- Department of Radiology, Division of Cardiothoracic Imaging (M.R.D., H.P.M., A.M.I., H.C.), and Department of Medicine, Division of Pulmonary, Allergy and Critical Care (H.A.A.), Duke University Medical Center, Durham, NC
| |
Collapse
|
6
|
Brun AL, Chabi ML, Picard C, Mellot F, Grenier PA. Lung Transplantation: CT Assessment of Chronic Lung Allograft Dysfunction (CLAD). Diagnostics (Basel) 2021; 11:diagnostics11050817. [PMID: 33946544 PMCID: PMC8147203 DOI: 10.3390/diagnostics11050817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 01/05/2023] Open
Abstract
Chronic lung allograft rejection remains one of the major causes of morbi-mortality after lung transplantation. The term Chronic Lung Allograft Dysfunction (CLAD) has been proposed to describe the different processes that lead to a significant and persistent deterioration in lung function without identifiable causes. The two main phenotypes of CLAD are Bronchiolitis Obliterans Syndrome (BOS) and Restrictive Allograft Syndrome (RAS), each of them characterized by particular functional and imaging features. These entities can be associated (mixed phenotype) or switched from one to the other. If CLAD remains a clinical diagnosis based on spirometry, computed tomography (CT) scan plays an important role in the diagnosis and follow-up of CLAD patients, to exclude identifiable causes of functional decline when CLAD is first suspected, to detect early abnormalities that can precede the diagnosis of CLAD (particularly RAS), to differentiate between the obstructive and restrictive phenotypes, and to detect exacerbations and evolution from one phenotype to the other. Recognition of early signs of rejection is crucial for better understanding of physiopathologic pathways and optimal management of patients.
Collapse
Affiliation(s)
- Anne-Laure Brun
- Radiology Department, Hôpital Foch, 92150 Suresnes, France; (M.-L.C.); (F.M.)
- Correspondence: (A.-L.B.); (P.A.G.)
| | - Marie-Laure Chabi
- Radiology Department, Hôpital Foch, 92150 Suresnes, France; (M.-L.C.); (F.M.)
| | - Clément Picard
- Respiratory Department, Hôpital Foch, 92150 Suresnes, France;
| | - François Mellot
- Radiology Department, Hôpital Foch, 92150 Suresnes, France; (M.-L.C.); (F.M.)
| | - Philippe A. Grenier
- Department of Clinical Research and Innovation, Hôpital Foch, 92150 Suresnes, France
- Correspondence: (A.-L.B.); (P.A.G.)
| |
Collapse
|
7
|
Byrne D, Nador RG, English JC, Yee J, Levy R, Bergeron C, Swiston JR, Mets OM, Muller NL, Bilawich AM. Chronic Lung Allograft Dysfunction: Review of CT and Pathologic Findings. Radiol Cardiothorac Imaging 2021; 3:e200314. [PMID: 33778654 PMCID: PMC7978021 DOI: 10.1148/ryct.2021200314] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 04/14/2023]
Abstract
Chronic lung allograft dysfunction (CLAD) is the most common cause of mortality in lung transplant recipients after the 1st year of transplantation. CLAD has traditionally been classified into two distinct obstructive and restrictive forms: bronchiolitis obliterans syndrome and restrictive allograft syndrome. However, CLAD may manifest with a spectrum of imaging and pathologic findings and a combination of obstructive and restrictive physiologic abnormalities. Although the initial CT manifestations of CLAD may be nonspecific, the progression of findings at follow-up should signal the possibility of CLAD and may be present on imaging studies prior to the development of functional abnormalities of the lung allograft. This review encompasses the evolution of CT findings in CLAD, with emphasis on the underlying pathogenesis and pathologic condition, to enhance understanding of imaging findings. The purpose of this article is to familiarize the radiologist with the initial and follow-up CT findings of the obstructive, restrictive, and mixed forms of CLAD, for which early diagnosis and treatment may result in improved survival. Supplemental material is available for this article. © RSNA, 2021.
Collapse
|
8
|
Tian D, Huang H, Wen HY. Noninvasive methods for detection of chronic lung allograft dysfunction in lung transplantation. Transplant Rev (Orlando) 2020; 34:100547. [PMID: 32498976 DOI: 10.1016/j.trre.2020.100547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/15/2020] [Accepted: 04/16/2020] [Indexed: 02/05/2023]
Abstract
Lung transplantation (LTx) is the only therapeutic option for end-stage lung diseases. Chronic lung allograft dysfunction (CLAD), which manifests as airflow restriction and/or obstruction, is the primary factor limiting the long-term survival of patients after surgery. According to histopathological and radiographic findings, CLAD comprises two phenotypes, bronchiolitis obliterans syndrome and restrictive allograft syndrome. Half of all lung recipients will develop CLAD in 5 years, and this rate may increase up to 75% 10 years after surgery owing to the paucity in accurate and effective early detection and treatment methods. Recently, many studies have presented noninvasive methods for detecting CLAD and improving diagnosis and intervention. However, the significance of accurately detecting CLAD remains controversial. We reviewed published studies that have presented noninvasive methods for detecting CLAD to highlight the current knowledge on clinical symptoms, spirometry, imaging examinations, and other methods to detect the disease.
Collapse
Affiliation(s)
- Dong Tian
- Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China; Department of Thoracic Surgery, West China Hospital, West China Hospital, Sichuan University, Chengdu, China.
| | - Heng Huang
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Hong-Ying Wen
- Department of Thoracic Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
9
|
High-Resolution CT Findings of Obstructive and Restrictive Phenotypes of Chronic Lung Allograft Dysfunction: More Than Just Bronchiolitis Obliterans Syndrome. AJR Am J Roentgenol 2018; 211:W13-W21. [PMID: 29792746 DOI: 10.2214/ajr.17.19041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The purpose of this article is to review the high-resolution CT characteristics of individual obstructive and restrictive chronic lung allograft dysfunction (CLAD) phenotypes to aid in making accurate diagnoses and guiding treatment. CONCLUSION Long-term survival and function after lung transplant are considerably worse compared with after other organ transplants. CLAD is implicated as a major limiting factor for long-term graft viability. Historically thought to be a single entity, bronchiolitis obliterans syndrome, CLAD is actually a heterogeneous group of disorders with distinct subtypes.
Collapse
|
10
|
Vandermeulen E, Lammertyn E, Verleden SE, Ruttens D, Bellon H, Ricciardi M, Somers J, Bracke KR, Van Den Eynde K, Tousseyn T, Brusselle GG, Verbeken EK, Verschakelen J, Emonds MP, Van Raemdonck DE, Verleden GM, Vos R, Vanaudenaerde BM. Immunological diversity in phenotypes of chronic lung allograft dysfunction: a comprehensive immunohistochemical analysis. Transpl Int 2016; 30:134-143. [PMID: 27933655 DOI: 10.1111/tri.12882] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/10/2016] [Accepted: 10/28/2016] [Indexed: 11/30/2022]
Abstract
Chronic rejection after organ transplantation is defined as a humoral- and cell-mediated immune response directed against the allograft. In lung transplantation, chronic rejection is nowadays clinically defined as a cause of chronic lung allograft dysfunction (CLAD), consisting of different clinical phenotypes including restrictive allograft syndrome (RAS) and bronchiolitis obliterans syndrome (BOS). However, the differential role of humoral and cellular immunity is not investigated up to now. Explant lungs of patients with end-stage BOS (n = 19) and RAS (n = 18) were assessed for the presence of lymphoid (B and T cells) and myeloid cells (dendritic cells, eosinophils, mast cells, neutrophils, and macrophages) and compared to nontransplant control lung biopsies (n = 21). All myeloid cells, with exception of dendritic cells, were increased in RAS versus control (neutrophils, eosinophils, and mast cells: all P < 0.05, macrophages: P < 0.001). Regarding lymphoid cells, B cells and cytotoxic T cells were increased remarkably in RAS versus control (P < 0.001) and in BOS versus control (P < 0.01). Interestingly, lymphoid follicles were restricted to RAS (P < 0.001 versus control and P < 0.05 versus BOS). Our data suggest an immunological diversity between BOS and RAS, with a more pronounced involvement of the B-cell response in RAS characterized by a structural organization of lymphoid follicles. This may impact future therapeutic approaches.
Collapse
Affiliation(s)
- Elly Vandermeulen
- Lung Transplant Unit, Division of Respiratory Disease, Department of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Elise Lammertyn
- Lung Transplant Unit, Division of Respiratory Disease, Department of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Stijn E Verleden
- Lung Transplant Unit, Division of Respiratory Disease, Department of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - David Ruttens
- Lung Transplant Unit, Division of Respiratory Disease, Department of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Hannelore Bellon
- Lung Transplant Unit, Division of Respiratory Disease, Department of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Mario Ricciardi
- Lung Transplant Unit, Division of Respiratory Disease, Department of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Jana Somers
- Lung Transplant Unit, Division of Respiratory Disease, Department of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Ken R Bracke
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Kathleen Van Den Eynde
- Translational Cell & Tissue Research Unit, Department of Imaging & Pathology, KULeuven, Leuven, Belgium
| | - Thomas Tousseyn
- Translational Cell & Tissue Research Unit, Department of Imaging & Pathology, KULeuven, Leuven, Belgium
| | - Guy G Brusselle
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Erik K Verbeken
- Translational Cell & Tissue Research Unit, Department of Imaging & Pathology, KULeuven, Leuven, Belgium
| | - Johny Verschakelen
- Lung Transplant Unit, Division of Respiratory Disease, Department of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | | | - Dirk E Van Raemdonck
- Lung Transplant Unit, Division of Respiratory Disease, Department of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Geert M Verleden
- Lung Transplant Unit, Division of Respiratory Disease, Department of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Robin Vos
- Lung Transplant Unit, Division of Respiratory Disease, Department of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| | - Bart M Vanaudenaerde
- Lung Transplant Unit, Division of Respiratory Disease, Department of Clinical and Experimental Medicine, KULeuven, Leuven, Belgium
| |
Collapse
|
11
|
Mai C, Verleden SE, McDonough JE, Willems S, De Wever W, Coolen J, Dubbeldam A, Van Raemdonck DE, Verbeken EK, Verleden GM, Hogg JC, Vanaudenaerde BM, Wuyts WA, Verschakelen JA. Thin-Section CT Features of Idiopathic Pulmonary Fibrosis Correlated with Micro-CT and Histologic Analysis. Radiology 2016; 283:252-263. [PMID: 27715655 DOI: 10.1148/radiol.2016152362] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To elucidate the underlying lung changes responsible for the computed tomographic (CT) features of idiopathic pulmonary fibrosis (IPF) and to gain insight into the way IPF proceeds through the lungs and progresses over time. Materials and Methods Micro-CT studies of tissue cores obtained from explant lungs were examined and were correlated 1:1 with a CT study obtained immediately before transplantation. Samples for histologic analysis were obtained from selected cores. Results In areas with no or minimal abnormalities on CT images, small areas of increased attenuation located in or near the interlobular septa can be seen on micro-CT studies. In more involved lung areas, the number of opacities increases and opacities enlarge and approach each other along the interlobular septa, causing a fine reticular pattern on CT images. Simultaneously, air-containing structures in and around these opacities arise, corresponding with small cysts on CT images. Honeycombing is caused by a progressive increase in the number and size of these cystic structures and tissue opacities that gradually extend toward the centrilobular region and finally replace the entire lobule. At histologic analysis, the small islands of increased attenuation very likely correspond with fibroblastic foci. Near these fibroblastic foci, an abnormal adjacency of alveolar walls was seen, suggesting alveolar collapse. In later stages, normal lung tissue is replaced by a large amount of young collagen, as seen in patients with advanced fibrosis. Conclusion Fibrosis and cyst formation in patients with IPF seem to start at the periphery of the pulmonary lobule and progressively extend toward the core of this anatomic lung unit. Evidence was found that alveolar collapse might already be present in an early stage when there is only little pulmonary fibrosis. © RSNA, 2016.
Collapse
Affiliation(s)
- Cindy Mai
- From the Department of Radiology (C.M., W.D.W., J.C., A.D., J.A.V.), Leuven Lung Transplant Unit (S.E.V., J.E.M., S.W., D.E.V.R., G.M.V., B.M.V., W.A.W.), and Department of Pathology (E.K.V.), UZ Leuven, Herestraat 49, 3000 Leuven, Belgium; and University of British Columbia James Hogg Research Centre, St Paul's Hospital, Vancouver, British Columbia, Canada (J.E.M., J.C.H.)
| | - Stijn E Verleden
- From the Department of Radiology (C.M., W.D.W., J.C., A.D., J.A.V.), Leuven Lung Transplant Unit (S.E.V., J.E.M., S.W., D.E.V.R., G.M.V., B.M.V., W.A.W.), and Department of Pathology (E.K.V.), UZ Leuven, Herestraat 49, 3000 Leuven, Belgium; and University of British Columbia James Hogg Research Centre, St Paul's Hospital, Vancouver, British Columbia, Canada (J.E.M., J.C.H.)
| | - John E McDonough
- From the Department of Radiology (C.M., W.D.W., J.C., A.D., J.A.V.), Leuven Lung Transplant Unit (S.E.V., J.E.M., S.W., D.E.V.R., G.M.V., B.M.V., W.A.W.), and Department of Pathology (E.K.V.), UZ Leuven, Herestraat 49, 3000 Leuven, Belgium; and University of British Columbia James Hogg Research Centre, St Paul's Hospital, Vancouver, British Columbia, Canada (J.E.M., J.C.H.)
| | - Stijn Willems
- From the Department of Radiology (C.M., W.D.W., J.C., A.D., J.A.V.), Leuven Lung Transplant Unit (S.E.V., J.E.M., S.W., D.E.V.R., G.M.V., B.M.V., W.A.W.), and Department of Pathology (E.K.V.), UZ Leuven, Herestraat 49, 3000 Leuven, Belgium; and University of British Columbia James Hogg Research Centre, St Paul's Hospital, Vancouver, British Columbia, Canada (J.E.M., J.C.H.)
| | - Walter De Wever
- From the Department of Radiology (C.M., W.D.W., J.C., A.D., J.A.V.), Leuven Lung Transplant Unit (S.E.V., J.E.M., S.W., D.E.V.R., G.M.V., B.M.V., W.A.W.), and Department of Pathology (E.K.V.), UZ Leuven, Herestraat 49, 3000 Leuven, Belgium; and University of British Columbia James Hogg Research Centre, St Paul's Hospital, Vancouver, British Columbia, Canada (J.E.M., J.C.H.)
| | - Johan Coolen
- From the Department of Radiology (C.M., W.D.W., J.C., A.D., J.A.V.), Leuven Lung Transplant Unit (S.E.V., J.E.M., S.W., D.E.V.R., G.M.V., B.M.V., W.A.W.), and Department of Pathology (E.K.V.), UZ Leuven, Herestraat 49, 3000 Leuven, Belgium; and University of British Columbia James Hogg Research Centre, St Paul's Hospital, Vancouver, British Columbia, Canada (J.E.M., J.C.H.)
| | - Adriana Dubbeldam
- From the Department of Radiology (C.M., W.D.W., J.C., A.D., J.A.V.), Leuven Lung Transplant Unit (S.E.V., J.E.M., S.W., D.E.V.R., G.M.V., B.M.V., W.A.W.), and Department of Pathology (E.K.V.), UZ Leuven, Herestraat 49, 3000 Leuven, Belgium; and University of British Columbia James Hogg Research Centre, St Paul's Hospital, Vancouver, British Columbia, Canada (J.E.M., J.C.H.)
| | - Dirk E Van Raemdonck
- From the Department of Radiology (C.M., W.D.W., J.C., A.D., J.A.V.), Leuven Lung Transplant Unit (S.E.V., J.E.M., S.W., D.E.V.R., G.M.V., B.M.V., W.A.W.), and Department of Pathology (E.K.V.), UZ Leuven, Herestraat 49, 3000 Leuven, Belgium; and University of British Columbia James Hogg Research Centre, St Paul's Hospital, Vancouver, British Columbia, Canada (J.E.M., J.C.H.)
| | - Eric K Verbeken
- From the Department of Radiology (C.M., W.D.W., J.C., A.D., J.A.V.), Leuven Lung Transplant Unit (S.E.V., J.E.M., S.W., D.E.V.R., G.M.V., B.M.V., W.A.W.), and Department of Pathology (E.K.V.), UZ Leuven, Herestraat 49, 3000 Leuven, Belgium; and University of British Columbia James Hogg Research Centre, St Paul's Hospital, Vancouver, British Columbia, Canada (J.E.M., J.C.H.)
| | - Geert M Verleden
- From the Department of Radiology (C.M., W.D.W., J.C., A.D., J.A.V.), Leuven Lung Transplant Unit (S.E.V., J.E.M., S.W., D.E.V.R., G.M.V., B.M.V., W.A.W.), and Department of Pathology (E.K.V.), UZ Leuven, Herestraat 49, 3000 Leuven, Belgium; and University of British Columbia James Hogg Research Centre, St Paul's Hospital, Vancouver, British Columbia, Canada (J.E.M., J.C.H.)
| | - James C Hogg
- From the Department of Radiology (C.M., W.D.W., J.C., A.D., J.A.V.), Leuven Lung Transplant Unit (S.E.V., J.E.M., S.W., D.E.V.R., G.M.V., B.M.V., W.A.W.), and Department of Pathology (E.K.V.), UZ Leuven, Herestraat 49, 3000 Leuven, Belgium; and University of British Columbia James Hogg Research Centre, St Paul's Hospital, Vancouver, British Columbia, Canada (J.E.M., J.C.H.)
| | - Bart M Vanaudenaerde
- From the Department of Radiology (C.M., W.D.W., J.C., A.D., J.A.V.), Leuven Lung Transplant Unit (S.E.V., J.E.M., S.W., D.E.V.R., G.M.V., B.M.V., W.A.W.), and Department of Pathology (E.K.V.), UZ Leuven, Herestraat 49, 3000 Leuven, Belgium; and University of British Columbia James Hogg Research Centre, St Paul's Hospital, Vancouver, British Columbia, Canada (J.E.M., J.C.H.)
| | - Wim A Wuyts
- From the Department of Radiology (C.M., W.D.W., J.C., A.D., J.A.V.), Leuven Lung Transplant Unit (S.E.V., J.E.M., S.W., D.E.V.R., G.M.V., B.M.V., W.A.W.), and Department of Pathology (E.K.V.), UZ Leuven, Herestraat 49, 3000 Leuven, Belgium; and University of British Columbia James Hogg Research Centre, St Paul's Hospital, Vancouver, British Columbia, Canada (J.E.M., J.C.H.)
| | - Johny A Verschakelen
- From the Department of Radiology (C.M., W.D.W., J.C., A.D., J.A.V.), Leuven Lung Transplant Unit (S.E.V., J.E.M., S.W., D.E.V.R., G.M.V., B.M.V., W.A.W.), and Department of Pathology (E.K.V.), UZ Leuven, Herestraat 49, 3000 Leuven, Belgium; and University of British Columbia James Hogg Research Centre, St Paul's Hospital, Vancouver, British Columbia, Canada (J.E.M., J.C.H.)
| |
Collapse
|
12
|
Lung Transplantation. PATHOLOGY OF TRANSPLANTATION 2016. [PMCID: PMC7153460 DOI: 10.1007/978-3-319-29683-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The therapeutic options for patients with advanced pulmonary parenchymal or vascular disorders are currently limited. Lung transplantation remains one of the few viable interventions, but on account of the insufficient donor pool only a minority of these patients actually undergo the procedure each year. Following transplantation there are a number of early and late allograft complications such as primary graft dysfunction, allograft rejection, infection, post-transplant lymphoproliferative disorder and late injury that is now classified as chronic lung allograft dysfunction. The pathologist plays an essential role in the diagnosis and classification of these myriad complications. Although the transplant procedures are performed in selected centers patients typically return to their local centers. When complications arise it is often the responsibility of the local pathologist to evaluate specimens. Therefore familiarity with the pathology of lung transplantation is important.
Collapse
|
13
|
Verleden SE, Vasilescu DM, McDonough JE, Ruttens D, Vos R, Vandermeulen E, Bellon H, Geenens R, Verbeken EK, Verschakelen J, Van Raemdonck DE, Wuyts WA, Sokolow Y, Knoop C, Cooper JD, Hogg JC, Verleden GM, Vanaudenaerde BM. Linking clinical phenotypes of chronic lung allograft dysfunction to changes in lung structure. Eur Respir J 2015; 46:1430-9. [DOI: 10.1183/09031936.00010615] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/16/2015] [Indexed: 11/05/2022]
Abstract
Chronic lung allograft dysfunction (CLAD) remains the major barrier to long-term success after lung transplantation. This report compares gross and microscopic features of lungs removed from patients receiving a redo-transplant as treatment for CLAD.Lungs donated by patients with either the bronchiolitis obliterans syndrome (BOS) or restrictive allograft syndrome (RAS) phenotype of CLAD and appropriate control lungs (eight per group) were air-inflated, frozen solid and kept frozen while a multi-detector computed tomography (MDCT) was obtained. The lung was then cut into 2-cm thick transverse slices and sampled for micro-CT and histopathology.The MDCT showed reduced lung volume with increased lung weight and density in RAS versus BOS and control (p<0.05). Although pre-terminal bronchioles were obstructed in both phenotypes, RAS lungs showed a reduction of pre-terminal bronchioles (p<0.01). Micro-CT and matched histopathology showed that RAS was associated with reduced numbers of terminal bronchioles/lung compared to BOS and controls (p<0.01), with expansion of the interstitial compartment and obliteration of the alveolar airspaces by fibrous connective tissue.RAS is associated with greater destruction of both pre-terminal and terminal bronchioles. Additionally, the interstitial compartments are expanded and alveolar airspaces are obliterated by accumulation of fibrous connective tissue.
Collapse
|
14
|
Verleden GM, Vos R, Vanaudenaerde B, Dupont L, Yserbyt J, Van Raemdonck D, Verleden S. Current views on chronic rejection after lung transplantation. Transpl Int 2015; 28:1131-9. [PMID: 25857869 DOI: 10.1111/tri.12579] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 02/28/2015] [Accepted: 04/07/2015] [Indexed: 01/01/2023]
Abstract
Chronic lung allograft dysfunction (CLAD) was recently introduced as an overarching term mainly to classify patients with chronic rejection after lung transplantation, although other conditions may also qualify for CLAD. Initially, only the development of a persistent and obstructive pulmonary function defect, clinically identified as bronchiolitis obliterans syndrome (BOS), was considered as chronic rejection, if no other cause could be identified. It became clear in recent years that some patients do not qualify for this definition, although they developed a chronic and persistent decrease in FEV1 , without another identifiable cause. As the pulmonary function decline in these patients was rather restrictive, this was called restrictive allograft syndrome (RAS). In the present review, we will further elaborate on these two CLAD phenotypes, with specific attention to the diagnostic criteria, the role of pathology and imaging, the risk factors, outcome, and the possible treatment options.
Collapse
Affiliation(s)
- Geert M Verleden
- Department of Clinical and Experimental Medicine, Laboratory for Respiratory Diseases, Lung Transplantation Unit, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Clinical and Experimental Medicine, Laboratory for Respiratory Diseases, Lung Transplantation Unit, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Department of Clinical and Experimental Medicine, Laboratory for Respiratory Diseases, Lung Transplantation Unit, KU Leuven - University of Leuven, Leuven, Belgium
| | - Lieven Dupont
- Department of Clinical and Experimental Medicine, Laboratory for Respiratory Diseases, Lung Transplantation Unit, KU Leuven - University of Leuven, Leuven, Belgium.,Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Jonas Yserbyt
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | | | - Stijn Verleden
- Department of Clinical and Experimental Medicine, Laboratory for Respiratory Diseases, Lung Transplantation Unit, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Differential cytokine, chemokine and growth factor expression in phenotypes of chronic lung allograft dysfunction. Transplantation 2015; 99:86-93. [PMID: 25050473 DOI: 10.1097/tp.0000000000000269] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Chronic lung allograft dysfunction is a heterogeneous entity limiting long-term survival after lung transplantation. Different clinical phenotypes (bronchiolitis obliterans syndrome [BOS]-neutrophilic BOS-restrictive allograft syndrome [RAS]) have been identified but the mechanisms remain elusive. METHODS In this study, we measured 34 different cytokines, chemokines, and growth factors in bronchoalveolar lavage fluid of 20 stable patients, 20 patients suffering from non-neutrophilic BOS, 17 from neutrophilic BOS, and 20 from RAS using classic enzyme-linked immunosorbent assay and multiplex technology. RESULTS Total cell count and % neutrophils were elevated in neutrophilic BOS and RAS compared to stable and non-neutrophilic BOS patients, whereas also the % eosinophils was elevated at diagnosis of RAS. Levels of interleukin (IL)-1β (P<0.01), IL-1Rα (P<0.001), IL-6 (P<0.001), IL-8/CXCL8 (P<0.001), IP-10/CXCL10 (P<0.05), MCP-1/CCL2 (P<0.05), macrophage inflammatory protein (MIP)-1α/CCL3 (P<0.001), MIP-1β/CCL4, and vascular endothelial growth factor (VEGF; P<0.05) were differentially regulated in RAS compared to stable, whereas in neutrophilic BOS IL-1β (P<0.001), IL-1Rα (P<0.01), IL-7 (P<0.05), IL-8/CXCL8 (P<0.001), MCP-3/CXCCL7 (P<0.05) and MIP-1α/CCL-3 (P<0.05) were significantly upregulated compared to stable patients. We could not detect any differences between non-neutrophilic BOS and stable patients. Interestingly, bronchoalveolar lavage IL-6, interferon gamma-induced protein (IP)-10/CXCL10 and interferon-inducible T-cell alpha chemoattractant/chemokine (C-X-C motif) ligand 11 (ITAC/CXCL10) were associated with survival after diagnosis in RAS patients. CONCLUSION There were major differences in cytokine and chemokine expression in our different study groups. Especially IL-6, but also IP-10/CXCL10, and VEGF may be interesting mediators in RAS.
Collapse
|
16
|
Vos R, Verleden SE, Ruttens D, Vandermeulen E, Bellon H, Neyrinck A, Van Raemdonck DE, Yserbyt J, Dupont LJ, Verbeken EK, Moelants E, Mortier A, Proost P, Schols D, Cox B, Verleden GM, Vanaudenaerde BM. Azithromycin and the treatment of lymphocytic airway inflammation after lung transplantation. Am J Transplant 2014; 14:2736-48. [PMID: 25394537 DOI: 10.1111/ajt.12942] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/19/2014] [Accepted: 06/22/2014] [Indexed: 01/25/2023]
Abstract
Lymphocytic airway inflammation is a major risk factor for chronic lung allograft dysfunction, for which there is no established treatment. We investigated whether azithromycin could control lymphocytic airway inflammation and improve allograft function. Fifteen lung transplant recipients demonstrating acute allograft dysfunction due to isolated lymphocytic airway inflammation were prospectively treated with azithromycin for at least 6 months (NCT01109160). Spirometry (FVC, FEV1 , FEF25-75 , Tiffeneau index) and FeNO were assessed before and up to 12 months after initiation of azithromycin. Radiologic features, local inflammation assessed on airway biopsy (rejection score, IL-17(+) cells/mm(2) lamina propria) and broncho-alveolar lavage fluid (total and differential cell counts, chemokine and cytokine levels); as well as systemic C-reactive protein levels were compared between baseline and after 3 months of treatment. Airflow improved and FeNO decreased to baseline levels after 1 month of azithromycin and were sustained thereafter. After 3 months of treatment, radiologic abnormalities, submucosal cellular inflammation, lavage protein levels of IL-1β, IL-8/CXCL-8, IP-10/CXCL-10, RANTES/CCL5, MIP1-α/CCL3, MIP-1β/CCL4, Eotaxin, PDGF-BB, total cell count, neutrophils and eosinophils, as well as plasma C-reactive protein levels all significantly decreased compared to baseline (p < 0.05). Administration of azithromycin was associated with suppression of posttransplant lymphocytic airway inflammation and clinical improvement in lung allograft function.
Collapse
Affiliation(s)
- R Vos
- Department of Clinical and Experimental Medicine, Lab of Pneumology, Katholieke Universiteit Leuven and University Hospital Gasthuisberg, Leuven, Belgium; Lung Transplant Unit, Katholieke Universiteit Leuven and University Hospital Gasthuisberg, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Verleden SE, de Jong PA, Ruttens D, Vandermeulen E, van Raemdonck DE, Verschakelen J, Vanaudenaerde BM, Verleden GM, Vos R. Functional and computed tomographic evolution and survival of restrictive allograft syndrome after lung transplantation. J Heart Lung Transplant 2014; 33:270-7. [DOI: 10.1016/j.healun.2013.12.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/14/2013] [Accepted: 12/11/2013] [Indexed: 11/26/2022] Open
|
18
|
Bommart S, Marin G, Bourdin A, Molinari N, Klein F, Hayot M, Vachier I, Chanez P, Mercier J, Vernhet-Kovacsik H. Relationship between CT air trapping criteria and lung function in small airway impairment quantification. BMC Pulm Med 2014; 14:29. [PMID: 24581147 PMCID: PMC4015710 DOI: 10.1186/1471-2466-14-29] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 02/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Small airways are regarded as the elective anatomic site of obstruction in most chronic airway diseases. Expiratory computed tomography (CT) is increasingly used to assess obstruction at this level but there is no consensus regarding the best quantification method. We aimed to evaluate software-assisted CT quantification of air trapping for assessing small airway obstruction and determine which CT criteria better predict small airway obstruction on single breath nitrogen test (SBNT). METHODS Eighty-nine healthy volunteers age from 60 to 90 years old, underwent spirometrically-gated inspiratory (I) and expiratory (E) CT and pulmonary function tests (PFTs) using SBNT, performed on the same day. Air trapping was estimated using dedicated software measuring on inspiratory and expiratory CT low attenuation area (LAA) lung proportion and mean lung density (MLD). CT indexes were compared to SBNT results using the Spearman correlation coefficient and hierarchical dendrogram analysis. In addition, receiver operating characteristic (ROC) curve analysis was performed to determine the optimal CT air-trapping criterion. RESULTS 43 of 89 subjects (48,3%) had dN2 value above the threshold defining small airway obstruction (i.e. 2.5% N2/l). Expiratory to inspiratory MLD ratio (r = 0.40) and LAA for the range -850 -1024 HU (r = 0.29) and for the range -850 -910 HU (r = 0.37) were positively correlated with SBNT results. E/I MLD was the most suitable criterion for its expression. Expiratory to inspiratory MLD ratio (E/I MLD) showed the highest AUC value (0.733) for small airway obstruction assessment. CONCLUSION Among all CT criteria, all correlating with small airway obstruction on SBNT, E/I MLD was the most suitable criterion for its expression in asymptomatic subjects with mild small airway obstruction TRIAL REGISTRATION Registered at Clinicaltrials.gov, identifier: NCT01230879.
Collapse
Affiliation(s)
- Sébastien Bommart
- Radiology Department, CHU Montpellier, 371 avenue Doyen Gaston Giraud 34295, Montpellier cedex 05, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Verleden SE, Vasilescu DM, Willems S, Ruttens D, Vos R, Vandermeulen E, Hostens J, McDonough JE, Verbeken EK, Verschakelen J, Van Raemdonck DE, Rondelet B, Knoop C, Decramer M, Cooper J, Hogg JC, Verleden GM, Vanaudenaerde BM. The Site and Nature of Airway Obstruction after Lung Transplantation. Am J Respir Crit Care Med 2014; 189:292-300. [DOI: 10.1164/rccm.201310-1894oc] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
20
|
Vos R, Verleden SE, Ruttens D, Vandermeulen E, Yserbyt J, Dupont LJ, Van Raemdonck DE, De Raedt N, Gheysens O, De Jong PA, Verleden GM, Vanaudenaerde BM. Pirfenidone: a potential new therapy for restrictive allograft syndrome? Am J Transplant 2013; 13:3035-40. [PMID: 24102752 DOI: 10.1111/ajt.12474] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/06/2013] [Indexed: 01/25/2023]
Abstract
This case report describes the evolution of pulmonary function findings (FVC, FEV1 and TLC) and CT features with pirfenidone treatment for restrictive allograft syndrome following lung transplantation. Furthermore, we herein report hypermetabolic activity on (18) F-FDG PET imaging in this setting, which could indicate active fibroproliferation and pleuroparenchymal remodeling. These findings may warrant further investigation.
Collapse
Affiliation(s)
- R Vos
- Lung Transplantation Unit, University Hospital Gasthuisberg, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Verleden GM, Raghu G, Meyer KC, Glanville AR, Corris P. A new classification system for chronic lung allograft dysfunction. J Heart Lung Transplant 2013; 33:127-33. [PMID: 24374027 DOI: 10.1016/j.healun.2013.10.022] [Citation(s) in RCA: 406] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 11/15/2022] Open
Abstract
Although survival after lung transplantation has improved significantly during the last decade, chronic rejection is thought to be the major cause of late mortality. The physiologic hallmark of chronic rejection has been a persistent fall in forced expiratory volume in 1 second associated with an obstructive ventilatory defect, for which the term bronchiolitis obliterans syndrome (BOS) was defined to allow a uniformity of description and grading of severity throughout the world. Although BOS was generally thought to be irreversible, recent evidence suggests that some patients with BOS may respond to azithromycin with > 10% improvement in their forced expiratory volume in 1 second. In addition, a restrictive form of chronic rejection has recently been described that does not fit the strict definition of BOS as an obstructive defect. Hence, the term chronic lung allograft dysfunction (CLAD) has been introduced to cover all forms of graft dysfunction, but CLAD has yet to be defined. We propose a definition of CLAD and a flow chart that may facilitate recognition of the different phenotypes of CLAD that can complicate the clinical course of lung transplant recipients.
Collapse
Affiliation(s)
- Geert M Verleden
- University Hospital Gasthuisberg, Lung Transplantation Unit, Leuven, Belgium.
| | - Ganesh Raghu
- University of Washington School of Medicine, Seattle, Washington
| | - Keith C Meyer
- University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin
| | - Allan R Glanville
- The Lung Transplant Unit, St Vincent's Hospital, Darlinghurst, Australia
| | - Paul Corris
- Department of Respiratory Medicine, Institute of Transplantation and Institute of Cellular Medicine, Newcastle University and The Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne, United Kingdom
| |
Collapse
|
22
|
Sato M. Chronic lung allograft dysfunction after lung transplantation: the moving target. Gen Thorac Cardiovasc Surg 2012; 61:67-78. [DOI: 10.1007/s11748-012-0167-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Indexed: 11/29/2022]
|
23
|
Anti-inflammatory and immunomodulatory properties of azithromycin involved in treatment and prevention of chronic lung allograft rejection. Transplantation 2012; 94:101-9. [PMID: 22461039 DOI: 10.1097/tp.0b013e31824db9da] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chronic lung allograft rejection is the single most important cause of death in lung transplant recipients after the first postoperative year, resulting in a 5-year survival rate of approximately 50%, which is far behind that of other solid organ transplantations. Spirometry is routinely used as a clinical marker for assessing pulmonary allograft function and diagnosing chronic lung allograft rejection after lung transplantation (LTx). As such, a progressive obstructive decline in pulmonary allograft function (forced expiratory volume in 1 sec [FEV1]) in absence of all other causes (currently defined as bronchiolitis obliterans syndrome [BOS]) is considered to reflect the evolution of chronic lung allograft rejection. BOS has a 5-year prevalence of approximately 45% and is thought to be the final common endpoint of various alloimmunologic and nonalloimmunologic injuries to the pulmonary allograft, triggering different innate and adaptive immune responses. Most preventive and therapeutic strategies for this complex process have thus far been largely unsuccessful. However, the introduction of the neomacrolide antibiotic azithromycin (AZI) in the field of LTx as of 2003 made it clear that some patients with established BOS might in fact benefit from such therapy due to its various antiinflammatory and immunomodulatory properties, as summarized in this review. Particularly in patients with an increased bronchoalveolar lavage neutrophilia (i.e., 15%-20% or more), AZI treatment could result in an increase in FEV1 of at least 10%. More recently, it has become clear that prophylactic therapy with AZI actually may prevent BOS and improve FEV1 after LTx, most likely through its interactions with the innate immune system. However, one should always be aware of possible adverse effects related to AZI when implementing this drug as prophylactic or long-term treatment. Even so, AZI therapy after LTx can generally be considered as safe.
Collapse
|