1
|
Takahashi T, Kusunose K, Zheng R, Yamaguchi N, Hirata Y, Nishio S, Saijo Y, Ise T, Yamaguchi K, Yagi S, Yamada H, Soeki T, Wakatsuki T, Sata M. Association between cardiovascular risk factors and left ventricular strain distribution in patients without previous cardiovascular disease. J Echocardiogr 2022; 20:208-215. [PMID: 35562627 PMCID: PMC9106265 DOI: 10.1007/s12574-022-00576-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 10/29/2022]
Abstract
BACKGROUND Some cardiovascular (CV) risk factors, such as hypertension and diabetes mellitus, have been reported to reduce left ventricular (LV) longitudinal strain (LS) even in patients with preserved LV ejection fraction. We hypothesized that multiple CV risk factors might cause changes in myocardial strain. Our study aimed to assess the association between multiple CV risk factors and strain in patients without previous CV disease (CVD). METHODS We retrospectively evaluated 137 patients without CVD, who underwent echocardiography at our institution between May 2017 and February 2020. They were divided into four groups based on the number of risk factors (group 0: no risk factor, group 1: one risk factor, group 2: two risk factors, and groups 3: three or four risk factors). Risk factors were hypertension, dyslipidemia, diabetes mellitus, and chronic kidney disease. Absolute values of global LS (GLS) and relative apical LS ratio (RALSR) defined using the equation: average apical LS/(average basal LS + average mid LS) and was used as a marker of strain distribution. RESULTS Out of 137 patients, group 0 had 35 patients, group 1 had 35 patients, group 2 had 32 patients, and group 3 had 35 patients. GLS was 22.4 ± 2.0%, 21.7 ± 2.1%, 21.3 ± 1.8%, 20.7 ± 2.2%, and RALSR was 0.64 ± 0.06, 0.66 ± 0.06, 0.68 ± 0.08, 0.69 ± 0.07 in groups 0-3, respectively. The one-way ANOVA detected significant differences between groups in GLS (p = 0.005) and RALSR (p = 0.037), respectively. Group 3 had a significantly lower GLS and higher RALSR than group 0 (p < 0.05). CONCLUSION In patients without previous CVD, LS decreased especially from the basal segment as the number of cardiovascular risks increased. The segmental LS may be markers of occult LV dysfunction in patients with CV risk factors.
Collapse
Affiliation(s)
- Tomonori Takahashi
- Department of Cardiovascular Medicine, Tokushima University Hospital, 2-50-1 Kuramoto, Tokushima, Japan
| | - Kenya Kusunose
- Department of Cardiovascular Medicine, Tokushima University Hospital, 2-50-1 Kuramoto, Tokushima, Japan.
| | - Robert Zheng
- Department of Cardiovascular Medicine, Tokushima University Hospital, 2-50-1 Kuramoto, Tokushima, Japan
| | - Natsumi Yamaguchi
- Ultrasound Examination Center, Tokushima University Hospital, Tokushima, Japan
| | - Yukina Hirata
- Ultrasound Examination Center, Tokushima University Hospital, Tokushima, Japan
| | - Susumu Nishio
- Ultrasound Examination Center, Tokushima University Hospital, Tokushima, Japan
| | - Yoshihito Saijo
- Department of Cardiovascular Medicine, Tokushima University Hospital, 2-50-1 Kuramoto, Tokushima, Japan
| | - Takayuki Ise
- Department of Cardiovascular Medicine, Tokushima University Hospital, 2-50-1 Kuramoto, Tokushima, Japan
| | - Koji Yamaguchi
- Department of Cardiovascular Medicine, Tokushima University Hospital, 2-50-1 Kuramoto, Tokushima, Japan
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Hospital, 2-50-1 Kuramoto, Tokushima, Japan
| | - Hirotsugu Yamada
- Department of Community Medicine for Cardiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takeshi Soeki
- Department of Cardiovascular Medicine, Tokushima University Hospital, 2-50-1 Kuramoto, Tokushima, Japan
| | - Tetsuzo Wakatsuki
- Department of Cardiovascular Medicine, Tokushima University Hospital, 2-50-1 Kuramoto, Tokushima, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Hospital, 2-50-1 Kuramoto, Tokushima, Japan
| |
Collapse
|
2
|
Shen D, Pathrose A, Sarnari R, Blake A, Berhane H, Baraboo JJ, Carr JC, Markl M, Kim D. Automated segmentation of biventricular contours in tissue phase mapping using deep learning. NMR IN BIOMEDICINE 2021; 34:e4606. [PMID: 34476863 PMCID: PMC8795858 DOI: 10.1002/nbm.4606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/27/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Tissue phase mapping (TPM) is an MRI technique for quantification of regional biventricular myocardial velocities. Despite its potential, clinical use is limited due to the requisite labor-intensive manual segmentation of cardiac contours for all time frames. The purpose of this study was to develop a deep learning (DL) network for automated segmentation of TPM images, without significant loss in segmentation and myocardial velocity quantification accuracy compared with manual segmentation. We implemented a multi-channel 3D (three dimensional; 2D + time) dense U-Net that trained on magnitude and phase images and combined cross-entropy, Dice, and Hausdorff distance loss terms to improve the segmentation accuracy and suppress unnatural boundaries. The dense U-Net was trained and tested with 150 multi-slice, multi-phase TPM scans (114 scans for training, 36 for testing) from 99 heart transplant patients (44 females, 1-4 scans/patient), where the magnitude and velocity-encoded (Vx , Vy , Vz ) images were used as input and the corresponding manual segmentation masks were used as reference. The accuracy of DL segmentation was evaluated using quantitative metrics (Dice scores, Hausdorff distance) and linear regression and Bland-Altman analyses on the resulting peak radial and longitudinal velocities (Vr and Vz ). The mean segmentation time was about 2 h per patient for manual and 1.9 ± 0.3 s for DL. Our network produced good accuracy (median Dice = 0.85 for left ventricle (LV), 0.64 for right ventricle (RV), Hausdorff distance = 3.17 pixels) compared with manual segmentation. Peak Vr and Vz measured from manual and DL segmentations were strongly correlated (R ≥ 0.88) and in good agreement with manual analysis (mean difference and limits of agreement for Vz and Vr were -0.05 ± 0.98 cm/s and -0.06 ± 1.18 cm/s for LV, and -0.21 ± 2.33 cm/s and 0.46 ± 4.00 cm/s for RV, respectively). The proposed multi-channel 3D dense U-Net was capable of reducing the segmentation time by 3,600-fold, without significant loss in accuracy in tissue velocity measurements.
Collapse
Affiliation(s)
- Daming Shen
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Biomedical Engineering, Northwestern University McCormick School of Engineering and Applied Science, Evanston, USA
| | - Ashitha Pathrose
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Roberto Sarnari
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Allison Blake
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Haben Berhane
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Biomedical Engineering, Northwestern University McCormick School of Engineering and Applied Science, Evanston, USA
| | - Justin J Baraboo
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Biomedical Engineering, Northwestern University McCormick School of Engineering and Applied Science, Evanston, USA
| | - James C Carr
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Michael Markl
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Biomedical Engineering, Northwestern University McCormick School of Engineering and Applied Science, Evanston, USA
| | - Daniel Kim
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Biomedical Engineering, Northwestern University McCormick School of Engineering and Applied Science, Evanston, USA
| |
Collapse
|
3
|
Bendiksen BA, McGinley G, Sjaastad I, Zhang L, Espe EKS. A 4D continuous representation of myocardial velocity fields from tissue phase mapping magnetic resonance imaging. PLoS One 2021; 16:e0247826. [PMID: 33647070 PMCID: PMC7920379 DOI: 10.1371/journal.pone.0247826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/14/2021] [Indexed: 11/19/2022] Open
Abstract
Myocardial velocities carry important diagnostic information in a range of cardiac diseases, and play an important role in diagnosing and grading left ventricular diastolic dysfunction. Tissue Phase Mapping (TPM) Magnetic Resonance Imaging (MRI) enables discrete sampling of the myocardium’s underlying smooth and continuous velocity field. This paper presents a post-processing framework for constructing a spatially and temporally smooth and continuous representation of the myocardium’s velocity field from TPM data. In the proposed scheme, the velocity field is represented through either linear or cubic B-spline basis functions. The framework facilitates both interpolation and noise reducing approximation. As a proof-of-concept, the framework was evaluated using artificially noisy (i.e., synthetic) velocity fields created by adding different levels of noise to an original TPM data. The framework’s ability to restore the original velocity field was investigated using Bland-Altman statistics. Moreover, we calculated myocardial material point trajectories through temporal integration of the original and synthetic fields. The effect of noise reduction on the calculated trajectories was investigated by assessing the distance between the start and end position of material points after one complete cardiac cycle (end point error). We found that the Bland-Altman limits of agreement between the original and the synthetic velocity fields were reduced after application of the framework. Furthermore, the integrated trajectories exhibited consistently lower end point error. These results suggest that the proposed method generates a realistic continuous representation of myocardial velocity fields from noisy and discrete TPM data. Linear B-splines resulted in narrower limits of agreement between the original and synthetic fields, compared to Cubic B-splines. The end point errors were also consistently lower for Linear B-splines than for cubic. Linear B-splines therefore appear to be more suitable for TPM data.
Collapse
Affiliation(s)
- Bård A. Bendiksen
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Bjørknes University College, Oslo, Norway
- * E-mail:
| | - Gary McGinley
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Lili Zhang
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Emil K. S. Espe
- Institute for Experimental Medical Research, University of Oslo and Oslo University Hospital, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Kermer J, Traber J, Utz W, Hennig P, Menza M, Jung B, Greiser A, Barckow P, von Knobelsdorff-Brenkenhoff F, Töpper A, Blaszczyk E, Schulz-Menger J. Assessment of diastolic dysfunction: comparison of different cardiovascular magnetic resonance techniques. ESC Heart Fail 2020; 7:2637-2649. [PMID: 32686332 PMCID: PMC7524101 DOI: 10.1002/ehf2.12846] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/09/2020] [Accepted: 06/01/2020] [Indexed: 01/22/2023] Open
Abstract
Aims Heart failure with preserved ejection fraction is still a diagnostic and therapeutic challenge, and accurate non‐invasive diagnosis of left ventricular (LV) diastolic dysfunction (DD) remains difficult. The current study aimed at identifying the most informative cardiovascular magnetic resonance (CMR) parameters for the assessment of LVDD. Methods and results We prospectively included 50 patients and classified them into three groups: with DD (DD+, n = 15), without (DD−, n = 26), and uncertain (DD±, n = 9). Diagnosis of DD was based on echocardiographic E/E′, invasive LV end‐diastolic pressure, and N‐terminal pro‐brain natriuretic peptide. CMR was performed at 1.5 T to assess LV and left atrial (LA) morphology, LV diastolic strain rate (SR) by tissue tracking and tagging, myocardial peak velocities by tissue phase mapping, and transmitral inflow profile using phase contrast techniques. Statistics were performed only on definitive DD+ and DD− (total number 41). DD+ showed enlarged LA with LA end‐diastolic volume/height performing best to identify DD+ with a cut‐off value of ≥0.52 mL/cm (sensitivity = 0.71, specificity = 0.84, and area under the receiver operating characteristic curve = 0.75). DD+ showed significantly reduced radial (inferolateral E peak: DD−: −14.5 ± 6.5%/s vs. DD+: −10.9 ± 5.9%/s, P = 0.04; anterolateral A peak: DD−: −4.2 ± 1.6%/s vs. DD+: −3.1 ± 1.4%/s, P = 0.04) and circumferential (inferolateral A peak: DD−: 3.8 ± 1.2%/s vs. DD+: 2.8 ± 0.8%/s, P = 0.007; anterolateral A peak: DD−: 3.5 ± 1.2%/s vs. DD+: 2.5 ± 0.8%/s, P = 0.048) SR in the basal lateral wall assessed by tissue tracking. In the same segments, DD+ showed lower peak myocardial velocity by tissue phase mapping (inferolateral radial peak: DD−: −3.6 ± 0.7 ms vs. DD+: −2.8 ± 1.0 ms, P = 0.017; anterolateral longitudinal peak: DD−: −5.0 ± 1.8 ms vs. DD+: −3.4 ± 1.4 ms, P = 0.006). Tagging revealed reduced global longitudinal SR in DD+ (DD−: 45.8 ± 12.0%/s vs. DD+: 34.8 ± 9.2%/s, P = 0.022). Global circumferential and radial SR by tissue tracking and tagging, LV morphology, and transmitral flow did not differ between DD+ and DD−. Conclusions Left atrial size and regional quantitative myocardial deformation applying CMR identified best patients with DD.
Collapse
Affiliation(s)
- Josephine Kermer
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Lindenberger Weg 80, Berlin, 13125, Germany
| | - Julius Traber
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Lindenberger Weg 80, Berlin, 13125, Germany
| | - Wolfgang Utz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Lindenberger Weg 80, Berlin, 13125, Germany
| | - Pierre Hennig
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Lindenberger Weg 80, Berlin, 13125, Germany
| | - Marius Menza
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Jung
- Institute of Diagnostic, Interventional and Paediatric Radiology, University Hospital Bern, Bern, Switzerland
| | | | - Philipp Barckow
- Circle Cardiovascular Imaging Inc., Calgary, Alberta, Canada
| | - Florian von Knobelsdorff-Brenkenhoff
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Lindenberger Weg 80, Berlin, 13125, Germany.,Department of Cardiology, Clinic Agatharied, Academic Teaching Hospital of the Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Agnieszka Töpper
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Lindenberger Weg 80, Berlin, 13125, Germany.,Zentrum für Innere Medizin, Kardiologie, Angiologie und Notfallambulanz, Johanniter-Krankenhaus Genthin-Stendal, Akut- und Schwerpunktkrankenhaus, Akademisches Lehrkrankenhaus Otto-von-Guericke-Universität Magdeburg, Stendal, Germany
| | - Edyta Blaszczyk
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Lindenberger Weg 80, Berlin, 13125, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Jeanette Schulz-Menger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrueck Center for Molecular Medicine, Lindenberger Weg 80, Berlin, 13125, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Department of Cardiology and Nephrology, HELIOS-Kliniken Berlin-Buch, Schwanebecker Chaussee 50, Berlin, 13125, Germany
| |
Collapse
|
5
|
Berhane H, Ruh A, Husain N, Robinson JD, Rigsby CK, Markl M. Myocardial velocity, intra-, and interventricular dyssynchrony evaluated by tissue phase mapping in pediatric heart transplant recipients. J Magn Reson Imaging 2019; 51:1212-1222. [PMID: 31515865 DOI: 10.1002/jmri.26916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Endomyocardial biopsy (EMB) is the standard method for detecting allograft rejection in pediatric heart transplants (Htx). As EMB is invasive and carries a risk of complications, there is a need for a noninvasive alternative for allograft monitoring. PURPOSE To quantify left and right ventricular (LV & RV) peak velocities, velocity twist, and intra-/interventricular dyssynchrony using tissue phase mapping (TPM) in pediatric Htx compared with controls, and to explore the relationship between global cardiac function parameters and the number of rejection episodes to these velocities and intra-/interventricular dyssynchrony. STUDY TYPE Prospective. SUBJECTS Twenty Htx patients (age: 16.0 ± 3.1 years, 11 males) and 18 age- and sex-matched controls (age: 15.5 ± 4.3 years, nine males). FIELD STRENGTH/SEQUENCE 5T; 2D balanced cine steady-state free-precession (bSSFP), TPM (2D cine phase contrast with three-directional velocity encoding). ASSESSMENT LV and RV circumferential, radial, and long-axis velocity-time curves, global and segmental peak velocities were measured using TPM. Short-axis bSSFP images were used to measure global LV and RV function parameters. STATISTICAL TESTS A normality test (Lilliefors test) was performed on all data. For comparisons, a t-test was used for normally distributed data or a Wilcoxon rank-sum test otherwise. Correlations were determined by a Pearson correlation. RESULTS Htx patients had significantly reduced LV (P < 0.05-0.001) and RV (P < 0.05-0.001) systolic and diastolic global and segmental long-axis velocities, reduced RV diastolic peak twist (P < 0.01), and presented with higher interventricular dyssynchrony for long-axis and circumferential motions (P < 0.05-0.001). LV diastolic long-axis dyssynchrony (r = 0.48, P = 0.03) and RV diastolic peak twist (r = -0.64, P = 0.004) significantly correlated with the total number of rejection episodes. DATA CONCLUSION TPM detected differences in biventricular myocardial velocities in pediatric Htx patients compared with controls and indicated a relationship between Htx myocardial velocities and rejection history. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2020;51:1212-1222.
Collapse
Affiliation(s)
- Haben Berhane
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Alexander Ruh
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nazia Husain
- Department of Pediatrics, Division of Pediatric Cardiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Joshua D Robinson
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Pediatrics, Division of Pediatric Cardiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Cynthia K Rigsby
- Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Michael Markl
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
6
|
Abstract
Echocardiography has a central role in the diagnosis and management of cardiovascular disease. Precise and reliable echocardiographic assessment is required for clinical decision-making. Even if the development of new technologies (3-dimentional echocardiography, speckle-tracking, semi-automated analysis, etc.), the final decision on analysis is strongly dependent on operator experience. Diagnostic errors are a major unresolved problem. Moreover, not only can cardiologists differ from one another in image interpretation, but also the same observer may come to different findings when a reading is repeated. Daily high workloads in clinical practice may lead to this error, and all cardiologists require precise perception in this field. Artificial intelligence (AI) has the potential to improve analysis and interpretation of medical images to a new stage compared with previous algorithms. From our comprehensive review, we believe AI has the potential to improve accuracy of diagnosis, clinical management, and patient care. Although there are several concerns about the required large dataset and "black box" algorithm, AI can provide satisfactory results in this field. In the future, it will be necessary for cardiologists to adapt their daily practice to incorporate AI in this new stage of echocardiography.
Collapse
Affiliation(s)
- Kenya Kusunose
- Department of Cardiovascular Medicine, Tokushima University Hospital
| | - Akihiro Haga
- Department of Medical Image Informatics, Graduate School of Biomedical Sciences, Tokushima University
| | - Takashi Abe
- Department of Radiology, Graduate School of Biomedical Sciences, Tokushima University
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Hospital
| |
Collapse
|
7
|
Impact of age and cardiac disease on regional left and right ventricular myocardial motion in healthy controls and patients with repaired tetralogy of fallot. Int J Cardiovasc Imaging 2019; 35:1119-1132. [PMID: 30715669 DOI: 10.1007/s10554-019-01544-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/21/2019] [Indexed: 12/29/2022]
Abstract
The assessment of both left (LV) and right ventricular (RV) motion is important to understand the impact of heart disease on cardiac function. The MRI technique of tissue phase mapping (TPM) allows for the quantification of regional biventricular three-directional myocardial velocities. The goal of this study was to establish normal LV and RV velocity parameters across a wide range of pediatric to adult ages and to investigate the feasibility of TPM for detecting impaired regional biventricular function in patients with repaired tetralogy of Fallot (TOF). Thirty-six healthy controls (age = 1-75 years) and 12 TOF patients (age = 5-23 years) underwent cardiac MRI including TPM in short-axis locations (base, mid, apex). For ten adults, a second TPM scan was used to assess test-retest reproducibility. Data analysis included the calculation of biventricular radial, circumferential, and long-axis velocity components, quantification of systolic and diastolic peak velocities in an extended 16 + 10 LV + RV segment model, and assessment of inter-ventricular dyssynchrony. Biventricular velocities showed good test-retest reproducibility (mean bias ≤ 0.23 cm/s). Diastolic radial and long-axis peak velocities for LV and RV were significantly reduced in adults compared to children (19-61%, p < 0.001-0.02). In TOF patients, TPM identified significantly reduced systolic and diastolic LV and RV long-axis peak velocities (20-50%, p < 0.001-0.05) compared to age-matched controls. In conclusion, tissue phase mapping enables comprehensive analysis of global and regional biventricular myocardial motion. Changes in myocardial velocities associated with age underline the importance of age-matched controls. This pilot study in TOF patients shows the feasibility to detect regionally abnormal LV and RV motion.
Collapse
|
8
|
Chitiboi T, Axel L. Magnetic resonance imaging of myocardial strain: A review of current approaches. J Magn Reson Imaging 2017; 46:1263-1280. [PMID: 28471530 DOI: 10.1002/jmri.25718] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 03/14/2017] [Indexed: 11/07/2022] Open
Abstract
Contraction of the heart is central to its purpose of pumping blood around the body. While simple global function measures (such as the ejection fraction) are most commonly used in the clinical assessment of cardiac function, MRI also provides a range of approaches for quantitatively characterizing regional cardiac function, including the local deformation (or strain) within the heart wall. While they have been around for some years, these methods are still undergoing further technical development, and they have had relatively little clinical evaluation. However, they can provide potentially useful new ways to assess cardiac function, which may be able to contribute to better classification and treatment of heart disease. This article provides some basic background on the physical and physiological factors that determine the motion of the heart, in health and disease and then reviews some of the ways that MRI methods are being developed to image and quantify strain within the myocardium. LEVEL OF EVIDENCE 4 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2017;46:1263-1280.
Collapse
Affiliation(s)
- Teodora Chitiboi
- NYU School of Medicine, Department of Radiology, New York, New York, USA
| | - Leon Axel
- NYU School of Medicine, Department of Radiology, New York, New York, USA
| |
Collapse
|
9
|
Gimpel C, Jung BA, Jung S, Brado J, Schwendinger D, Burkhardt B, Pohl M, Odening KE, Geiger J, Arnold R. Magnetic resonance tissue phase mapping demonstrates altered left ventricular diastolic function in children with chronic kidney disease. Pediatr Radiol 2017; 47:169-177. [PMID: 27966039 DOI: 10.1007/s00247-016-3741-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/26/2016] [Accepted: 10/20/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Echocardiographic examinations have revealed functional cardiac abnormalities in children with chronic kidney disease. OBJECTIVE To assess the feasibility of MRI tissue phase mapping in children and to assess regional left ventricular wall movements in children with chronic kidney disease. MATERIALS AND METHODS Twenty pediatric patients with chronic kidney disease (before or after renal transplantation) and 12 healthy controls underwent tissue phase mapping (TPM) to quantify regional left ventricular function through myocardial long (Vz) and short-axis (Vr) velocities at all 3 levels of the left ventricle. RESULTS Patients and controls (age: 8 years-20 years) were matched for age, height, weight, gender and heart rate. Patients had higher systolic blood pressure. No patient had left ventricular hypertrophy on MRI or diastolic dysfunction on echocardiography. Fifteen patients underwent tissue Doppler echocardiography, with normal z-scores for mitral early diastolic (VE), late diastolic (VA) and peak systolic (VS) velocities. Throughout all left ventricular levels, peak diastolic Vz and Vr (cm/s) were reduced in patients: Vzbase -10.6 ± 1.9 vs. -13.4 ± 2.0 (P < 0.0003), Vzmid -7.8 ± 1.6 vs. -11 ± 1.5 (P < 0.0001), Vzapex -3.8 ± 1.6 vs. -5.3 ± 1.6 (P = 0.01), Vrbase -4.2 ± 0.8 vs. -4.9 ± 0.7 (P = 0.01), Vrmid -4.7 ± 0.7 vs. -5.4 ± 0.7 (P = 0.01), Vrapex -4.7 ± 1.4 vs. -5.6 ± 1.1 (P = 0.05). CONCLUSION Tissue phase mapping is feasible in children and adolescents. Children with chronic kidney disease show significantly reduced peak diastolic long- and short-axis left ventricular wall velocities, reflecting impaired early diastolic filling. Thus, tissue phase mapping detects chronic kidney disease-related functional myocardial changes before overt left ventricular hypertrophy or echocardiographic diastolic dysfunction occurs.
Collapse
Affiliation(s)
- Charlotte Gimpel
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Center for Pediatrics, Medical Center - University of Freiburg, Mathildenstr. 1, 79106,, Freiburg, Germany.
| | - Bernd A Jung
- Institute of Diagnostic, Interventional and Pediatric Radiology, Inselspital Bern, Bern, Switzerland
| | - Sabine Jung
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Johannes Brado
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany
| | | | - Barbara Burkhardt
- Pediatric Heart Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Martin Pohl
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Center for Pediatrics, Medical Center - University of Freiburg, Mathildenstr. 1, 79106,, Freiburg, Germany
| | - Katja E Odening
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany
| | - Julia Geiger
- Department of Radiology, University Children's Hospital Zurich, Zurich, Switzerland.,Department of Radiology, Northwestern University, 737 N. Michigan Ave., Chicago, IL, USA
| | - Raoul Arnold
- Department of Pediatric and Congenital Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Kusunose K, Torii Y, Yamada H, Nishio S, Hirata Y, Seno H, Saijo Y, Ise T, Yamaguchi K, Tobiume T, Yagi S, Soeki T, Wakatsuki T, Sata M. Clinical Utility of Longitudinal Strain to Predict Functional Recovery in Patients With Tachyarrhythmia and Reduced LVEF. JACC Cardiovasc Imaging 2016; 10:118-126. [PMID: 27665160 DOI: 10.1016/j.jcmg.2016.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVES This study sought to assess the time course of presumptive tachycardia-induced cardiomyopathy and the predictors of left ventricular (LV) functional recovery in such patients. BACKGROUND Tachycardia-induced cardiomyopathy is a potentially reversible cardiomyopathy with effective treatment of the tachyarrhythmia. However, cases without improvement of LV systolic function were found occasionally. The diagnosis of tachycardia-induced cardiomyopathy can be challenging, and the role of echocardiographic imaging in the prediction of LV functional recovery is limited. METHODS LV segmental longitudinal strains (LS) were evaluated by 2-dimensional speckle tracking in 71 consecutive patients (65 ± 16 years; 61% men) with tachyarrhythmia and reduced left ventricular ejection fraction (LVEF) without any other known cardiovascular disease, and 30 age and sex-matched control subjects. Relative apical LS ratio (RALSR) was defined using the equation: average apical LS / (average basal LS + average mid LS) as a marker of strain distribution. RESULTS Compared with control subjects, patients with tachyarrhythmia had significantly lower global LS. Improvement in LVEF within 6 months after treatment of index arrhythmia was observed in 41 patients, and LVEF did not improve in 30 patients. In univariate analysis, lower LVEF at baseline (hazard ratio: 0.59 per 1 SD; p = 0.04) and higher RALSR (hazard ratio: 11.2 per 1 SD; p < 0.001) were associated with no recovery in LVEF during follow-up. In a multivariate logistic regression model, the significant predictor of LV systolic functional recovery was RALSR (hazard ratio: 22.9 per 1 SD; p = 0.001). A RALSR of 0.61 was sensitive (71%) and specific (90%) in differentiating LV systolic functional recovery (area under the curve: 0.88). CONCLUSIONS The RALSR was associated with LV systolic functional recovery. This information might be useful for clinical evaluation and follow-up in patients with reduced LVEF.
Collapse
Affiliation(s)
- Kenya Kusunose
- Department of Cardiovascular Medicine, Tokushima University Hospital, Tokushima, Japan
| | - Yuta Torii
- Ultrasound Examination Center, Tokushima University Hospital, Tokushima, Japan
| | - Hirotsugu Yamada
- Department of Cardiovascular Medicine, Tokushima University Hospital, Tokushima, Japan.
| | - Susumu Nishio
- Ultrasound Examination Center, Tokushima University Hospital, Tokushima, Japan
| | - Yukina Hirata
- Ultrasound Examination Center, Tokushima University Hospital, Tokushima, Japan
| | - Hiromitsu Seno
- Department of Cardiovascular Medicine, Tokushima University Hospital, Tokushima, Japan
| | - Yoshihito Saijo
- Department of Cardiovascular Medicine, Tokushima University Hospital, Tokushima, Japan
| | - Takayuki Ise
- Department of Cardiovascular Medicine, Tokushima University Hospital, Tokushima, Japan
| | - Koji Yamaguchi
- Department of Cardiovascular Medicine, Tokushima University Hospital, Tokushima, Japan
| | - Takeshi Tobiume
- Department of Cardiovascular Medicine, Tokushima University Hospital, Tokushima, Japan
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Hospital, Tokushima, Japan
| | - Takeshi Soeki
- Department of Cardiovascular Medicine, Tokushima University Hospital, Tokushima, Japan
| | - Tetsuzo Wakatsuki
- Department of Cardiovascular Medicine, Tokushima University Hospital, Tokushima, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Hospital, Tokushima, Japan
| |
Collapse
|
11
|
Reproducibility and observer variability of tissue phase mapping for the quantification of regional myocardial velocities. Int J Cardiovasc Imaging 2016; 32:1227-34. [PMID: 27116238 DOI: 10.1007/s10554-016-0894-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
To systematically investigate the reproducibility of global and segmental left ventricular (LV) velocities derived from tissue phase mapping (TPM). Breath held and ECG synchronized TPM data (spatial/temporal resolution = 2 × 2 mm(2)/20.8 ms) were acquired in 18 healthy volunteers. To analyze scan-rescan variability, TPM was repeated in all subjects during a second visit separated by 16 ± 5 days. Data analysis included LV segmentation, and quantification of global and regional (AHA 16-segment modal) metrics of LV function [velocity-time curves, systolic and diastolic peak and time-to-peak (TTP) velocities] for radial (Vr), long-axis (Vz) and circumferential (VΦ) LV velocities. Mean velocity time curves in basal, mid-ventricular, and apical locations showed highly similar LV motion patterns for all three velocity components (Vr, VΦ, Vz) for scan and rescan. No significant differences for both systolic and diastolic peak and TTP myocardial velocities were observed. Segmental analysis revealed similar regional peak Vr and Vz during both systole and diastole except for three LV segments (p = 0.045, p = 0.033, and p = 0.009). Excellent (p < 0.001) correlations between scans and rescan for peak Vr (R(2) = 0.92), peak Vz (R(2) = 0.90), radial TTP (R(2) = 0.91) and long-axis TTP (R(2) = 0.88) confirmed good agreement. Bland-Altman analysis demonstrated excellent intra-observer and good inter-observer analysis agreement but increased variability for long axis peak velocities. TPM based analysis of global and regional myocardial velocities can be performed with good reproducibility. Robustness of regional quantification of long-axis velocities was limited but spatial velocity distributions across the LV could reliably be replicated.
Collapse
|
12
|
Chitiboi T, Schnell S, Collins J, Carr J, Chowdhary V, Honarmand AR, Hennemuth A, Linsen L, Hahn HK, Markl M. Analyzing myocardial torsion based on tissue phase mapping cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2016; 18:15. [PMID: 27062364 PMCID: PMC4826723 DOI: 10.1186/s12968-016-0234-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/15/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The purpose of this work is to analyze differences in left ventricular torsion between volunteers and patients with non-ischemic cardiomyopathy based on tissue phase mapping (TPM) cardiovascular magnetic resonance (CMR). METHODS TPM was performed on 27 patients with non-ischemic cardiomyopathy and 14 normal volunteers. Patients underwent a standard CMR including late gadolinium enhancement (LGE) for the assessment of myocardial scar and ECG-gated cine CMR for global cardiac function. TPM was acquired in short-axis orientation at base, mid, and apex for all subjects. After evaluation by experienced observers, the patients were divided in subgroups according to the presence or absence of LGE (LGE+/LGE-), local wall motion abnormalities (WM+/WM-), and having a preserved (≥50%) or reduced (<50%) ejection fraction (EF+/EF-). TPM data was semi-automatically segmented and global LV torsion was computed for each cardiac time frame for endocardial and epicardial layers, and for the entire myocardium. RESULTS Maximum myocardial torsion was significantly lower for patients with reduced EF compared to controls (0.21 ± 0.15°/mm vs. 0.36 ± 0.11°/mm, p = 0.018), but also for patients with wall motion abnormalities (0.21 ± 0.13°/mm vs. 0.36 ± 0.11°/mm, p = 0.004). Global myocardial torsion showed a positive correlation (r = 0.54, p < 0.001) with EF. Moreover, endocardial torsion was significantly higher than epicardial torsion for EF+ subjects (0.56 ± 0.33°/mm vs. 0.34 ± 0.18°/mm, p = 0.039) and for volunteers (0.46 ± 0.16°/mm vs. 0.30 ± 0.09°/mm, p = 0.004). The difference in maximum torsion between endo- and epicardial layers was positively correlated with EF (r = 0.47, p = 0.002) and age (r = 0.37, p = 0.016) for all subjects. CONCLUSIONS TPM can be used to detect significant differences in LV torsion in patients with reduced EF and in the presence of local wall motion abnormalities. We were able to quantify torsion differences between the endocardium and epicardium, which vary between patient subgroups and are correlated to age and EF.
Collapse
Affiliation(s)
- Teodora Chitiboi
- />Jacobs University Bremen, Bremen, Germany
- />Fraunhofer MEVIS, Bremen, Germany
| | - Susanne Schnell
- />Department of Radiology, Northwestern University, Chicago, IL USA
| | - Jeremy Collins
- />Department of Radiology, Northwestern University, Chicago, IL USA
| | - James Carr
- />Department of Radiology, Northwestern University, Chicago, IL USA
| | - Varun Chowdhary
- />Department of Radiology, Northwestern University, Chicago, IL USA
| | | | | | | | - Horst K. Hahn
- />Jacobs University Bremen, Bremen, Germany
- />Fraunhofer MEVIS, Bremen, Germany
| | - Michael Markl
- />Department of Radiology, Northwestern University, Chicago, IL USA
| |
Collapse
|
13
|
Fast 3-Breath-Hold 3-Dimensional Tagging Cardiac Magnetic Resonance in Patients with Hypertrophic Myocardial Diseases: A Feasibility Study. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3749489. [PMID: 27022609 PMCID: PMC4789016 DOI: 10.1155/2016/3749489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/07/2016] [Accepted: 02/10/2016] [Indexed: 12/20/2022]
Abstract
Tagging CMR has been established as the standard reference for measurement of myocardial strain. The current 2D tagging technique requires multiple breath-holds to cover the whole heart and cannot show the 3D motions of the left ventricle. We performed fast 3-breath-hold 3D tagging with localized tagging preparation and complementary spatial modulation of magnetization in 10 patients with hypertrophic myocardial diseases and 6 normal volunteers. The left wall motion was observed at any view angle, which allowed for the identification of regional and global hypokinesis using the fast 3D tagging. Although a decrease in the circumferential strain and LGE were observed at the basal septum in hypertrophic cardiomyopathy, they were not located together in each patient. In hypertensive heart disease, the decrease in circumferential strain was observed more widely than LGE, and the summed strain of all segments was significantly decreased. The decrease in strain and LGE were observed diffusely in cardiac amyloidosis. In conclusion, fast 3-breath-hold 3D tagging is feasible for the regional and global strain analysis. The location of reduced circumferential strain is not necessarily the same as that of LGE and is related to the global cardiac function in patients with hypertrophic myocardial diseases.
Collapse
|
14
|
von Knobelsdorff-Brenkenhoff F, Hennig P, Menza M, Dieringer MA, Foell D, Jung B, Schulz-Menger J. Myocardial dysfunction in patients with aortic stenosis and hypertensive heart disease assessed by MR tissue phase mapping. J Magn Reson Imaging 2015; 44:168-77. [PMID: 26687082 DOI: 10.1002/jmri.25125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To identify abnormalities of myocardial velocities in patients with left ventricular pressure overload using magnetic resonance tissue phase mapping (TPM). MATERIAL AND METHODS Thirty-three patients (nine with hypertensive heart disease [HYP], 24 with aortic stenosis [AS]) and 41 healthy controls were enrolled. To assess left ventricular motion, a basal, midventricular, and apical slice were acquired using three-directional velocity-encoded phase-contrast MR with a 3T system. Target parameters were peak longitudinal (Vz ) and radial (Vr ) velocity in systole and diastole (Peaksys , Peakdias ). Analysis was done on each myocardial segment. In a subgroup (n = 7 HYP, n = 12 AS, n = 24 controls), measurement was repeated during handgrip exercise. RESULTS AS had significantly lower Vz -Peaksys in the inferolateral and inferoseptal wall (P = 0.003-0.029) and Vr -Peaksys in the septum and anterior wall (P = 0.001-0.013) than controls. Vz -Peakdias and Vr -Peakdias were lower in AS than in controls in almost all segments (P < 0.001-0.028). HYP showed reduced Vz -Peakdias compared to controls in all basal segments as well as in the lateral midventricular wall (P < 0.001-0.045), and reduced Vr -Peakdias compared to controls predominantly in the midventricular and apical segments (P = 0.004-0.042). AS patients with focal fibrosis had significantly reduced myocardial velocities (P = 0.001-0.047) in segments without late enhancement. During exercise, Vz -Peaksys , Vr -Peaksys , and Vz -Peakdias remained unchanged in AS and HYP, but decreased in the lateral wall in controls (P < 0.001-0.043). CONCLUSION Even with preserved left ventricle (LV) ejection fraction, peak longitudinal and radial velocities of the LV are reduced in AS and HYP, indicating early functional impairment. J. Magn. Reson. Imaging 2016;44:168-177.
Collapse
Affiliation(s)
- Florian von Knobelsdorff-Brenkenhoff
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine; and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
| | - Pierre Hennig
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine; and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
| | - Marius Menza
- Department of Radiology, Medical Physics, University Medical Center, Freiburg, Germany
| | - Matthias A Dieringer
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine; and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
| | - Daniela Foell
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Freiburg, Germany
| | - Bernd Jung
- Institute of Diagnostic, Interventional and Pediatric Radiology, University Hospital Bern, Switzerland
| | - Jeanette Schulz-Menger
- Working Group Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine; and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
| |
Collapse
|
15
|
Electro-mechanical dysfunction in long QT syndrome: Role for arrhythmogenic risk prediction and modulation by sex and sex hormones. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:255-69. [PMID: 26718598 DOI: 10.1016/j.pbiomolbio.2015.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/26/2015] [Accepted: 12/15/2015] [Indexed: 12/24/2022]
Abstract
Long QT syndrome (LQTS) is a congenital arrhythmogenic channelopathy characterized by impaired cardiac repolarization. Increasing evidence supports the notion that LQTS is not purely an "electrical" disease but rather an "electro-mechanical" disease with regionally heterogeneously impaired electrical and mechanical cardiac function. In the first part, this article reviews current knowledge on electro-mechanical (dys)function in LQTS, clinical consequences of the observed electro-mechanical dysfunction, and potential underlying mechanisms. Since several novel imaging techniques - Strain Echocardiography (SE) and Magnetic Resonance Tissue Phase Mapping (TPM) - are applied in clinical and experimental settings to assess the (regional) mechanical function, advantages of these non-invasive techniques and their feasibility in the clinical routine are particularly highlighted. The second part provides novel insights into sex differences and sex hormone effects on electro-mechanical cardiac function in a transgenic LQT2 rabbit model. Here we demonstrate that female LQT2 rabbits exhibit a prolonged time to diastolic peak - as marker for contraction duration and early relaxation - compared to males. Chronic estradiol-treatment enhances these differences in time to diastolic peak even more and additionally increases the risk for ventricular arrhythmia. Importantly, time to diastolic peak is particularly prolonged in rabbits exhibiting ventricular arrhythmia - regardless of hormone treatment - contrasting with a lack of differences in QT duration between symptomatic and asymptomatic LQT2 rabbits. This indicates the potential added value of the assessment of mechanical dysfunction in future risk stratification of LQTS patients.
Collapse
|
16
|
Rider OJ, Ajufo E, Ali MK, Petersen SE, Nethononda R, Francis JM, Neubauer S. Myocardial tissue phase mapping reveals impaired myocardial tissue velocities in obesity. Int J Cardiovasc Imaging 2014; 31:339-47. [DOI: 10.1007/s10554-014-0548-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/04/2014] [Indexed: 11/29/2022]
|
17
|
Kusunose K, Zhang Y, Mazgalev TN, Thomas JD, Popović ZB. Left ventricular strain distribution in healthy dogs and in dogs with tachycardia-induced dilated cardiomyopathy. Cardiovasc Ultrasound 2013; 11:43. [PMID: 24304622 PMCID: PMC4235052 DOI: 10.1186/1476-7120-11-43] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/23/2013] [Indexed: 11/19/2022] Open
Abstract
Background Recently, left ventricular (LV) strain distribution pattern has been assessed in several cardiac disease states. Tachycardia-induced cardiomyopathy (TIC) is an animal model of non-ischemic cardiomyopathy well characterized in terms of global LV dysfunction but with poor understanding of regional variability in LV function. We hypothesized that TIC induces specific changes in LV strain distribution pattern. Methods Twenty five adult mongrel conscious dogs were trained to lie down calmly for echocardiography. In seven selected dogs, we implanted pacing system for TIC induction under general anesthesia. We measured LV geometry and function, strains, and torsion before and after the development of TIC in awake non-sedated state. Results In 25 healthy dogs, all three types of normal strain significantly increased from base to apex (p <0.05), while a definite and recognizable twist could be measured due to presence of shear strain. In 7 dogs with TIC, marked changes in LV mechanics occurred throughout the cardiac cycle, resulting in decrease of strain (p <0.001), twist (p <0.05), and negative peak twist rate (p <0.05). Interestingly, the relative decrease of strain due to TIC was more pronounced in the apex (p < 0.001), with the radial strain decreasing the most (p < 0.05). Conclusion TIC is accompanied by decreased systolic LV strain and twist deformation, as well as loss of early diastolic recoil. In addition, the decrease of strain was more profound in the apex. This “reverse” distribution of LV strain may help us understand LV dysfunction in the presence of nonischemic etiology.
Collapse
Affiliation(s)
| | | | | | | | - Zoran B Popović
- Department of Cardiovascular Medicine, Cleveland Clinic, Heart and Vascular Institute, 9500 Euclid Avenue, Desk J1-5, Cleveland, OH 44195, USA.
| |
Collapse
|
18
|
Young AA, Prince JL. Cardiovascular magnetic resonance: deeper insights through bioengineering. Annu Rev Biomed Eng 2013; 15:433-61. [PMID: 23662778 DOI: 10.1146/annurev-bioeng-071812-152346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heart disease is the main cause of morbidity and mortality worldwide, with coronary artery disease, diabetes, and obesity being major contributing factors. Cardiovascular magnetic resonance (CMR) can provide a wealth of quantitative information on the performance of the heart, without risk to the patient. Quantitative analyses of these data can substantially augment the diagnostic quality of CMR examinations and can lead to more effective characterization of disease and quantification of treatment benefit. This review provides an overview of the current state of the art in CMR with particular regard to the quantification of motion, both microscopic and macroscopic, and the application of bioengineering analysis for the evaluation of cardiac mechanics. We discuss the current clinical practice and the likely advances in the next 5-10 years, as well as the ways in which clinical examinations can be augmented by bioengineering analysis of strain, compliance, and stress.
Collapse
Affiliation(s)
- A A Young
- Department of Anatomy with Radiology, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand.
| | | |
Collapse
|