1
|
Logeart D, Taille Y, Derumeaux G, Gellen B, Sirol M, Galinier M, Roubille F, Georges JL, Trochu JN, Launay JM, Vodovar N, Bauters C, Vicaut E, Mercadier JJ. Patterns of left ventricular remodeling post-myocardial infarction, determinants, and outcome. Clin Res Cardiol 2024; 113:1670-1681. [PMID: 38261025 DOI: 10.1007/s00392-023-02331-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/20/2023] [Indexed: 01/24/2024]
Abstract
AIM Left ventricular remodeling (LVR) after myocardial infarction (MI) can lead to heart failure, arrhythmia, and death. We aim to describe adverse LVR patterns at 6 months post-MI and their relationships with subsequent outcomes and to determine baseline. METHODS AND RESULTS A multicenter cohort of 410 patients (median age 57 years, 87% male) with reperfused MI and at least 3 akinetic LV segments on admission was analyzed. All patients had transthoracic echocardiography performed 4 days and 6 months post-MI, and 214 also had cardiac magnetic resonance imaging performed on day 4. To predict LVR, machine learning methods were employed in order to handle many variables, some of which may have complex interactions. Six months post-MI, echocardiographic increases in LV end-diastolic volume (LVEDV), LV end-systolic volume (LVESV), and LV ejection fraction (LVEF) were 14.1% [interquartile range 0.0, 32.0], 5.0% [- 14.0, 25.8], and 8.7% [0.0, 19.4], respectively. At 6 months, ≥ 15% or 20% increases in LVEDV were observed in 49% and 42% of patients, respectively, and 37% had an LVEF < 50%. The rate of death or new-onset HF at the end of 5-year follow-up was 8.8%. Baseline variables associated with adverse LVR were determined best by random forest analysis and included stroke volume, stroke work, necrosis size, LVEDV, LVEF, and LV afterload, the latter assessed by Ea or Ea/Ees. In contrast, baseline clinical and biological characteristics were poorly predictive of LVR. After adjustment for predictive baseline variables, LV dilation > 20% and 6-month LVEF < 50% were significantly associated with the risk of death and/or heart failure: hazard ratio (HR) 2.12 (95% confidence interval (CI) 1.05-4.43; p = 0.04) and HR 2.68 (95% CI 1.20-6.00; p = 0.016) respectively. CONCLUSION Despite early reperfusion and cardioprotective therapy, adverse LVR remains frequent after acute MI and is associated with a risk of death and HF. A machine learning approach identified and prioritized early variables that are associated with adverse LVR and which were mainly hemodynamic, combining LV volumes, estimates of systolic function, and afterload.
Collapse
Affiliation(s)
- Damien Logeart
- UMR-S 942 MASCOT, Université Paris Cité and Inserm, Paris, France.
- Assistance Publique Hôpitaux de Paris, Hôpital Lariboisière-Fernand Widal, 75010, Paris, France.
- Université Paris Cité, Paris, France.
| | - Yoann Taille
- Assistance Publique Hôpitaux de Paris, Hôpital Lariboisière-Fernand Widal, 75010, Paris, France
| | - Geneviève Derumeaux
- Assistance Publique Hôpitaux de Paris, Hôpital Henri-Mondor, Créteil, France
| | | | - Marc Sirol
- American Hospital, Neuilly-Sur-Seine, France
| | | | | | | | | | | | - Nicolas Vodovar
- UMR-S 942 MASCOT, Université Paris Cité and Inserm, Paris, France
| | | | - Eric Vicaut
- UMR-S 942 MASCOT, Université Paris Cité and Inserm, Paris, France
- Assistance Publique Hôpitaux de Paris, Hôpital Lariboisière-Fernand Widal, 75010, Paris, France
- Université Paris Cité, Paris, France
| | | |
Collapse
|
2
|
Károlyi M, Polacin M, Kolossváry M, Sokolska JM, Matziris I, Weber L, Alkadhi H, Manka R. Comparative analysis of late gadolinium enhancement assessment techniques for monitoring fibrotic changes in myocarditis follow-up. Eur Radiol 2024; 34:7264-7274. [PMID: 38703188 PMCID: PMC11519139 DOI: 10.1007/s00330-024-10756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVES To compare the repeatability and interrelation of various late gadolinium enhancement (LGE) assessment techniques for monitoring fibrotic changes in myocarditis follow-up. MATERIALS AND METHODS LGE extent change between baseline and 3-month cardiovascular magnetic resonance (CMR) was compared in patients with acute myocarditis using the full width at half maximum (FWHM), gray-scale thresholds at 5 and 6 standard deviations (SD5 and SD6), visual assessment with threshold (VAT) and full manual (FM) techniques. In addition, visual presence score (VPS), visual transmurality score (VTS), and a simplified visual change score (VCS) were assessed. Intraclass-correlation (ICC) was used to evaluate repeatability, and methods were compared using Spearman's correlation. RESULTS Forty-seven patients (38 male, median age: 27 [IQR: 21; 38] years) were included. LGE extent change differed among quantitative techniques (p < 0.01), with variability in the proportion of patients showing LGE change during follow-up (FWHM: 62%, SD5: 74%, SD6: 66%, VAT: 43%, FM: 60%, VPS: 53%, VTS: 77%, VCS: 89%). Repeatability was highest with FWHM (ICC: 0.97) and lowest with SD5 (ICC: 0.89). Semiquantitative scoring had slightly lower values (VPS ICC: 0.81; VTS ICC: 0.71). VCS repeatability was excellent (ICC: 0.93). VPS and VTS correlated with quantitative techniques, while VCS was positively associated with VPS, VTS, VAT, and FM, but not with FWHM, SD5, and SD6. CONCLUSION FWHM offers the least observer-dependent LGE follow-up after myocarditis. VPS, VTS, and VCS are practical alternatives, showing reliable correlations with quantitative methods. Classification of patients exhibiting either stable or changing LGE relies on the assessment technique. CLINICAL RELEVANCE STATEMENT This study shows that LGE monitoring in myocarditis is technique-dependent; the FWHM method yields the most consistent fibrotic tracking results, with scoring-based techniques as reliable alternatives. KEY POINTS Recognition of fibrotic changes during myocarditis follow-up is significantly influenced by the choice of the quantification technique employed. The FWHM technique ensures highly repeatable tracking of myocarditis-related LGE changes. Segment-based visual scoring and the simplified visual change score offer practical, reproducible alternatives in resource-limited settings.
Collapse
Affiliation(s)
- Mihály Károlyi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Malgorzata Polacin
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Márton Kolossváry
- Gottsegen National Cardiovascular Center, Budapest, Hungary
- Physiological Controls Research Center, University Research and Innovation Center, Óbuda University, Budapest, Hungary
| | - Justyna M Sokolska
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Ioannis Matziris
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lucas Weber
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Radiology, Cantonal Hospital Winterthur, Winterthur, Switzerland
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Robert Manka
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.
- Department of Cardiology, University Heart Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Demirkiran A, Everaars H, Amier RP, Beijnink C, Bom MJ, Götte MJW, van Loon RB, Selder JL, van Rossum AC, Nijveldt R. Cardiovascular magnetic resonance techniques for tissue characterization after acute myocardial injury. Eur Heart J Cardiovasc Imaging 2020; 20:723-734. [PMID: 31131401 DOI: 10.1093/ehjci/jez094] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/19/2019] [Accepted: 04/26/2019] [Indexed: 12/22/2022] Open
Abstract
The annual incidence of hospital admission for acute myocardial infarction lies between 90 and 312 per 100 000 inhabitants in Europe. Despite advances in patient care 1 year mortality after ST-segment elevation myocardial infarction (STEMI) remains around 10%. Cardiovascular magnetic resonance imaging (CMR) has emerged as a robust imaging modality for assessing patients after acute myocardial injury. In addition to accurate assessment of left ventricular ejection fraction and volumes, CMR offers the unique ability of visualization of myocardial injury through a variety of imaging techniques such as late gadolinium enhancement and T2-weighted imaging. Furthermore, new parametric mapping techniques allow accurate quantification of myocardial injury and are currently being exploited in large trials aiming to augment risk management and treatment of STEMI patients. Of interest, CMR enables the detection of microvascular injury (MVI) which occurs in approximately 40% of STEMI patients and is a major independent predictor of mortality and heart failure. In this article, we review traditional and novel CMR techniques used for myocardial tissue characterization after acute myocardial injury, including the detection and quantification of MVI. Moreover, we discuss clinical scenarios of acute myocardial injury in which the tissue characterization techniques can be applied and we provide proposed imaging protocols tailored to each scenario.
Collapse
Affiliation(s)
- Ahmet Demirkiran
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Henk Everaars
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Raquel P Amier
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Casper Beijnink
- Department of Cardiology, Radboudumc, Geert Grooteplein Zuid 10, GA, Nijmegen, the Netherlands
| | - Michiel J Bom
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Marco J W Götte
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Ramon B van Loon
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Jasper L Selder
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Albert C van Rossum
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands
| | - Robin Nijveldt
- Department of Cardiology, Amsterdam University Medical Center - Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, HV, Amsterdam, the Netherlands.,Department of Cardiology, Radboudumc, Geert Grooteplein Zuid 10, GA, Nijmegen, the Netherlands
| |
Collapse
|
4
|
Garcia R, Bouleti C, Sirol M, Logeart D, Monnot C, Ardidie-Robouant C, Caligiuri G, Mercadier JJ, Germain S. VEGF-A plasma levels are associated with microvascular obstruction in patients with ST-segment elevation myocardial infarction. Int J Cardiol 2019; 291:19-24. [PMID: 30910283 DOI: 10.1016/j.ijcard.2019.02.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/06/2019] [Accepted: 02/27/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Microvascular obstruction (MVO) is associated with poor outcome after ST-segment elevation myocardial infarction (STEMI). Vascular endothelial growth factor-A (VEGF-A) is a vascular permeability inducer playing a key role in MVO pathogenesis. We aimed to assess whether VEGF-A levels are associated with MVO, when evaluated by magnetic resonance imaging (MRI) in STEMI patients. METHODS The multicenter prospective PREGICA study included a CMR substudy with all consecutive patients with a first STEMI who had undergone cardiac MRI at baseline and at 6-month follow-up. Patients with initial TIMI flow >1 were excluded. VEGF-A levels were measured in blood samples drawn at inclusion. RESULTS Between 2010 and 2017, 147 patients (mean age 57 ± 10 years; 84% males) were included. MVO was present in 65 (44%) patients. After multivariate analysis, higher troponin peak (OR 1.005; 95% CI 1.001-1.008; p = 0.007) and VEGF-A levels (OR 1.003; 95% CI 1.001-1.005; p = 0.015) were independently associated with MVO. When considering only patients with successful percutaneous coronary intervention (final TIMI flow 3, n = 130), higher troponin peak (p = 0.004) and VEGF-A levels (p = 0.03) remained independently predictive of MVO. Moreover, MVO was associated with adverse left ventricular (LV) remodeling and VEGF-A levels were significantly and inversely correlated with LV ejection fraction (EF) at 6-month follow-up. CONCLUSION Our results show that VEGF-A levels were independently associated with MVO during STEMI and correlated with mid-term LVEF alteration. VEGF-A could therefore be considered as a biomarker of MVO in STEMI patients and be used to stratify patient prognosis.
Collapse
Affiliation(s)
- Rodrigue Garcia
- CHU Poitiers, Service de Cardiologie, 2 rue de la Milétrie, 86021 Poitiers, France; Center for Interdisciplinary Research in Biology (CIRB), College de France, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, 11, place Marcelin Berthelot, Paris F-75005, France
| | - Claire Bouleti
- Hôpital Bichat, APHP, Cardiology Department, 46 Rue Henri Huchard, 75877 Paris, Paris Diderot University, DHU Fire, France
| | - Marc Sirol
- Hôpital Ambroise-Paré, 9 Avenue Charles de Gaulle, 92100 Boulogne-Billancourt, INSERM U1018, Team 5 Université Paris Sud-Université Versailles Saint Quentin en Yvelines, CESP (Centre for Epidemiology and Population Health EpReC Team, Renal and Cardiovascular Epidemiology), France
| | - Damien Logeart
- Hopital Lariboisière, HEGP 2 rue Ambroise-Paré, 75010 Paris, France
| | - Catherine Monnot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, 11, place Marcelin Berthelot, Paris F-75005, France
| | - Corinne Ardidie-Robouant
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, 11, place Marcelin Berthelot, Paris F-75005, France
| | | | - Jean-Jacques Mercadier
- Signalisation and Cardiovascular Pathophysiology - UMR-S 1180, Univ. Paris-Sud, INSERM, Université Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Sciences et Lettres (PSL) Research University, 11, place Marcelin Berthelot, Paris F-75005, France.
| |
Collapse
|
5
|
Puntmann VO, Valbuena S, Hinojar R, Petersen SE, Greenwood JP, Kramer CM, Kwong RY, McCann GP, Berry C, Nagel E. Society for Cardiovascular Magnetic Resonance (SCMR) expert consensus for CMR imaging endpoints in clinical research: part I - analytical validation and clinical qualification. J Cardiovasc Magn Reson 2018; 20:67. [PMID: 30231886 PMCID: PMC6147157 DOI: 10.1186/s12968-018-0484-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/05/2018] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease remains a leading cause of morbidity and mortality globally. Changing natural history of the disease due to improved care of acute conditions and ageing population necessitates new strategies to tackle conditions which have more chronic and indolent course. These include an increased deployment of safe screening methods, life-long surveillance, and monitoring of both disease activity and tailored-treatment, by way of increasingly personalized medical care. Cardiovascular magnetic resonance (CMR) is a non-invasive, ionising radiation-free method, which can support a significant number of clinically relevant measurements and offers new opportunities to advance the state of art of diagnosis, prognosis and treatment. The objective of the SCMR Clinical Trial Taskforce was to summarizes the evidence to emphasize where currently CMR-guided clinical care can indeed translate into meaningful use and efficient deployment of resources results in meaningful and efficient use. The objective of the present initiative was to provide an appraisal of evidence on analytical validation, including the accuracy and precision, and clinical qualification of parameters in disease context, clarifying the strengths and weaknesses of the state of art, as well as the gaps in the current evidence This paper is complementary to the existing position papers on standardized acquisition and post-processing ensuring robustness and transferability for widespread use. Themed imaging-endpoint guidance on trial design to support drug-discovery or change in clinical practice (part II), will be presented in a follow-up paper in due course. As CMR continues to undergo rapid development, regular updates of the present recommendations are foreseen.
Collapse
Affiliation(s)
- Valentina O Puntmann
- Institute of Experimental and Translational Cardiovascular Imaging, Goethe University Hospital Frankfurt, Frankfurt, Germany
- Department of Cardiology, Goethe University Hospital Frankfurt, Frankfurt, Germany
| | - Silvia Valbuena
- Department of Cardiology, University Hospital La Paz, Madrid, Germany
| | - Rocio Hinojar
- Department of Cardiology, University Hospital Ramón y Cajal, Madrid, Spain
| | - Steffen E Petersen
- William Harvey Research Institute, Queen Mary University of London, Barts and the London NIHR Biomedical Research Centre at Barts, London, UK
| | - John P Greenwood
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Christopher M Kramer
- Department of Medicine (Cardiology) and Radiology, Cardiovascular Imaging Center, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Raymond Y Kwong
- Cardiovascular Division, Department of Medicine, Brigham and Womens' Hospital, Boston, Massachusetts, USA
| | - Gerry P McCann
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- the NIHR Leicester Cardiovascular Biomedical Centre, University Hospitals of Leicester NHS Trust, Glenfield Hospital, Leicester, UK
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Clydebank, UK
| | - Eike Nagel
- Institute of Experimental and Translational Cardiovascular Imaging, Goethe University Hospital Frankfurt, Frankfurt, Germany.
| |
Collapse
|